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Abstract: Intelligent diagnosis of bearing faults is fundamental to machinery automation and their 
intelligent operation. Deep learning-based analysis of bearing vibration data has emerged as one 
research mainstream for fault diagnosis. To enhance the quality of feature extraction from bearing 
vibration signals and the robustness of the model, we construct a fault diagnostic model based on 
convolutional neural network (CNN) and long short-term memory (LSTM) parallel network to extract 
their temporal and spatial features from two perspectives. First, via resampling, vibration signal is split 
into equal-sized slices which are then converted into time-frequency images by continuous wavelet 
transform (CWT). Second, LSTM extracts the time-correlation features of 1D signals as one path, and 
2D-CNN extracts the local frequency distribution features of time-frequency images as another path. 
Third, 1D-CNN further extracts integrated features from the fusion features yielded by former parallel 
paths. Finally, these categories are calculated through the softmax function. According to experimental 
results, the proposed model has satisfactory diagnostic accuracy and robustness in different contexts 
on two different datasets. 
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1. Introduction  

Machinery operation and maintenance tend to be automated and intelligent, which challenges the 
diagnosis of their faults. As key and essential parts in rotating device, bearings are prone to failure 
since their operation tend to be affected by severe working conditions [1]. Once the bearing fails, it 
causes serious system collapse and equipment damage, even cause great economic losses and 
casualties. Therefore, effective fault diagnosis and operating state analysis of bearings can help to 
detect mechanical equipment failures in time, which is the pre-requisite of reliable and stable operation 
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of mechanical systems. The faults of bearings could be reflected by their vibration signals, which are 
time series data of periodic oscillation and contain various information about operational state [2]. In 
different working conditions, the mapping relationship between the vibration signal of bearings and 
their fault state becomes more complicated, which increases the difficulty of fault identification [3]. 
Over the last decades, based on vibration signal analysis, research on bearing fault diagnosis have 
mainly gone through three phases: (i) Fault diagnosis based on signal modal analysis; (ii) fault 
diagnosis based on traditional shallow machine learning; (iii) fault diagnosis based on deep learning. 

Research on fault diagnosis based on signal modal analysis gradually develops into a mature 
methodology. Time-frequency methods are widely used for the pre-processing of bearing vibration 
signals, including empirical mode decomposition (EMD) [4], variational mode decomposition 
(VMD) [5], short-time Fourier transform (STFT) [6], and wavelet transform (WT) [7], etc. Focusing 
on the time domain, STFT can extract vibration components of the signal distribution in the frequency 
domain, but it is not applicable to time-varying signals. Based on STFT, WT can analyze signals at 
multiple scales, capturing details and features in different frequency ranges, and has been used 
extensively in signal analysis [8,9]. 

The development of machine learning push fault diagnosis towards automated and intelligent 
diagnosis. Generally, traditional shallow machine learning methods in fault diagnosis are usually 
utilized for signal processing, feature extraction, and final fault classification by a classifier [10–13]. 
Commonly-used methods in fault diagnosis include support vector machines (SVM) [14], Bayesian 
classifiers [15], artificial neural networks (ANN) [16], etc. Li et al. [17] used EEMD to decompose 
signal and extracted fault feature frequency from optimized signal by power spectrum to identify the 
fault. ANN could utilize the features extracted from envelope analysis to realize cross-domain fault 
diagnosis [18]. Although great improvement has been achieved by these traditional machine learning 
methods in fault diagnosis, their diagnostic accuracy depends on manual feature selection and 
extraction. Thus, some scholars put methods for adaptive feature extraction. Li et al. [16] decomposed 
the signal into sub-signals of multiple scales, extracted their local features with BPNN, and identified 
fault features by SVM. However, the diagnostic performance of traditional shallow machine learning 
models (e.g., SVM, ANN) is limited by the quality of extracted fault features. Moreover, data from 
sensors in real time are so diverse and ever-increasing that these methods cannot fully utilize all 
information, and the accuracy goes down with the increasing quantity of the data. 

