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Abstract: This paper was concerned with a free boundary problem modeling the growth of tumor
cord with a time delay in cell proliferation, in which the cell location was incorporated, the domain
was bounded in R2, and its boundary included two disjoint closed curves, one fixed and the other
moving and a priori unknown. A parameter µ represents the aggressiveness of the tumor. We proved
that there exists a unique radially symmetric stationary solution for sufficiently small time delay, and
this stationary solution is linearly stable under the nonradially symmetric perturbations for any µ >
0. Moreover, adding the time delay in the model leads to a larger stationary tumor. If the tumor
aggressiveness parameter is bigger, the time delay has a greater effect on the size of the stationary
tumor, but it has no effect on the stability of the stationary solution.
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1. Introduction

Over the past few decades, considerable attention has been paid to the rigorous analysis of math-
ematical models describing tumor growth and great progress has been achieved. Most work in this
direction focuses on the sphere-shaped or nearly sphere-shaped tumor models; see [1–9] and the ref-
erences therein. Observing that the work concerning models for tumors having different geometric
configurations from spheroids is less frequent, in this paper we are interested in the situation of tumor
cord–a kind of tumor that grows cylindrically around the central blood vessel and receives nutrient
materials (such as glucose and oxygen) from the blood vessel [10]. The model only describes the
evolution of the tumor cord section perpendicular to the length direction of the blood vessel due to the
cord’s uniformity in that direction. Assume that the radius of the blood vessel is r0 and denote by J
and Γ(t) the section of the blood vessel wall and the section of the exterior surface of the tumor cord,
respectively, then J =

{
x ∈ R2; |x| = r0

}
. We also denote by Ω(t) the region of the section of the tumor
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cord, so that Ω(t) is an annular-like bounded domain in R2 and ∂Ω(t) = J ∪ Γ(t). The mathematical
formulation of the tumor model under study is as follows:

cσt(x, t) − ∆σ(x, t) + σ(x, t) = 0, x ∈ Ω(t), t > 0, (1.1)
− ∆p(x, t) = µ[σ(ξ(t − τ; x, t), t − τ) − σ̃], x ∈ Ω(t), t > 0, (1.2)

dξ
ds
= −∇p(ξ, s), t − τ ≤ s ≤ t,

ξ = x, s = t,
(1.3)

σ(x, t) = σ̄, ∂n⃗ p(x, t) = 0, x ∈ J, t > 0, (1.4)
∂ν⃗σ(x, t) = 0, p(x, t) = γκ(x, t), x ∈ Γ(t), t > 0, (1.5)
V(x, t) = −∂ν⃗p(x, t), x ∈ Γ(t), t > 0, (1.6)
Γ(t) = Γ0, − τ ≤ t ≤ 0, (1.7)
σ(x, t) = σ0(x), x ∈ Ω0, − τ ≤ t ≤ 0, (1.8)
p(x, t) = p0(x), x ∈ Ω0, − τ ≤ t ≤ 0. (1.9)

Here, σ and p denote the nutrient concentration and pressure within the tumor, respectively, which are
to be determined together with Ω(t), and c = Tdiffusion /Tgrowth is the ratio of the nutrient diffusion time
scale to the tumor growth (e.g., tumor doubling) time scale; thus, it is very small and can sometimes
be set to be 0 (quasi-steady state approximation). Assume that the time delay τ is reflected between
the time at which a cell commences mitosis and the time at which the daughter cells are produced and
ξ(s; x, t) represents the cell location at time s as cells are moving with the velocity field V⃗ , then the
function ξ(s; x, t) satisfies 

dξ
ds
= V⃗(ξ, s), t − τ ≤ s ≤ t,

ξ|s=t = x.
(1.10)

