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Abstract: Intelligent diagnosis of bearing faults is fundamental to machinery automation and their
intelligent operation. Deep learning-based analysis of bearing vibration data has emerged as one
research mainstream for fault diagnosis. To enhance the quality of feature extraction from bearing
vibration signals and the robustness of the model, we construct a fault diagnostic model based on
convolutional neural network (CNN) and long short-term memory (LSTM) parallel network to extract
their temporal and spatial features from two perspectives. First, via resampling, vibration signal is split
into equal-sized slices which are then converted into time-frequency images by continuous wavelet
transform (CWT). Second, LSTM extracts the time-correlation features of 1D signals as one path, and
2D-CNN extracts the local frequency distribution features of time-frequency images as another path.
Third, 1D-CNN further extracts integrated features from the fusion features yielded by former parallel
paths. Finally, these categories are calculated through the softmax function. According to experimental
results, the proposed model has satisfactory diagnostic accuracy and robustness in different contexts
on two different datasets.
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1. Introduction

Machinery operation and maintenance tend to be automated and intelligent, which challenges the
diagnosis of their faults. As key and essential parts in rotating device, bearings are prone to failure
since their operation tend to be affected by severe working conditions [1]. Once the bearing fails, it
causes serious system collapse and equipment damage, even cause great economic losses and
casualties. Therefore, effective fault diagnosis and operating state analysis of bearings can help to
detect mechanical equipment failures in time, which is the pre-requisite of reliable and stable operation
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of mechanical systems. The faults of bearings could be reflected by their vibration signals, which are
time series data of periodic oscillation and contain various information about operational state [2]. In
different working conditions, the mapping relationship between the vibration signal of bearings and
their fault state becomes more complicated, which increases the difficulty of fault identification [3].
Over the last decades, based on vibration signal analysis, research on bearing fault diagnosis have
mainly gone through three phases: (i) Fault diagnosis based on signal modal analysis; (ii) fault
diagnosis based on traditional shallow machine learning; (ii1) fault diagnosis based on deep learning.

Research on fault diagnosis based on signal modal analysis gradually develops into a mature
methodology. Time-frequency methods are widely used for the pre-processing of bearing vibration
signals, including empirical mode decomposition (EMD) [4], variational mode decomposition
(VMD) [5], short-time Fourier transform (STFT) [6], and wavelet transform (WT) [7], etc. Focusing
on the time domain, STFT can extract vibration components of the signal distribution in the frequency
domain, but it is not applicable to time-varying signals. Based on STFT, WT can analyze signals at
multiple scales, capturing details and features in different frequency ranges, and has been used
extensively in signal analysis [8,9].

The development of machine learning push fault diagnosis towards automated and intelligent
diagnosis. Generally, traditional shallow machine learning methods in fault diagnosis are usually
utilized for signal processing, feature extraction, and final fault classification by a classifier [10-13].
Commonly-used methods in fault diagnosis include support vector machines (SVM) [14], Bayesian
classifiers [15], artificial neural networks (ANN) [16], etc. Li et al. [17] used EEMD to decompose
signal and extracted fault feature frequency from optimized signal by power spectrum to identify the
fault. ANN could utilize the features extracted from envelope analysis to realize cross-domain fault
diagnosis [18]. Although great improvement has been achieved by these traditional machine learning
methods in fault diagnosis, their diagnostic accuracy depends on manual feature selection and
extraction. Thus, some scholars put methods for adaptive feature extraction. Li et al. [16] decomposed
the signal into sub-signals of multiple scales, extracted their local features with BPNN, and identified
fault features by SVM. However, the diagnostic performance of traditional shallow machine learning
models (e.g., SVM, ANN) is limited by the quality of extracted fault features. Moreover, data from
sensors in real time are so diverse and ever-increasing that these methods cannot fully utilize all
information, and the accuracy goes down with the increasing quantity of the data.

Deep learning network (e.g., CNN, RNN, DBN, GAN, AE) [19-23], as an extension of traditional
machine learning based on neural networks, has shown significant superiority in image classification,
natural language processing, and target detection [24—26]. It has excellent capability of feature
representation, and could extract deep features of the data by constructing a deep network and achieve
the complex nonlinear mapping between the pre-processing data and the fault states. In fault diagnosis,
CNN, as a typical deep learning network, has achieved a great deal of excellence [27-31]. Many
stacked CNNs have been proposed which could directly extract information from the input of time
domain vibration signal without priori expert knowledge, and achieve good performance under
variable loads [3,32]. Ye et al. [33] used adaptive variational modal decomposition to preprocess the
signal to obtain the desired components, and a modified 1D-CNN is used to extract features and
identify faults. Vibration signals of the faults belong to time series and contain temporal features.
Although CNN could extract their spatial features, it cannot fully mine the fault features from the
perspective of local space. While RNN could effectively deal with time series data, and better handle
vibration signals with time-series correlation [34,35]. An et al. [36] proposed a diagnostic method
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based on periodic sparse attention and LSTM, where LSTM is used to extract time-correlated features
of the signal. Some scholars also proposed a combination of 2D-CNN and LSTM for fault diagnosis [37].
Although neural network-based diagnosis models already have a high diagnostic accuracy, some fails
to fully consider the feature specialty of vibration signals, and is unable to fully explore the time
domain and frequency domain features. These inadequacies are reflected in the following two aspects:
(1) The vibration signals belong to periodic vibration signals, if the signal analysis merely from the
time domain or the frequency domain cannot adequately extract the fault features of the signals. (ii)
The combination of CNN and LSTM for fault diagnosis is often utilized in a single-path and series
way. In the series situation, the output of one network will be taken as the input of the following
network, and extracted features of the latter are inevitably influenced by the former, thus negatively
affecting performance of feature extraction and fault classification of the model. Moreover, as the deep
network continue to be deeper, these diagnostic models tend to be overfitting [38,39]. Extra
optimization needs to be done to solve this problem [33,40].