Deep learning network (e.g., CNN, RNN, DBN, GAN, AE) [19–23], as an extension of traditional 
machine learning based on neural networks, has shown significant superiority in image classification, 
natural language processing, and target detection [24–26]. It has excellent capability of feature 
representation, and could extract deep features of the data by constructing a deep network and achieve 
the complex nonlinear mapping between the pre-processing data and the fault states. In fault diagnosis, 
CNN, as a typical deep learning network, has achieved a great deal of excellence [27–31]. Many 
stacked CNNs have been proposed which could directly extract information from the input of time 
domain vibration signal without priori expert knowledge, and achieve good performance under 
variable loads [3,32]. Ye et al. [33] used adaptive variational modal decomposition to preprocess the 
signal to obtain the desired components, and a modified 1D-CNN is used to extract features and 
identify faults. Vibration signals of the faults belong to time series and contain temporal features. 
Although CNN could extract their spatial features, it cannot fully mine the fault features from the 
perspective of local space. While RNN could effectively deal with time series data, and better handle 
vibration signals with time-series correlation [34,35]. An et al. [36] proposed a diagnostic method 
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based on periodic sparse attention and LSTM, where LSTM is used to extract time-correlated features 
of the signal. Some scholars also proposed a combination of 2D-CNN and LSTM for fault diagnosis [37]. 
Although neural network-based diagnosis models already have a high diagnostic accuracy, some fails 
to fully consider the feature specialty of vibration signals, and is unable to fully explore the time 
domain and frequency domain features. These inadequacies are reflected in the following two aspects: 
(i) The vibration signals belong to periodic vibration signals, if the signal analysis merely from the 
time domain or the frequency domain cannot adequately extract the fault features of the signals. (ii) 
The combination of CNN and LSTM for fault diagnosis is often utilized in a single-path and series 
way. In the series situation, the output of one network will be taken as the input of the following 
network, and extracted features of the latter are inevitably influenced by the former, thus negatively 
affecting performance of feature extraction and fault classification of the model. Moreover, as the deep 
network continue to be deeper, these diagnostic models tend to be overfitting [38,39]. Extra 
optimization needs to be done to solve this problem [33,40]. 

To avoid over-stacked and dilated CNNs, attention mechanism is introduced to dynamically focus 
on different parts of the input, especially when sequential data or images are subject to multiple target 
processing with multi-stages [41,42]. Wang et al. [43] embedded the attention mechanism into a neural 
network to achieve high diagnostic performance even if noises are added into the signal. Some scholars 
suggested converting original signal into two-dimensional (2D) images to facilitate feature extraction 
via CNN [37,44,45]. Wen et al. [46] designed an improved LeNet⁃5 network with high diagnostic 
accuracy which could convert the original 1D signal into 2D images and then directly extract features 
from the latter. 

In sum, although existing research provides many intelligent solutions for fault diagnosis, 
shortcomings exist, especially in the following aspects:  

1) Most fault diagnosis models based on traditional shallow machine learning relies on manually 
extracted features, which cannot be applied into equipment fault diagnosis in the era of big data due to 
their structural limitations. 

2) The mere model input of time-series data or frequency-domain data would lead to insufficient 
extraction of spatiotemporal fault features. 

3) Existing fault diagnosis model combining CNN and LSTM utilizes the output of one network 
as the input of the following network, features extracted from CNN will cause negative effects on that 
extracted from LSTM, and CNN cannot adjust the deviation resulting from the output of LSTM under 
the cascade network. 

In terms of the limitations above, to adequately extract the failure features and improve the 
performance while avoiding overfitting, this paper constructs a shallow neural network with parallel 
feature extraction from time and frequency domains, which can extract local frequency distribution 
features and time-correlated features from the vibration signal. The shallow structure has fewer 
network parameters, which could quickly stabilize and effectively converge. The major contributions 
of this paper are summarized as follows.  

1) A dual-input fault diagnosis model with shallow structure is built based on CNN and LSTM 
with the inputs of vibration signals and time-frequency images simultaneously. The model could 
extract time-correlated and frequency distribution features of the signals in parallel from time and 
frequency domains to improve the quality of the features. 