In other words, ξ tracks the path of the cell currently located at x. (1.3) is further derived from (1.10)
under the assumption of a porous medium structure for the tumor, where Darcy’s law V⃗ = −∇p holds
true. Because of the presence of time delay, the tumor grows at a rate that is related to the nutrient
concentration when it starts mitosis and a combination of the conservation of mass and Darcy’s law
yields (1.2), in which µ represents the growth intensity of the tumor and σ̃ is the nutrient concentration
threshold required for tumor cell growth. Additionally, σ̄ is the nutrient concentration in the blood
vessel, σ̄ > σ̃, V , κ and ν⃗ denote the normal velocity, the mean curvature and the unit outward normal
field of the outer boundary Γ(t), respectively, n⃗ denotes the unit outward normal field of the fixed inner
boundary J, and γ is the outer surface tension coefficient. Thus, the boundary condition σ = σ̄ on
J indicates that the tumor receives constant nutrient supply from the blood vessel, ∂ν⃗σ = 0 on Γ(t)
implies that the nutrient cannot pass through Γ(t), ∂n⃗ p = 0 on J means that tumor cells cannot pass
through the blood vessel wall, p = γκ on Γ(t) is due to the cell-to-cell adhesiveness, and V = −∂ν⃗p on
Γ(t) is the well-known Stefan condition representing that the normal velocity of the tumor cord outer
boundary Γ(t) is the same with that of tumor cells adjacent to Γ(t). Finally, σ0(x), p0(x), Γ0 are given
initial data and Ω(t) = Ω0 for −τ ≤ t ≤ 0.

Before going to our interest, we prefer to recall some relevant works. Models for the growth of
the strictly cylindrical tumor cord were studied in [11–13]. For the model (1.1)–(1.9) without the time
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delay, if c = 0, Zhou and Cui [14] showed that the unique radially symmetric stationary solution exists
and is asymptotically stable for any sufficiently small perturbations. Meanwhile, if c > 0, Wu et al. [15]
proved that the stationary solution is locally asymptotically stable provided that c is small enough. On
the other hand, Zhao and Hu [16] considered the multicell spheroids with time delays. For the case
c = 0, they analyzed the linear stability of the radially symmetric stationary solution as well as the
impact of the time delay.

Motivated by the works [14–16], here we aim to discuss the linear stability of stationary solutions
to the problem (1.1)–(1.9) with the quasi-steady-state assumption, i.e., c = 0, and investigate the effect
of time delay on tumor growth. Our first main result is given below.

Theorem 1.1. For small time delay τ, the problem (1.1)–(1.9) admits a unique radially symmetric
stationary solution.

Next, in order to deal with the linear stability of the radially symmetric stationary solution, denoted
by (σ∗, p∗,Ω∗), where Ω∗ =

{
x ∈ R2 : r0 < r = |x| < R∗

}
, we assume that the initial conditions are

perturbed as follows:

Ω(t) = {x ∈ R2 : r0 < r < R∗ + ερ0(θ)}, −τ ≤ t ≤ 0,
σ(r, θ, t) =σ∗(r) + εw0(r, θ), p(r, θ, t) = p∗(r) + εq0(r, θ), −τ ≤ t ≤ 0.

The linearized problem of (1.1)–(1.9) at (σ∗, p∗,Ω∗) is then obtained by substituting

Ω(t) : r0 < r < R∗ + ερ(θ, t) + O(ε2), (1.11)
σ(r, θ, t) = σ∗(r) + εw(r, θ, t) + O(ε2), (1.12)
p(r, θ, t) = p∗(r) + εq(r, θ, t) + O(ε2) (1.13)

into (1.1)–(1.9) and collecting the ε-order terms. Now, we can state the second main result of this
paper.

Theorem 1.2. For small time delay τ, the radially symmetric stationary solution (σ∗, p∗,Ω∗) of (1.1)–
(1.9) with c = 0 is linearly stable, i.e.,

max
0≤θ≤2π

|ρ(θ, t)| ≤ Ce−δt, t > 0 (1.14)

for some positive constants C and δ.

Remark 1.1. Compared with results of the problem modeling the growth of tumor cord without time
delays in [14], the introduction of the time delay does not affect the stability of the radially symmetric
stationary solution even under non-radial perturbations. However, as we shall see in Subsection 3.3,
the numerical result shows that adding time delay would result in a larger stationary tumor. Moreover,
the stronger the growth intensity of the tumor is, the greater the influence of time delay on the size of
the stationary tumor is.