To avoid over-stacked and dilated CNNss, attention mechanism is introduced to dynamically focus
on different parts of the input, especially when sequential data or images are subject to multiple target
processing with multi-stages [41,42]. Wang et al. [43] embedded the attention mechanism into a neural
network to achieve high diagnostic performance even if noises are added into the signal. Some scholars
suggested converting original signal into two-dimensional (2D) images to facilitate feature extraction
via CNN [37,44,45]. Wen et al. [46] designed an improved LeNet-5 network with high diagnostic
accuracy which could convert the original 1D signal into 2D images and then directly extract features
from the latter.

In sum, although existing research provides many intelligent solutions for fault diagnosis,
shortcomings exist, especially in the following aspects:

1) Most fault diagnosis models based on traditional shallow machine learning relies on manually
extracted features, which cannot be applied into equipment fault diagnosis in the era of big data due to
their structural limitations.

2) The mere model input of time-series data or frequency-domain data would lead to insufficient
extraction of spatiotemporal fault features.

3) Existing fault diagnosis model combining CNN and LSTM utilizes the output of one network
as the input of the following network, features extracted from CNN will cause negative effects on that
extracted from LSTM, and CNN cannot adjust the deviation resulting from the output of LSTM under
the cascade network.

In terms of the limitations above, to adequately extract the failure features and improve the
performance while avoiding overfitting, this paper constructs a shallow neural network with parallel
feature extraction from time and frequency domains, which can extract local frequency distribution
features and time-correlated features from the vibration signal. The shallow structure has fewer
network parameters, which could quickly stabilize and effectively converge. The major contributions
of this paper are summarized as follows.

1) A dual-input fault diagnosis model with shallow structure is built based on CNN and LSTM
with the inputs of vibration signals and time-frequency images simultaneously. The model could
extract time-correlated and frequency distribution features of the signals in parallel from time and
frequency domains to improve the quality of the features.

2) The features obtained from the parallel network are fused to form more comprehensive
features that can further enhance the representation ability of the model, thus improving its robustness
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and generalization.

3) Experiments demonstrate that the model proposed provides excellent robustness and
generalizability.

The rest of this paper is organized as follows: Section 2 briefly summarizes the related theoretical
methods; Section 3 introduces the diagnostic process and model framework; Section 4 describes the
experimental results; and conclusions are made in Section 5.

2. Theoretical methods
2.1. CNN

Convolutional neural network (CNN) is a feed-forward neural network with distinguishing
features of weight sharing, local connectivity, and pooling. The core idea of CNN is to extract features
through convolutional and pooling layers, then input the them into a fully connected layer for
classification or regression tasks. A typical CNN usually includes input, convolutional, pooling, fully
connected, and output layers.

2.1.1.  Convolutional layers

The convolutional layer could extract feature by convolving the input with kernels. The
convolutional kernel updates weights by learning, and convolutional kernels with different sizes can
obtain different outputs. The computation of the convolutional layer is as follows:

x = f(Eiax xwif + b (1)

where x! denotes the feature map of the j-th of the /-th convolutional layer, * represents the

J
convolution operation, w{; and b} *are the weights and biases of the j-th convolutional kernel in the

[-th convolutional layer, fis the activation function which is commonly ReLU function.
2.1.2.  Pooling layers

The pooling layer can reduce the size of the feature map, extract salient features, and reduce the
sensitivity of the model to the input data. Maximum pooling is applied in this paper, whose operation

can be expressed as follows:

xh = max(x?: x}+r) (2)

2.1.3.  Fully connected layers
The fully connected layer could effectively integrate and transform the features extracted from

the previous layer to improve expressive ability and performance of the network. The classification
results are obtained by the softmax function.
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2.2. LSTM

Long short-term memory network (LSTM) introduces memory block and gate mechanisms to
improve feature extraction of the input. The gate unit in LSTM is responsible for controlling and
regulating the flow of information, so as to realize selective memorizing and forgetting of important
information in the sequence, which addresses the gradient vanishing or explosion issues in traditional
RNNs. Figure 1 illustrates a common schematic of an LSTM unit.

Forget gate  Input gate Output gate

Figure 1. Common schematic of an LSTM unit.