2) The features obtained from the parallel network are fused to form more comprehensive 
features that can further enhance the representation ability of the model, thus improving its robustness 
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and generalization. 
3) Experiments demonstrate that the model proposed provides excellent robustness and 

generalizability. 
The rest of this paper is organized as follows: Section 2 briefly summarizes the related theoretical 

methods; Section 3 introduces the diagnostic process and model framework; Section 4 describes the 
experimental results; and conclusions are made in Section 5. 

2. Theoretical methods 

2.1. CNN 

Convolutional neural network (CNN) is a feed-forward neural network with distinguishing 
features of weight sharing, local connectivity, and pooling. The core idea of CNN is to extract features 
through convolutional and pooling layers, then input the them into a fully connected layer for 
classification or regression tasks. A typical CNN usually includes input, convolutional, pooling, fully 
connected, and output layers.  

2.1.1. Convolutional layers 

The convolutional layer could extract feature by convolving the input with kernels. The 
convolutional kernel updates weights by learning, and convolutional kernels with different sizes can 
obtain different outputs. The computation of the convolutional layer is as follows: 𝑥௝௟ାଵ = 𝑓൫∑ 𝑥௜௟ ∗ 𝑤௜௝௟ାଵ + 𝑏௜௝௟ାଵே௜ୀଵ ൯                        (1) 

where 𝑥௝௟  denotes the feature map of the j-th of the l-th convolutional layer, * represents the 
convolution operation, 𝑤௜௝௟  and 𝑏௜௝௟ାଵare the weights and biases of the j-th convolutional kernel in the 
l-th convolutional layer, f is the activation function which is commonly ReLU function. 

2.1.2. Pooling layers 

The pooling layer can reduce the size of the feature map, extract salient features, and reduce the 
sensitivity of the model to the input data. Maximum pooling is applied in this paper, whose operation 
can be expressed as follows: 𝑥ො௝௟ = 𝑚𝑎𝑥൫𝑥௝௟: 𝑥௝ା௥௟ ൯                               (2) 

2.1.3. Fully connected layers 

The fully connected layer could effectively integrate and transform the features extracted from 
the previous layer to improve expressive ability and performance of the network. The classification 
results are obtained by the softmax function. 
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2.2. LSTM 

Long short-term memory network (LSTM) introduces memory block and gate mechanisms to 
improve feature extraction of the input. The gate unit in LSTM is responsible for controlling and 
regulating the flow of information, so as to realize selective memorizing and forgetting of important 
information in the sequence, which addresses the gradient vanishing or explosion issues in traditional 
RNNs. Figure 1 illustrates a common schematic of an LSTM unit. 

 

Figure 1. Common schematic of an LSTM unit. 

Forget gate determines which information would be forgotten from the memory state of the 
previous time step, and is implemented by a sigmoid function. It is calculated as follows: 𝑓௧ = 𝜎൫𝑤௙௫𝑥௧ + 𝑤௙௛ℎ௧ିଵ + 𝑏௙൯                           (3) 

The input gate serves to control the extent to which new input information updates the current 
time-step memory state, and it is calculated as follows: 𝑖௧ = 𝜎ሺ𝑤௜௫𝑥௧ + 𝑤௜௛ℎ௧ିଵ + 𝑏௜ሻ                            (4) 𝐶ሚ௧ = 𝑡𝑎𝑛ℎሺ𝑤௖௫𝑥௧ + 𝑤௖௛ℎ௧ିଵ + 𝑏௖ሻ                         (5) 

The output gate is a gating unit which controls the flowing of information from the current state to 
the output layer. Selectively outputting information in the hidden state at current time step could pass 
useful, long-term dependencies to the final layer. Its calculation is as follows: 𝑐௧ = 𝑓௧𝑐௧ିଵ + 𝑖௧𝐶ሚ௧                                  (6) 𝑜௧ = 𝜎ሺ𝑤௢௫𝑥௧ + 𝑤௢௛ℎ௧ିଵ + 𝑏௢ሻ                            (7) ℎ௧ = 𝑜௧ × 𝑡𝑎𝑛ℎሺ𝑐௧ሻ                                 (8) 

where 𝜎 is a sigmoid function, w is a weight matrix, 𝑥௧ is the input of current time step, ℎ௧ିଵ is the 
short-term state of the last cell, and b is the bias vector. 
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2.3. CWT 