Remark 1.2. Compared with results of the nearly sphere-shaped tumor model with time delays in [16],
which state that the radially symmetric stationary solution is linearly stable for small µ in the sense that
limt→∞max0≤θ≤2π |ρ(θ, t)− (a1 cos θ+b1 sin θ)| = 0 for some constants a1 and b1, the radially symmetric
stationary solution of tumor cord with the time delay is linearly stable for any µ > 0 in the normal
sense.
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This paper is organized as follows. In Section 2, we give the proof of Theorem 1.1 by first trans-
forming the free boundary problem into an equivalent problem with fixed boundary and then applying
the contraction mapping principle combined with Lp estimates to this fixed boundary problem. In Sec-
tion 3, we prove Theorem 1.2 and Remark 1.1 by first introducing the linearization of (1.1)–(1.9) at the
radially symmetric stationary solution (σ∗, p∗,Ω∗), and then making a delicate analysis of the expan-
sion in the time delay τ provided that τ is sufficiently small. A brief conclusion in Section 4 completes
the paper.

2. Radially symmetric stationary solutions

In this section, we study radially symmetric stationary solutions (σ∗, p∗,Ω∗) to the system (1.1)–
(1.9), which satisfy

− ∆rσ∗(r) + σ∗(r) = 0, σ∗(r0) = σ̄, σ′∗(R∗) = 0, r0 < r < R∗, (2.1)

− ∆r p∗(r) = µ[σ∗(ξ(−τ; r, 0)) − σ̃], p′∗(r0) = 0, p∗(R∗) =
γ

R∗
, r0 < r < R∗, (2.2)dξ

ds (s; r, 0) = −∂p∗
∂r (ξ(s; r, 0)), −τ ≤ s ≤ 0,

ξ(s; r, 0) = r, s = 0,
(2.3)∫ R∗

r0

[σ∗(ξ(−τ; r, 0)) − σ̃]rdr = 0, (2.4)

where ∆r is the radial part of the Laplacian in R2.
Before proceeding further, let us recall that the modified Bessel functions Kn(r) and In(r), standard

solutions of the equation
r2y′′ + ry′ − (r2 + n2)y = 0, r > 0, (2.5)

have the following properties:

In+1(r) = In−1(r) −
2n
r

In(r), Kn+1(r) = Kn−1(r) +
2n
r

Kn(r), n ≥ 1, (2.6)

I′n(r) =
1
2

[In−1(r) + In+1(r)], K′n(r) = −
1
2

[Kn−1(r) + Kn+1(r)], n ≥ 1, (2.7)

I′n(r) = In−1(r) −
n
r

In(r), K′n(r) = −Kn−1(r) −
n
r

Kn(r), n ≥ 1, (2.8)

I′n(r) =
n
r

In(r) + In+1(r), K′n(r) =
n
r

Kn(r) − Kn+1(r), n ≥ 0, (2.9)

In(r)Kn+1(r) + In+1(r)Kn(r) =
1
r
, n ≥ 0 (2.10)

and
I′n(r) > 0, K′n(r) < 0.

Proof of Theorem 1.1 In view of (2.5), the solution of (2.1) is clearly given by

σ∗(r) = σ̄
I0(r)K1(R∗) + I1(R∗)K0(r)

I0(r0)K1(R∗) + I1(R∗)K0(r0)
. (2.11)
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Introducing the notations:

r̂ =
r − r0

R∗ − r0
, σ̂(r̂) = σ∗(r), p̂(r̂) = (R∗ − r0)p∗(r), ξ̂(s, r̂, 0) =

ξ(s, r, 0) − r0

R∗ − r0
,

(2.1)–(2.4) reduces to the following system after dropping the “ˆ” in the above variables:

∂2σ

∂r2 +
R∗ − r0

r(R∗ − r0) + r0

∂σ

∂r
= (R∗ − r0)2σ, σ(0) = σ̄, σ′(1) = 0, (2.12)

∂2 p
∂r2 +

R∗−r0
r(R∗−r0)+r0

∂p
∂r = −µ(R∗ − r0)3[

σ
(
r + 1

(R∗−r0)3

∫ 0

−τ

∂p
∂r ((R∗ − r0)ξ(s; r, 0) + r0)ds

)
− σ̃

]
,

p′(0) = 0, p(1) = γ(R∗−r0)
R∗
,

(2.13)

 dξ
ds (s; r, 0) = − 1

(R∗−r0)3
∂p
∂r ((R∗ − r0)ξ(s; r, 0) + r0), −τ ≤ s ≤ 0,

ξ(s; r, 0) = r, s = 0,
(2.14)∫ 1

0
[r(R∗ − r0) + r0]