Forget gate determines which information would be forgotten from the memory state of the
previous time step, and is implemented by a sigmoid function. It is calculated as follows:

fe = o(Wrxxe + wpphe_s + by) 3)

The input gate serves to control the extent to which new input information updates the current
time-step memory state, and it is calculated as follows:

iy = o(Wiexe + winhe—1 + b;) “4)

C~t = tanh(wWeyx; + wephe—q + be) (5)

The output gate is a gating unit which controls the flowing of information from the current state to
the output layer. Selectively outputting information in the hidden state at current time step could pass
useful, long-term dependencies to the final layer. Its calculation is as follows:

¢t = frcr—q +icC (6)
0 = U(Woxxt + Wohht—l + bo) (7)
h; = o; X tanh(c;) (8)

where o is a sigmoid function, w is a weight matrix, x; is the input of current time step, h,_ is the
short-term state of the last cell, and b4 is the bias vector.
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2.3.CWT

Continuous wavelet transform (CWT) is a technique for analyzing the time-frequency features of
non-smooth signal, which can capture transient changes and local structure in the signal. It can provide
a time window that changes with frequency and perform adaptive multiscale analysis on signals
through scaling and translation transformation. Its mathematical model is formulated as follows:

CWT(a,b) == [, %o (£2) a 9)

where a is the scale parameter, b is the translational value, ¢(t) is the mother-wavelet function, x; is
the input.

2.4. Resampling

Deep learning requires a large number of samples for model training. Model tends to be
underfitting when the training data are insufficient. Data augmentation technology could expand
sample size which lays the foundation of a good model performance. Data augmentation method
employed in this paper is resampling. It is performed by using a window width of w along the time
axis. Resampling can be expressed as Eq (10).

w=r+s (10)

where w is the window width, 7 is rate of repetition samples, s is the step size of sliding window. The
process is shown in Figure 2.

I\l M ll'; J?Uﬁl‘ w \f U”i;l” mr\/i\.ﬂw/ " w\/ \‘

Figure 2. Resampling process.
2.5. SNR

In signal processing, signal-to-noise ratio (SNR) refers to the ratio of signal power to noise power.
It generally indicates how much the noise affects the desired signal. Its calculation formula is as follows:

SNR =10 log,o 2 Dsignal _ 20 log,, =iemat (11)

AnOlSE

where Agignqi is the signal amplitude, Ajgise is the noise amplitude, Pg;gnq; denotes signal power,
Pgignai denotes noise power. According to Eq (11), the smaller the SNR value, the stronger the noise
compared with the signal, indicating the poorer the signal quality.
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3. Proposed method
3.1. The diagnostic procedure of the proposed model

For nonlinear vibration signals, 1D time-domain signals fail to adequately represent all fault
features, and traditional deep learning methods are unable to sufficiently extract the frequency
components and time-correlated features. Stacking of neural networks might lead to model overfitting
and increase training time. Compared with time domain signal, time-frequency images can represent
more features of non-stationary signals, and reveal the complex signal distribution of local impacts. In
this paper, based on multi-domain learning, a fault diagnosis model based on parallel feature extraction
with CNN and LSTM is proposed, aiming at extracting features from both time and frequency domains.
Furthermore, the proposed model exhibits satisfactory accuracy and robustness with a shallow network
structure. The diagnostic procedure of the model is illustrated in Figure 3.

Raw vibration | ): | CWT
signal . |
|
: ]

. [ R A
’ Training set ‘ Validation set Testing set
v
Calculate the loss value
modify parameters
v | '
Model building = Model training » Model updating [~ Trained model |[—» IHapnastis

results

Figure 3. The diagnostic procedure of the proposed model.
3.2. Framework of the diagnostic model

The proposed diagnostic model can extract frequency distribution and time-correlated features in
parallel. Besides, gate structure in LSTM further enhances the generalization performance of the model.
The framework of the proposed diagnostic model is shown in Figure 4. It mostly contains three sub-
modules: Data pre-processing, feature extraction, and fault classification. Furthermore, these three
stages are further divided into five steps in detail.

Step 1: Data pre-processing. The dual-path feature extraction network consists of two different
networks which extract time-series features and spatial features of the signal, respectively. In data
preprocessing, the raw vibration signals are sliced into short samples. Then, these samples are
converted to time-frequency images through CWT.

Step 2: Dual-path feature extraction. At this stage, a dual-path feature extraction network is
constructed, and 1D vibration data and 2D time-frequency images are viewed as the input of this step:
(1) 1D vibration data are input into the LSTM network for time feature extraction. (ii) time-frequency
images are input into 2D-CNN for local spatial feature extraction.

Step 3: Feature fusion. The temporal and spatial features extracted are passed to the fusion layer

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2385-2406.
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for feature fusion whose results can represent more comprehensively global features of the signal, thus
improving the comprehensiveness of extracted features. The fusion process can be expressed as follows:

x = concatenate(p4, p2) (12)

where p;, p, denote the extracted feature vectors of LSTM and 2D-CNN, x denotes the fused feature
vector, concatenate (-) denotes the fusion process of 1D vector.

Step 4: Comprehensive feature extraction. A Batch Normalization (BN) layer is embedded which
can be applied to any neural network layer to reduce the sample differences between layers by
reducing the internal covariance migration [47]. The fused features are input to 1D-CNN for integrated
feature extraction.

Step 5: Fault identification. Fault type is obtained by calculating the probability through the
softmax function.

LSTM path

- — [

— | d

I <
= = = I =

cwT . . = BN Con3 Pool3 L '
~

A4

Input ;
p Feature Fusion Flatten Dense Output

Pooll Pool2

Conl Con2

CNN path
L i J L )

Data Pre-processing Feature Extraction Fault Classification

Figure 4. The framework of the proposed diagnostic model.
3.3. Model parameters

In the experiment, the feature extraction network consists of a two-layer LSTM, a two-layer 2D-
CNN, and a one-layer 1D convolutional block. Fault classification is comprised of a flatten layer, two
dense layers. The dropout method and mini-batch method are applied to eliminate overfitting as much
as possible. The dropout rate is 0.5, the batch size is 128, and the epoch is 100. Model parameters are
updated through Adam optimizer. Main parameters in the model are present in Table 1.