Continuous wavelet transform (CWT) is a technique for analyzing the time-frequency features of 
non-smooth signal, which can capture transient changes and local structure in the signal. It can provide 
a time window that changes with frequency and perform adaptive multiscale analysis on signals 
through scaling and translation transformation. Its mathematical model is formulated as follows: 𝐶𝑊𝑇ሺ𝑎, 𝑏ሻ = ଵ√௔ ׬ 𝑥௧𝜑 ቀ௧ି௕௔ ቁஶିஶ  𝑑𝑡                          (9) 

where a is the scale parameter, b is the translational value, 𝜑ሺ𝑡ሻ is the mother-wavelet function, 𝑥௧ is 
the input. 

2.4. Resampling 

Deep learning requires a large number of samples for model training. Model tends to be 
underfitting when the training data are insufficient. Data augmentation technology could expand 
sample size which lays the foundation of a good model performance. Data augmentation method 
employed in this paper is resampling. It is performed by using a window width of w along the time 
axis. Resampling can be expressed as Eq (10).  𝑤 = 𝑟 + 𝑠                                     (10) 

where w is the window width, r is rate of repetition samples, s is the step size of sliding window. The 
process is shown in Figure 2. 

 

Figure 2. Resampling process. 

2.5. SNR 

In signal processing, signal-to-noise ratio (SNR) refers to the ratio of signal power to noise power. 
It generally indicates how much the noise affects the desired signal. Its calculation formula is as follows: 𝑆𝑁𝑅 = 10 𝑙𝑜𝑔ଵ଴ ௉ೞ೔೒೙ೌ೗௉೙೚೔ೞ೐ = 20 𝑙𝑜𝑔ଵ଴ ஺ೞ೔೒೙ೌ೗஺೙೚೔ೞ೐                   (11) 

where 𝐴௦௜௚௡௔௟ is the signal amplitude, 𝐴௡௢௜௦௘ is the noise amplitude, 𝑃௦௜௚௡௔௟ denotes signal power, 𝑃௦௜௚௡௔௟ denotes noise power. According to Eq (11), the smaller the SNR value, the stronger the noise 
compared with the signal, indicating the poorer the signal quality. 
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3. Proposed method 

3.1. The diagnostic procedure of the proposed model 

For nonlinear vibration signals, 1D time-domain signals fail to adequately represent all fault 
features, and traditional deep learning methods are unable to sufficiently extract the frequency 
components and time-correlated features. Stacking of neural networks might lead to model overfitting 
and increase training time. Compared with time domain signal, time-frequency images can represent 
more features of non-stationary signals, and reveal the complex signal distribution of local impacts. In 
this paper, based on multi-domain learning, a fault diagnosis model based on parallel feature extraction 
with CNN and LSTM is proposed, aiming at extracting features from both time and frequency domains. 
Furthermore, the proposed model exhibits satisfactory accuracy and robustness with a shallow network 
structure. The diagnostic procedure of the model is illustrated in Figure 3. 

 

Figure 3. The diagnostic procedure of the proposed model. 

3.2. Framework of the diagnostic model 

The proposed diagnostic model can extract frequency distribution and time-correlated features in 
parallel. Besides, gate structure in LSTM further enhances the generalization performance of the model. 
The framework of the proposed diagnostic model is shown in Figure 4. It mostly contains three sub-
modules: Data pre-processing, feature extraction, and fault classification. Furthermore, these three 
stages are further divided into five steps in detail. 

Step 1: Data pre-processing. The dual-path feature extraction network consists of two different 
networks which extract time-series features and spatial features of the signal, respectively. In data 
preprocessing, the raw vibration signals are sliced into short samples. Then, these samples are 
converted to time-frequency images through CWT. 