[
σ
(
r +

1
(R∗ − r0)3∫ 0

−τ

∂p
∂r

((R∗ − r0)ξ(s; r, 0) + r0)ds
)
− σ̃

]
dr = 0. (2.15)

It is clear that (2.12) can be solved explicitly. For convenience, we extend the solution of (2.12) outside
[0,1]:

σ(r; R∗) =


σ̄

I0(r(R∗ − r0) + r0)K1(R∗) + I1(R∗)K0(r(R∗ − r0) + r0)
I0(r0)K1(R∗) + I1(R∗)K0(r0)

, 0 ≤ r ≤ 1,

σ̄
I0(R∗)K1(R∗) + I1(R∗)K0(R∗)
I0(r0)K1(R∗) + I1(R∗)K0(r0)

, 1 < r ≤ 2.
(2.16)

Assume that Rmin and Rmax are positive constants to be determined later and r0 < Rmin < Rmax. For
any R∗ ∈ [Rmin,Rmax], we will prove that p is also uniquely determined by applying the contraction
mapping principle.

Noticing that 0 is a lower solution of (2.14), but there is no assurance that ξ(s; r, 0) ≤ 1 for −τ ≤
s ≤ 0, we suppose ξ(s; r, 0) ∈ [0, 2] and take

X =
{
p ∈ W2,∞[0, 2]; ∥p∥W2,∞[0,2] ≤ M

}
,

where M > 0 is to be determined. For each p ∈ X, we first solve for ξ from (2.14) and substitute it into
(2.13), then the following system

∂2 p̄
∂r2 +

R∗−r0
r(R∗−r0)+r0

∂ p̄
∂r = −µ(R∗ − r0)3[

σ
(
r + 1

(R∗−r0)3

∫ 0

−τ

∂p
∂r ((R∗ − r0)ξ(s; r, 0) + r0)ds

)
− σ̃

]
,

p̄(1) = γ(R∗−r0)
R∗
, ∂p̄

∂r (0) = 0

(2.17)

allows a unique solution p̄ ∈ W2,∞[0, 1]. Applying the strong maximum principle combined with the
Hopf lemma to (2.1) shows that σ(r; R∗) ≤ σ̄. Thus, integrating (2.17), we obtain∥∥∥∥∥ 1

r(R∗ − r0) + r0

∂ p̄
∂r

∥∥∥∥∥
L∞[0,1]

≤
µ

2
(Rmax − r0)2(σ̄ + σ̃), (2.18)
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∥ p̄∥L∞[0,1] ≤
γ(Rmax − r0)

Rmin
+
µ

4
R2

max(Rmax − r0)(σ̄ + σ̃), (2.19)∥∥∥∥∥∥∂2 p̄
∂r2

∥∥∥∥∥∥
L∞[0,1]

≤
3µ
2

(Rmax − r0)3(σ̄ + σ̃). (2.20)

Define the mapping

Lp(r) =
{

p̄(r), 0 ≤ r ≤ 1,
p̄(1) + p̄′(1)(r − 1), 1 < r ≤ 2,

p ∈ X,

then ∥Lp∥ ∈ W2,∞[0, 2] and ∥Lp∥W2,∞[0,2] ≤ 2∥p̄∥W2,∞[0,1]. Combining (2.18)–(2.20), we find

∥Lp∥W2,∞[0,2] ≤2
{
µ

2
(Rmax − r0)2(σ̄ + σ̃) +

3µ
2

(Rmax − r0)3(σ̄ + σ̃)

+
γ(Rmax − r0)

Rmin
+
µ

4
R2

max(Rmax − r0)(σ̄ + σ̃)
}
≜ M1. (2.21)

If we choose M ≥ M1, then Lp ∈ X by (2.21) and L maps X to itself.
We now show that L is a contraction. Given p(1), p(2) ∈ X, one can first get ξ(1), ξ(2) from the

following two systems: dξ(1)

ds (s; r, 0) = − 1
(R∗−r0)3

∂p(1)