In fault diagnosis, accuracy, precision, recall, and Fl-score can be taken as model evaluation
standards:

TP+TN
Accuracy = ————— (13)
TP+TN+FN+FP
.. TP
Precision = (14)
TP+FP

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2385-2406.
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TP
TP+FN

Recall =

(15)

2XPrecisionXRecall
F1 — score = (16)

Precision+Recall

where TP, TN, FP and FN refer to true positives, true negatives, false positives and false negatives,
respectively.

Table 1. Model parameters.

Layer Kernel Kernel Activation

name Output size size/Stride Padding number function Dropout BN
Input 1 (None, 49, 16) — — — — — No
Input 2 (None, 52, 52) — — — — — No
LSTM1  (None, 49, 49) 49 — — Relu — No
LSTM 2  (None, 49) 49 — — Relu — No
Con 1 (None, 52, 52, 8) 3x3/1 Same 8 Relu — No
Pool 1 (None, 26, 26, 8) 2x2/2 Same 8 Relu — No
Con 2 (None, 26, 26, 16) 3x3/1 Same 16 Relu — No
Pool 2 (None, 13, 13, 16) 2x2/2 Same 16 Relu — No
Flattenl (None, 2704) — — — — — No
Con 3 (None, 2753, 8) 3x1/1 Same 8 Relu — Yes
Pool 3 (None, 1377, 8) 2x1/2 Same 8 Relu — No
Flatten2 (None, 11016) — — — — — No
Dense 1 (None, 64) 64 — — — 0.5 No
Dense 2 (None, 10) 10 — — Softmax — No

4. Experiments and result analysis

In this paper, two open access datasets, Case Western Reserve University (CWRU) and Jiangnan
University (JNU) bearing datasets, are used to evaluate the effectiveness of the method.

4.1. CWRU dataset experiment

CWRU dataset, a standard bearing dataset, was collected from the Simulated Bearing
Experimental Platform at Case Western Reserve University. The signals were acquired by acceleration
sensors installed on the drive end housing of the motor (2 hp) and contained four loads, with a sampling
frequency of 12 kHz. Single-point damage of different diameters was introduced through the EDM
technique, and bearing failures were categorized as inner ring damage (ID), ball damage (BD) and
outer ring damage (OD). Table 2 summarizes the features of CWRU bearing dataset. Each dataset
consists of nine fault samples with different characteristics and one normal sample. The number of
data samples for each type is 600 and each data sample contains 784 data points. There are a total
of 6000 samples with 10 fault types, which are divided into 4200 training samples, 900 validation
samples, and 900 testing samples.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2385-2406.
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Table 2. CWRU bearing dataset.

Label Fault status (inch) Load A (HP) Load B (HP) Load C (HP) Load D (HP)
0 Normal 0 1 2 3
1 0.007 ID 0 1 2 3
2 0.014ID 0 1 2 3
3 0.021 ID 0 1 2 3
4 0.007 OD 0 1 2 3
5 0.014 OD 0 1 2 3
6 0.021 OD 0 1 2 3
7 0.007 BD 0 1 2 3
8 0.014 BD 0 1 2 3
9 0.021 BD 0 1 2 3

4.1.1. Data pre-processing

The original signal is cut into sub-signal with a same size by the resampling method; then, time-
frequency images are obtained through CWT. The time-domain and time-frequency images with the
four fault types (original signal, inner race, ball, outer race) in CWRU dataset are shown in Figure 5.
Figure 5(a) exhibits time-domain waveform of the signal, while Figure 5(b) exhibits their time-
frequency images after CWT.

original signal

0.2

=-0.2

o 100 200 300 400 500 600 700 800

inner race

i b

o 100 200 300 400 500 600 700 800

outer race

’
-2

o 100 200 300 400 500 600 700 800

o
o

(a) (b)

Figure 5. Time-domain and time-frequency images. (a) Time-domain. (b) Time-frequency.
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4.1.2.  Performance under constant load

The convergence and robustness of the model are investigated under four constant loads (0, 1, 2
and 3 HP), and the convergence status and loss function of model training process is shown in Figures 6
and 7. According to the accuracy of the four loads in Figure 6, the proposed model can converge
quickly and stably to 1 under all loads. Furthermore, the loss converges to 0 steadily during model
training in Figure 7. When the epoch is 20, the loss values remain close under four loads. The above

results show that the model has satisfactory robustness under constant loads.

12k-1HP Training and validation accuracy

12k-0HF Training and validation accuracy

10 e\ g 2
2 7

—-= Validation Accuracy

I == Trainin
—-= Validat

40 o0 £ 100 3
Fpoch Epuoch

(@) (b)

12k-2HP Training and validation accuracy 12k-3HP Training and validation accuracy

(1] —

¢ I
i 085 n
i 1
i 050 ”
i o
'IJ RS l!
H ™ :I'

Figure 6. Accuracy of the training and validation. (a) 0 HP. (b) 1 HP. (c) 2 HP. (d) 3 HP.