Step 2: Dual-path feature extraction. At this stage, a dual-path feature extraction network is 
constructed, and 1D vibration data and 2D time-frequency images are viewed as the input of this step: 
(i) 1D vibration data are input into the LSTM network for time feature extraction. (ii) time-frequency 
images are input into 2D-CNN for local spatial feature extraction. 

Step 3: Feature fusion. The temporal and spatial features extracted are passed to the fusion layer 
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for feature fusion whose results can represent more comprehensively global features of the signal, thus 
improving the comprehensiveness of extracted features. The fusion process can be expressed as follows: 𝑥 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒ሺ𝜌ଵ, 𝜌ଶሻ                            (12) 

where ρଵ，ρଶ denote the extracted feature vectors of LSTM and 2D-CNN, x denotes the fused feature 
vector, concatenate (·) denotes the fusion process of 1D vector. 

Step 4: Comprehensive feature extraction. A Batch Normalization (BN) layer is embedded which 
can be applied to any neural network layer to reduce the sample differences between layers by 
reducing the internal covariance migration [47]. The fused features are input to 1D-CNN for integrated 
feature extraction. 

Step 5: Fault identification. Fault type is obtained by calculating the probability through the 
softmax function. 

 

Figure 4. The framework of the proposed diagnostic model. 

3.3. Model parameters 

In the experiment, the feature extraction network consists of a two-layer LSTM, a two-layer 2D-
CNN, and a one-layer 1D convolutional block. Fault classification is comprised of a flatten layer, two 
dense layers. The dropout method and mini-batch method are applied to eliminate overfitting as much 
as possible. The dropout rate is 0.5, the batch size is 128, and the epoch is 100. Model parameters are 
updated through Adam optimizer. Main parameters in the model are present in Table 1. 

In fault diagnosis, accuracy, precision, recall, and F1-score can be taken as model evaluation 
standards: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ୘୔ା୘୒୘୔ା୘୒ା୊୒ା୊୔                            (13) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ்௉்௉ାி௉                                 (14) 
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𝑅𝑒𝑐𝑎𝑙𝑙 = ்௉்௉ାிே                                  (15) 

F1 − score = ଶ×௉௥௘௖௜௦௜௢௡×ோ௘௖௔௟௟௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟௟                           (16) 

where TP, TN, FP and FN refer to true positives, true negatives, false positives and false negatives, 
respectively. 

Table 1. Model parameters. 

Layer 

name 
Output size 

Kernel 

size/Stride 
Padding 

Kernel 

number 

Activation 

function 
Dropout BN 

Input 1 (None, 49, 16) — — — — — No 

Input 2 (None, 52, 52) — — — — — No 

LSTM 1 (None, 49, 49) 49 — — Relu — No 

LSTM 2 (None, 49) 49 — — Relu — No 

Con 1 (None, 52, 52, 8) 3 × 3 / 1 Same 8 Relu — No 

Pool 1 (None, 26, 26, 8) 2 × 2 / 2 Same 8 Relu — No 

Con 2 (None, 26, 26, 16) 3 × 3 / 1 Same 16 Relu — No 

Pool 2 (None, 13, 13, 16) 2 × 2 / 2 Same 16 Relu — No 

Flatten1 (None, 2704) — — — — — No 

Con 3 (None, 2753, 8) 3 × 1 / 1 Same 8 Relu — Yes 

Pool 3 (None, 1377, 8) 2 × 1 / 2 Same 8 Relu  — No 

Flatten2 (None, 11016) — — — — — No 

Dense 1 (None, 64) 64 — — — 0.5 No 

Dense 2 (None, 10) 10 — — Softmax — No 

4. Experiments and result analysis 

In this paper, two open access datasets, Case Western Reserve University (CWRU) and Jiangnan 
University (JNU) bearing datasets, are used to evaluate the effectiveness of the method. 

4.1. CWRU dataset experiment 

CWRU dataset, a standard bearing dataset, was collected from the Simulated Bearing 
Experimental Platform at Case Western Reserve University. The signals were acquired by acceleration 
sensors installed on the drive end housing of the motor (2 hp) and contained four loads, with a sampling 
frequency of 12 kHz. Single-point damage of different diameters was introduced through the EDM 
technique, and bearing failures were categorized as inner ring damage (ID), ball damage (BD) and 
outer ring damage (OD). Table 2 summarizes the features of CWRU bearing dataset. Each dataset 
consists of nine fault samples with different characteristics and one normal sample. The number of 
data samples for each type is 600 and each data sample contains 784 data points. There are a total 
of 6000 samples with 10 fault types, which are divided into 4200 training samples, 900 validation 
samples, and 900 testing samples. 
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Table 2. CWRU bearing dataset. 

Label Fault status (inch) Load A (HP) Load B (HP) Load C (HP) Load D (HP)

0 Normal 0 1 2 3 

1 0.007 ID 0 1 2 3 

2 0.014 ID 0 1 2 3 

3 0.021 ID 0 1 2 3 

4 0.007 OD  0 1 2 3 

5 0.014 OD 0 1 2 3 

6 0.021 OD 0 1 2 3 

7 0.007 BD 0 1 2 3 

8 0.014 BD 0 1 2 3 

9 0.021 BD 0 1 2 3 

4.1.1. Data pre-processing 

The original signal is cut into sub-signal with a same size by the resampling method; then, time-
frequency images are obtained through CWT. The time-domain and time-frequency images with the 
four fault types (original signal, inner race, ball, outer race) in CWRU dataset are shown in Figure 5. 
Figure 5(a) exhibits time-domain waveform of the signal, while Figure 5(b) exhibits their time-
frequency images after CWT. 

 

 

 

 

(a) (b) 

Figure 5. Time-domain and time-frequency images. (a) Time-domain. (b) Time-frequency. 
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4.1.2. Performance under constant load 

The convergence and robustness of the model are investigated under four constant loads (0, 1, 2 
and 3 HP), and the convergence status and loss function of model training process is shown in Figures 6 
and 7. According to the accuracy of the four loads in Figure 6, the proposed model can converge 
quickly and stably to 1 under all loads. Furthermore, the loss converges to 0 steadily during model 
training in Figure 7. When the epoch is 20, the loss values remain close under four loads. The above 
results show that the model has satisfactory robustness under constant loads. 

(a) (b) 

 
(c) (d) 

Figure 6. Accuracy of the training and validation. (a) 0 HP. (b) 1 HP. (c) 2 HP. (d) 3 HP. 

Figure 8 displays confusion matrix under four loads (0, 1, 2 and 3 HP) for the testing set, and the 
accuracies of the model in four different loads are shown in Table 3. According to Table 3, the model 
can achieve 99.78% diagnostic accuracy at least. To extensively analyze the result under 1HP load 
whose accuracy is the lowest, the precision, recall, and F1-score of the model under 1HP load are 
shown in Table 4. These specific details combining with the former results demonstrate the high 
diagnostic accuracy under constant load. 

Table 3. Accuracy under four loads 

Loads (HP) 0 1 2 3 

Accuracy (%) 100 99.78 100 100 
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(a) (b) 

(c) (d) 

Figure 7. Loss of the training and validation. (a) 0HP, (b) 1HP, (c) 2HP, (d) 3HP. 

  

(a) (b) 

 
(c) (d) 

Figure 8. Confusion matrix of testing set. (a) 0HP, (b) 1HP, (c) 2HP, (d) 3HP. 
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Table 4. Diagnostic results under the 1HP load. 

Fault label Precision Recall F1-score 
0 1 1 1 
1 1 1 1 
2 0.9890 1 0.9945 
3 1 1 1 
4 0.9890 1 0.9945 
5 1 1 1 
6 1 1 1 
7 1 0.9778 0.9888 
8 1 1 1 
9 1 1 1 

t-SNE method can effectively map features from high-dimensional to low-dimensional space. The 
final diagnostic results of the Dense 2 layer of testing set were visualized via t-SNE in Figure 9. 
Obviously, the proposed model shows distinct clusters with clear classification boundaries. 