Figure 8 displays confusion matrix under four loads (0, 1, 2 and 3 HP) for the testing set, and the
accuracies of the model in four different loads are shown in Table 3. According to Table 3, the model
can achieve 99.78% diagnostic accuracy at least. To extensively analyze the result under 1HP load
whose accuracy is the lowest, the precision, recall, and F1-score of the model under 1HP load are
shown in Table 4. These specific details combining with the former results demonstrate the high

diagnostic accuracy under constant load.

Table 3. Accuracy under four loads
1 2 3
99.78 100 100

Loads (HP) 0
Accuracy (%) 100

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2385-2406.
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Table 4. Diagnostic results under the 1HP load.

Fault label Precision Recall F1-score
0 1 1 1

1 1 1 1

2 0.9890 1 0.9945
3 1 1 1

4 0.9890 1 0.9945
5 1 1 1

6 1 1 1

7 1 0.9778 0.9888
8 1 1 1

9 1 1 1

t-SNE method can effectively map features from high-dimensional to low-dimensional space. The
final diagnostic results of the Dense 2 layer of testing set were visualized via t-SNE in Figure 9.
Obviously, the proposed model shows distinct clusters with clear classification boundaries.

1 2k-0HP Dense2 1-SNE
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Figure 9. Visualization for the Dense 2 layer under four loads. (a) OHP, (b) 1HP, (¢) 2HP, (d) 3HP.

To demonstrate the superiority of the proposed model, five comparison models are selected, and
the performances of all these six models are evaluated on the same testing dataset. Moreover, 5-fold
cross-validation is adopted to ensure experimental reliability. Among them, CNN-LSTM is a single-
path serial fault diagnosis model. Except SVM, major parameters of the other four comparison models

Mathematical Biosciences and Engineering
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are almost the same as those of the proposed model. In addition, the input of CWT-CNN is the time-

frequency image, and the other four models are vibration signals. Accuracy results are depicted in
Figure 10.

I CNN-LST™ [ svM ] LST™ [ CNN ] CWT-CNN[___ | Proposed
100

90
80
70
60

50

Accuracy(%)

40

30

20

1 2 3 4 5
Test number

Figure 10. Accuracy of comparison models.

Based on the results in Figure 10, the accuracy of CNN-LSTM is the lowest, that of CNN
reaches 97%, and that of CWT-CNN reaches 99%, indicating that the time-frequency image is
competent to represent fault features compared with the time-domain signal. The parallel mechanism
is adopted to extract features from local spatial information and temporal dependencies of the signal
in dual-domain, and the result shows that the diagnostic accuracy of the proposed model is superior to
the other five models, indicating the effectiveness of the parallel feature extraction network. For the
feature extraction network with CNN and LSTM connected in series, the spatial distribution features
are extracted by CNN and then the time-correlated features are extracted by LSTM. Although such
model has considered the periodicity of the signal frequency distribution, CNN corrupts the temporal
features of the original data, resulting in the loss of important temporal features, which would affect
the quality of final extracted features. The parallel feature extraction network proposed in this paper
can significantly improve the quality of the extracted features by making up for the shortcomings of
the series feature extraction mechanism.

4.1.3. Performance with variable loads

Based on CWRU dataset, composite datasets under mixed load were constructed for experiment.
The dataset name implies its components (e.g., 12HP means the load contains 1 and 2HP). Composite
datasets are tested on the proposed model, and their results are displayed in Table 5.

Based on Table 5, the diagnostic results of proposed model achieve satisfactory diagnostic
accuracy on the composite dataset, indicating that the proposed model can be applied to variable

load conditions. Therefore, the proposed model has excellent adaptability, and it is suitable for variable
load conditions.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2385-2406.
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Table 5. Diagnostic accuracy with composite datasets.

Composite dataset (HP) 01 02 03 12 13 23 012 013 023 123 0123

Accuracy (%) 99.56 99.78 99.89 99.78 99.89 99.44 9844 100 99.56 97.89 99.44

4.1.4. Noise immunity analysis
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Figure 11. Time-domain and time-frequency images under different SNRs. (a) Time-
domain. (b) Time-frequency.

Real working contexts of the bearing are usually harsh, and its vibration signal is inevitably mixed
with some noises. To simulate the signals obtained in the interference of noises, Gaussian white noises
with different SNRs (-6, -3, 0, 3, 6 and 9 dB) are added to the original signal, respectively. Figure 11
shows the time domain and the frequency domain images of the original signal as well as the signals
with noise added at different SNRs (-6, -3, 0, 3, 6, 9). Noise is added to the bearing vibration signal,
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making it challenging to distinguish certain features within the signal.

Comparison experiments of model accuracy with different SNRs were designed and their results
are summarized in Figure 12. They show that noise does affect the diagnostic accuracy of the model,
with the more severe the noise interference, the lower the accuracy. However, the proposed model

demonstrates the highest accuracy under different SNRs compared with other models.
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Figure 12. Diagnostic accuracy of different models under different SNRs.
4.2. JNU dataset experiment

To test the generalizability of the proposed model, a testing experiment was performed on JNU
bearing dataset. Data pre-processing here is the same with that on CWRU dataset.

JNU bearing dataset is provided by Jiangnan University. It consists of three bearing vibration sub-
datasets at different rotational speeds with the data acquisition frequency of 50 kHz. The sub-dataset
contains one normal state and three fault states: ID, BD and OD. Based on differences in working
conditions, 12 fault types are classified. The features of JNU bearing dataset are summarized in Table 6.