  

(a) (b) 

 
(c) (d) 

Figure 9. Visualization for the Dense 2 layer under four loads. (a) 0HP, (b) 1HP, (c) 2HP, (d) 3HP. 

To demonstrate the superiority of the proposed model, five comparison models are selected, and 
the performances of all these six models are evaluated on the same testing dataset. Moreover, 5-fold 
cross-validation is adopted to ensure experimental reliability. Among them, CNN-LSTM is a single-
path serial fault diagnosis model. Except SVM, major parameters of the other four comparison models 
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are almost the same as those of the proposed model. In addition, the input of CWT-CNN is the time-
frequency image, and the other four models are vibration signals. Accuracy results are depicted in 
Figure 10. 

 

Figure 10. Accuracy of comparison models. 

Based on the results in Figure 10, the accuracy of CNN-LSTM is the lowest, that of CNN 
reaches 97%, and that of CWT-CNN reaches 99%, indicating that the time-frequency image is 
competent to represent fault features compared with the time-domain signal. The parallel mechanism 
is adopted to extract features from local spatial information and temporal dependencies of the signal 
in dual-domain, and the result shows that the diagnostic accuracy of the proposed model is superior to 
the other five models, indicating the effectiveness of the parallel feature extraction network. For the 
feature extraction network with CNN and LSTM connected in series, the spatial distribution features 
are extracted by CNN and then the time-correlated features are extracted by LSTM. Although such 
model has considered the periodicity of the signal frequency distribution, CNN corrupts the temporal 
features of the original data, resulting in the loss of important temporal features, which would affect 
the quality of final extracted features. The parallel feature extraction network proposed in this paper 
can significantly improve the quality of the extracted features by making up for the shortcomings of 
the series feature extraction mechanism. 

4.1.3. Performance with variable loads 

Based on CWRU dataset, composite datasets under mixed load were constructed for experiment. 
The dataset name implies its components (e.g., 12HP means the load contains 1 and 2HP). Composite 
datasets are tested on the proposed model, and their results are displayed in Table 5. 

Based on Table 5, the diagnostic results of proposed model achieve satisfactory diagnostic 
accuracy on the composite dataset, indicating that the proposed model can be applied to variable 
load conditions. Therefore, the proposed model has excellent adaptability, and it is suitable for variable 
load conditions. 
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Table 5. Diagnostic accuracy with composite datasets. 

Composite dataset (HP) 01 02 03 12 13 23 012 013 023 123 0123

Accuracy (%) 99.56 99.78 99.89 99.78 99.89 99.44 98.44 100 99.56 97.89 99.44

4.1.4. Noise immunity analysis 

 

 

 

 

 

 

 

(a) (b) 

Figure 11. Time-domain and time-frequency images under different SNRs. (a) Time-
domain. (b) Time-frequency. 

Real working contexts of the bearing are usually harsh, and its vibration signal is inevitably mixed 
with some noises. To simulate the signals obtained in the interference of noises, Gaussian white noises 
with different SNRs (-6, -3, 0, 3, 6 and 9 dB) are added to the original signal, respectively. Figure 11 
shows the time domain and the frequency domain images of the original signal as well as the signals 
with noise added at different SNRs (-6, -3, 0, 3, 6, 9). Noise is added to the bearing vibration signal, 
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making it challenging to distinguish certain features within the signal. 
Comparison experiments of model accuracy with different SNRs were designed and their results 

are summarized in Figure 12. They show that noise does affect the diagnostic accuracy of the model, 
with the more severe the noise interference, the lower the accuracy. However, the proposed model 
demonstrates the highest accuracy under different SNRs compared with other models. 

 

Figure 12. Diagnostic accuracy of different models under different SNRs. 

4.2. JNU dataset experiment 

To test the generalizability of the proposed model, a testing experiment was performed on JNU 
bearing dataset. Data pre-processing here is the same with that on CWRU dataset. 

JNU bearing dataset is provided by Jiangnan University. It consists of three bearing vibration sub-
datasets at different rotational speeds with the data acquisition frequency of 50 kHz. The sub-dataset 
contains one normal state and three fault states: ID, BD and OD. Based on differences in working 
conditions, 12 fault types are classified. The features of JNU bearing dataset are summarized in Table 6. 

Table 6. JNU bearing dataset. 

Label Fault status Rotating speed (rpm) Label Fault status Rotating speed (rpm) 
0 Normal 1 600 6 OD 1 600 
1 Normal 2 800 7 OD 2 800 
2 Normal 3 1000 8 OD 3 1000 
3 ID 1 600 9 BD 1 600 
4 ID 2 800 10 BD 2 800 
5 ID 3 1000 11 BD 3 1000 

Figure 13(a),(b) shows the accuracy and loss function of the model training process, where the 
accuracy on both the training and validation sets gradually converges and the loss function narrows down 

-6 -3 0 3 6 9
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

A
cc

ua
ry

(%
)

SNR（dB）

 Proposed
 CWT-CNN
 CNN
 LSTM
 SVM



2401 

Mathematical Biosciences and Engineering  Volume 21, Issue 2, 2385–2406. 

to a smaller range. Overall, the proposed model shows favorable performance on JNU bearing dataset. 

 

(a) (b) 

Figure 13. Accuracy and loss on JNU dataset. (a) Accuracy. (b) Loss. 

 

Figure 14. Confusion matrix of testing set. 

 

Figure 15. Classification results of testing set. 

Confusion matrix for the testing data is presented in Figure 14. The accuracy of the proposed 
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model is 93.80%. Then, the classification result of testing set was visualized via t-SNE, and shown in 
Figure 15. Based on Figure 15, bearing failures with different types have clear classification boundaries. 
However, the proposed model has low accuracy for fault types with true labels of 2, 3 and 8, but has 
high fault identification accuracy for most fault types. As for true label of 2, 3 and 8, there are 
similarities between time-frequency images, which may in turn lead to misdiagnosis. 

In addition, a comparison experiment is conducted, and the accuracy results is shown in Figure 16. 
They demonstrate that the proposed model on JNU dataset offers higher fault classification accuracy 
than other four models. 

  

Figure 16. Accuracy of different models on JNU dataset. 

In a sum, comparative analysis of the results from CWRU dataset and JNU dataset suggests that 
the proposed model exhibits superior generalizability on different datasets. 

5. Conclusions 

Bearing vibration signals are dynamic and periodic data. Traditional shallow machine learning 
and single deep learning methods can hardly extract temporal and spatial features at the same time. As 
for those deep learning-based single-path fault diagnosis methods, feature extraction of one stage will 
affect that of its next stage, which would affect the final diagnostic accuracy. To tackle the insufficient 
feature extraction in bearing fault diagnosis, a parallel feature extraction mechanism is proposed, 
which can extract time-correlated information and frequency spatial distribution features in parallel; 
this applies CWT, combined with CNN and LSTM, to bearing fault diagnosis. First, the signal is sliced 
into equal-sized sub-signals via a resampling technique. Then, the CWT converts the sub-signal into a 
time-frequency image, which, combined with the sub-signal, are viewed as two inputs of the proposed 
model. Second, LSTM and 2D-CNN dual-path network are employed to extract the temporal and 
spatial features in parallel. After the fusion of extracted temporal and spatial features, 1D-CNN is 
utilized to obtain the comprehensive features. Finally, the softmax function is implemented for fault 
classification. In addition, a BN layer is embedded after the feature fusion layer and mini-batch method 
is applied to reduce the computational complexity. On CWRU dataset, the model presents satisfactory 
accuracy and robustness, and performs well under complex conditions under variable loads and SNRs. 
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Moreover, the generalization performance of the model is further validated on JNU dataset. In sum, a 
novel fault diagnostic model is proposed which achieves satisfactory diagnostic accuracy under 
constant and variable loads. However, it is unable to obtain satisfactory results under strong noise, and 
de-noise could be one of the future research fields. 
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