Table 6. INU bearing dataset.

Label Fault status Rotating speed (rpm)  Label Fault status Rotating speed (rpm)
0 Normal 1 600 6 OD 1 600

1 Normal 2 800 7 OD2 800

2 Normal 3 1000 8 OD3 1000

3 ID 1 600 9 BD 1 600

4 ID 2 800 10 BD 2 800

5 ID3 1000 11 BD 3 1000

Figure 13(a),(b) shows the accuracy and loss function of the model training process, where the
accuracy on both the training and validation sets gradually converges and the loss function narrows down

Mathematical Biosciences and Engineering

Volume 21, Issue 2, 2385-2406.



2401

to a smaller range. Overall, the proposed model shows favorable performance on JNU bearing dataset.
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Figure 13. Accuracy and loss on JNU dataset. (a) Accuracy. (b) Loss.
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Confusion matrix for the testing data is presented in Figure 14. The accuracy of the proposed
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model is 93.80%. Then, the classification result of testing set was visualized via t-SNE, and shown in
Figure 15. Based on Figure 15, bearing failures with different types have clear classification boundaries.
However, the proposed model has low accuracy for fault types with true labels of 2, 3 and 8, but has
high fault identification accuracy for most fault types. As for true label of 2, 3 and 8, there are
similarities between time-frequency images, which may in turn lead to misdiagnosis.

In addition, a comparison experiment is conducted, and the accuracy results is shown in Figure 16.
They demonstrate that the proposed model on JNU dataset offers higher fault classification accuracy
than other four models.
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Figure 16. Accuracy of different models on JNU dataset.

In a sum, comparative analysis of the results from CWRU dataset and JNU dataset suggests that
the proposed model exhibits superior generalizability on different datasets.

5. Conclusions

Bearing vibration signals are dynamic and periodic data. Traditional shallow machine learning
and single deep learning methods can hardly extract temporal and spatial features at the same time. As
for those deep learning-based single-path fault diagnosis methods, feature extraction of one stage will
affect that of its next stage, which would affect the final diagnostic accuracy. To tackle the insufficient
feature extraction in bearing fault diagnosis, a parallel feature extraction mechanism is proposed,
which can extract time-correlated information and frequency spatial distribution features in parallel;
this applies CWT, combined with CNN and LSTM, to bearing fault diagnosis. First, the signal is sliced
into equal-sized sub-signals via a resampling technique. Then, the CWT converts the sub-signal into a
time-frequency image, which, combined with the sub-signal, are viewed as two inputs of the proposed
model. Second, LSTM and 2D-CNN dual-path network are employed to extract the temporal and
spatial features in parallel. After the fusion of extracted temporal and spatial features, 1D-CNN is
utilized to obtain the comprehensive features. Finally, the softmax function is implemented for fault
classification. In addition, a BN layer is embedded after the feature fusion layer and mini-batch method
is applied to reduce the computational complexity. On CWRU dataset, the model presents satisfactory
accuracy and robustness, and performs well under complex conditions under variable loads and SNRs.
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Moreover, the generalization performance of the model is further validated on JNU dataset. In sum, a
novel fault diagnostic model is proposed which achieves satisfactory diagnostic accuracy under
constant and variable loads. However, it is unable to obtain satisfactory results under strong noise, and
de-noise could be one of the future research fields.

Use of Al tools declaration

The authors declare they have not used Artificial Intelligence (Al) tools in the creation of this article.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No.

62176150).

Conflict of interest

The authors declare that there are no conflicts of interest.

References

1. D. T. Hoang, H. J. Kang, A survey on deep learning based bearing fault diagnosis,
Neurocomputing, 335 (2019), 327-335. https://doi.org/10.1016/j.neucom.2018.06.078

2. M. Zeng, W. Zhang, Z. Chen, Group-based K-SVD denoising for bearing fault diagnosis, /[EEE
Sens. J., 19 (2019), 6335-6343. https://doi.org/10.1109/JSEN.2019.2910868

3. X. Yan, D. She, Y. Xu, Deep order-wavelet convolutional variational autoencoder for fault
identification of rolling bearing under fluctuating speed conditions, Expert Syst. Appl., 216 (2023),
119479. https://doi.org/10.1016/j.eswa.2022.119479

4. N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, et al., The empirical mode
decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,
Proc. Math. Phys. Eng. Sci., 454 (1998), 903-995. https://doi.org/10.1098/rspa.1998.0193

5. K. Dragomiretskiy, D. Zosso, Variational mode decomposition, I[EEE Trans. Signal Process, 62
(2013), 531-544. https://doi.org/10.1109/TSP.2013.2288675

6. G.Xin,Z.Li, L. Jia, Q. Zhong, H. Dong, N. Hamzaoui, et al., Fault diagnosis of wheelset bearings
in high-speed trains using logarithmic short-time Fourier transform and modified self-calibrated
residual network, IEEE Trans. Ind. Inf., 18 (2021), 7285-7295.
https://doi.org/10.1109/TIM.2021.3139706

7. 1. Daubechies, Ten Lectures on Wavelets, Society for industrial and applied mathematics, 1992.

8. M. Q. Tran, M. K. Liu, Q. V. Tran, T. K. Nguyen, Effective fault diagnosis based on wavelet and
convolutional attention neural network for induction motors, IEEE Trans. Instrum. Meas., 71
(2021), 1-13. https://doi.org/10.1109/TIM.2021.3139706

9. L. Yuan, D. Lian, X. Kang, Y. Chen, K. Zhai, Rolling bearing fault diagnosis based on

convolutional neural network and support vector machine, /EEE Access, 8 (2020), 137395-
137406. https://doi.org/10.1109/ACCESS.2020.3012053

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2385-2406.



2404

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

T. Jin, Q. Cheng, H. Chen, S. Wang, J. Guo, C. Chen, Fault diagnosis of rotating machines based
on EEMD-MPE and GA-BP, Int. J  Adv. Manuf. Technol., (2021), 1-12.
https://doi.org/10.1007/s00170-021-08159-z

P. Chen, X. Zhao, Q. Zhu, A novel classification method based on ICGOA-KELM for fault
diagnosis of rolling bearing, Appl. Intell., 50 (2020), 2833-2847.

H. Tao, P. Wang, Y. Chen, V. Stojanovic, H. Yang, An unsupervised fault diagnosis method for
rolling bearing using STFT and generative neural networks, J. Franklin Inst., 357 (2020), 7286—
7307. https://doi.org/10.1007/s10489-020-01684-6

J. Gu, Y. Peng, H. Lu, X. Chang, G. Chen, A novel fault diagnosis method of rotating machinery
via. VMD, CWT and improved CNN, Measurement, 200 (2022), 111635.
https://doi.org/10.1016/j.measurement.2022.111635

N. Saravanan, V. K. Siddabattuni, K. Ramachandran, A comparative study on classification of
features by SVM and PSVM extracted using Morlet wavelet for fault diagnosis of spur bevel gear
box, Expert Syst. Appl., 35 (2008), 1351-1366. https://doi.org/10.1016/j.eswa.2007.08.026

V. Muralidharan, V. Sugumaran, A comparative study of Naive Bayes classifier and Bayes net
classifier for fault diagnosis of monoblock centrifugal pump using wavelet analysis, Appl. Soft
Comput., 12 (2012), 2023-2029. https://doi.org/10.1016/j.as0c.2012.03.021

J. Li, X. Yao, X. Wang, Q. Yu, Y. Zhang, Multiscale local features learning based on BP neural
network for rolling bearing intelligent fault diagnosis, Measurement, 153 (2020), 107419.
https://doi.org/10.1016/j.measurement.2019.107419

H. Li, T. Liu, X. Wu, Q. Chen, Application of EEMD and improved frequency band entropy in
bearing fault feature extraction, 1S4 Trans., 88 (2019), 170-185.
https://doi.org/10.1016/j.isatra.2018.12.002

H. S. Najim, J. K. Alsalaet, Cross-domain diagnosis of roller bearing faults based on the envelope
analysis adaptive features and artificial neural networks, J. Vib. Control, 2023 (2023),
10775463231191684. https://doi.org/10.1177/1077546323119168

J. Yang, J. Liu, J. Xie, C. Wang, T. Ding, Conditional GAN and 2-D CNN for bearing fault
diagnosis with small samples, [EEE Trans. Instrum. Meas., 70 (2021), 1-12.
https://doi.org/10.1109/tim.2021.3119135

X. Song, Y. Cong, Y. Song, Y. Chen, P. Liang, A bearing fault diagnosis model based on CNN
with wide convolution kernels, J. Ambient Intell. Hum. Comput., 13 (2022), 4041-4056.
https://doi.org/10.1007/s12652-021-03177-x

J. Zhu, T. Hu, B. Jiang, X. Yang, Intelligent bearing fault diagnosis using PCA-DBN framework,
Neural Comput. Appl., 32 (2020), 10773—10781. https://doi.org/10.1007/s00521-019-04612-z

P. Zou, B. Hou, J. Lei, Z. Zhang, Bearing fault diagnosis method based on EEMD and LSTM, Int.
J. Comput. Commun., 15 (2020). http://doi.org/10.15837/ijccc.2020.1.3780

X. Yan, D. She, Y. Xu, M. Jia, Deep regularized variational autoencoder for intelligent fault
diagnosis of rotor-bearing system within entire life-cycle process, Knowl.-Based Syst., 226 (2021),
107142.

K. Tong, Y. Wu, F. Zhou, Recent advances in small object detection based on deep learning: A
review, Image Vis. Comput., 97 (2020), 103910. https://doi.org/10.1016/j.imavis.2020.103910
G. Algan, 1. Ulusoy, Image classification with deep learning in the presence of noisy labels: A
survey, Knowl.-Based Syst., 215 (2021), 106771. https://doi.org/10.1016/j.knosys.2021.106771

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2385-2406.



2405

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

M. Morchid, Parsimonious memory unit for recurrent neural networks with application to natural
language processing, Neurocomputing, 314 (2018), 48-64.
https://doi.org/10.1016/j.neucom.2018.05.081

Y. Ma, X. Jia, H. Bai, G. Liu, G. Wang, C. Guo, et al., A new fault diagnosis method based on
convolutional neural network and compressive sensing, J. Mech. Sci. Technol., 33 (2019), 5177—
5188. https://doi.org/10.1007/s12206-019-1007-5

C. Lu, Z. Wang, B. Zhou, Intelligent fault diagnosis of rolling bearing using hierarchical
convolutional network based health state classification, Adv. Eng. Inf., 32 (2017), 139-151.
https://doi.org/10.1016/j.2€1.2017.02.005

H. Liu, D. Yao, J. Yang, X. Li, Lightweight convolutional neural network and its application in
rolling bearing fault diagnosis under variable working conditions, Sensors, 19 (2019), 4827.
https://doi.org/10.3390/s19224827

Y. Jin, C. Chen, S. Zhao, Multisource data fusion diagnosis method of rolling bearings based on
improved multiscale CNN, J. Sensors, 2021 (2021), 1-17. https://doi.org/10.1155/2021/2251530
Z. Xing, R. Zhao, Y. Wu, T. He, Intelligent fault diagnosis of rolling bearing based on novel CNN
model considering data imbalance, Appl Intell, 52 (2022), 16281-16293.
https://doi.org/10.1007/s10489-022-03196-x

C. Zhang, J. Feng, C. Hu, Z. Liu, L. Cheng, Y. Zhou, An intelligent fault diagnosis method of
rolling bearing under variable working loads using 1-D stacked dilated convolutional neural
network, /IEEE Access, 8 (2020), 63027-63042. https://doi.org/10.1109/ACCESS.2020.2981289
M. Ye, X. Yan, N. Chen, M. Jia, Intelligent fault diagnosis of rolling bearing using variational
mode extraction and improved one-dimensional convolutional neural network, Appl. Acoust., 202
(2023), 109143.

D. Gao, Y. Zhu, Z. Ren, K. Yan, W. Kang, A novel weak fault diagnosis method for rolling bearings
based on LSTM considering quasi-periodicity, Knowl.-Based Syst., 231 (2021), 107413.
https://doi.org/10.1016/j.apacoust.2022.109143

H. Liu, J. Zhou, Y. Zheng, W. Jiang, Y. Zhang, Fault diagnosis of rolling bearings with recurrent
neural network-based autoencoders, JAY! Trans., 77 (2018), 167-178.
https://doi.org/10.1016/j.isatra.2018.04.005

B. An, Z. Zhao, S. Wang, S. Chen, X. Chen, Sparsity-assisted bearing fault diagnosis using
multiscale period group lasso, 1S4 Trans., 98 (2020), 338-348.
https://doi.org/10.1016/j.isatra.2019.08.042

M. Qiao, S. Yan, X. Tang, C. Xu, Deep convolutional and LSTM recurrent neural networks for
rolling bearing fault diagnosis under strong noises and variable loads, IEEE Access, 8 (2020),
66257-66269. https://doi.org/10.1109/ACCESS.2020.2985617

G. Fu, Q. Wei, Y. Yang, C. Li, Bearing fault diagnosis based on CNN-BiLSTM and residual
module, Meas. Sci. Technol., 34 (2023), 125050. https://doi.org/10.1088/1361-6501/act598

H. Chen, W. Meng, Y. Li, Q. Xiong, An anti-noise fault diagnosis approach for rolling bearings
based on multiscale CNN-LSTM and a deep residual learning model, Meas. Sci. Technol., 34
(2023), 045013. https://doi.org/10.1088/1361-6501/acb074

S. Ning, Y. Wang, W. Cai, Z. Zhang, Y. Wu, Y. Ren, et al., Research on intelligent fault diagnosis
of rolling bearing based on improved shufflenetV2-LSTM, J. Sensors, 2022 (2022).
https://doi.org/10.1088/1361-6501/acf598

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2385-2406.



2406

41.

42.

43.

44,

45.

46.

47.

Y. Guo, J. Mao, M. Zhao, Rolling bearing fault diagnosis method based on attention CNN and
BiLSTM network, Neural Process. Lett., 55 (2023), 3377-3410. https://doi.org/10.1007/s11063-
022-11013-2

M. Ye, X. Yan, N. Chen, Y. Liu, A robust multi-scale learning network with quasi-hyperbolic
momentum-based Adam optimizer for bearing intelligent fault diagnosis under sample imbalance
scenarios and strong noise environment, Struct. Health Monit., (2023), 14759217231192363.
https://doi.org/10.1177/14759217231192363

H. Wang, Z. Liu, D. Peng, Y. Qin, Understanding and learning discriminant features based on
multiattention 1IDCNN for wheelset bearing fault diagnosis, IEEE Trans. Ind. Inf., 16 (2019),
5735-5745. https://doi.org/10.1109/TI1.2019.2955540

S. Shao, S. Mcaleer, R. Yan, P. Baldi, Highly accurate machine fault diagnosis using deep transfer
learning, IEEE Trans. Ind. Inf., 15 (2018), 2446—2455. https://doi.org/10.1109/T11.2018.2864759
J. Zhang, Y. Sun, L. Guo, H. Gao, X. Hong, H. Song, A new bearing fault diagnosis method based
on modified convolutional neural networks, Chin. J. Aeronaut., 33 (2020), 439-447.
https://doi.org/10.1016/j.cja.2019.07.011

L. Wen, X. Li, L. Gao, Y. Zhang, A new convolutional neural network-based data-driven fault
diagnosis  method, [EEE  Trans. Ind.  Electron., 65 (2017), 5990-5998.
https://doi.org/10.1109/TIE.2017.2774777

S. loffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing
internal covariate shift, in International Conference on Machine Learning, (2015), 448—456.
https://doi.org/10.48550/arXiv.1502.03167

©2024 the Author(s), licensee AIMS Press. This is an open access

ATMS A[MS Press article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2385-2406.