∂r

(
(R∗ − r0)ξ(1)(s; r, 0) + r0

)
, −τ ≤ s ≤ 0,

ξ(1)(s; r, 0) = r, s = 0,
(2.22) dξ(2)

ds (s; r, 0) = − 1
(R∗−r0)3

∂p(2)

∂r

(
(R∗ − r0)ξ(2)(s; r, 0) + r0

)
, −τ ≤ s ≤ 0,

ξ(2)(s; r, 0) = r, s = 0.
(2.23)

Integrating (2.22) and (2.23) with regard to s over the interval [−τ, 0] and making a subtraction yield

∣∣∣ξ(1) − ξ(2)
∣∣∣ ≤ τ

(R∗ − r0)3 max
−τ≤s≤0
0≤r≤1

[∣∣∣∣∣∂p(1)

∂r
((R∗ − r0)ξ(1) + r0) −

∂p(2)

∂r
((R∗ − r0)ξ(1) + r0)

∣∣∣∣∣
+

∣∣∣∣∣∂p(2)

∂r
((R∗ − r0)ξ(1) + r0) −

∂p(2)

∂r
((R∗ − r0)ξ(2) + r0)

∣∣∣∣∣]
≤

τ

(R∗ − r0)3

∥∥∥p(1) − p(2)
∥∥∥

W2,∞[0,2]
+

τM
(R∗ − r0)2 max

−τ≤s≤0
0≤r≤1

∣∣∣ξ(1) − ξ(2)
∣∣∣

for all −τ ≤ s ≤ 0 and 0 ≤ r ≤ 1. Consequently,

max
−τ≤s≤0
0≤r≤1

∣∣∣ξ(1) − ξ(2)
∣∣∣ ≤ τ

(R∗ − r0)3 − τM(R∗ − r0)

∥∥∥p(1) − p(2)
∥∥∥

W2,∞[0,2]
. (2.24)

Next, we substitute ξ(1), ξ(2) into (2.17) and solve for p̄(1) and p̄(2), respectively, then it follows from
(2.17) that

(
p̄(1) − p̄(2)

)
(1) = 0, ∂

∂r

(
p̄(1) − p̄(2)

)
(0) = 0 and

−
∂2

∂r2 ( p̄(1) − p̄(2)) −
R∗ − r0

r(R∗ − r0) + r0

∂

∂r
( p̄(1) − p̄(2))
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=µ(R∗ − r0)3
[
σ
(
r +

1
(R∗ − r0)3

∫ 0

−τ

∂p(1)

∂r
((R∗ − r0)ξ(1)(s; r, 0) + r0)ds

)
− σ

(
r +

1
(R∗ − r0)3

∫ 0

−τ

∂p(2)

∂r
((R∗ − r0)ξ(2)(s; r, 0) + r0)ds

)]
.

Using (2.24), we derive∥∥∥∥∥ 1
r(R∗ − r0) + r0

∂

∂r

(
p̄(1) − p̄(2)

)∥∥∥∥∥
L∞[0,1]

≤
µ

2
(R∗ − r0)2

∥∥∥∥∥σ(r + 1
(R∗ − r0)3

∫ 0

−τ

∂p(1)

∂r
((R∗ − r0)ξ(1) + r0)ds

)
− σ

(
r +

1
(R∗ − r0)3

∫ 0

−τ

∂p(2)

∂r
((R∗ − r0)ξ(2) + r0)ds

)∥∥∥∥∥
L∞[0,1]

≤
µ

2(R∗ − r0)

∥∥∥∥∥∂σ∂r
∥∥∥∥∥

L∞[0,2]

∫ 0

−τ

(
∂p(1)

∂r
((R∗ − r0)ξ(1) + r0) −

∂p(2)

∂r
((R∗ − r0)ξ(2) + r0)

)
ds

≤
µτ

2(R∗ − r0)

∥∥∥∥∥∂σ∂r
∥∥∥∥∥

L∞[0,2]

∥∥∥p(1) − p(2)
∥∥∥

W2,∞[0,2]
+ (R∗ − r0)

∥∥∥p(2)
∥∥∥

W2,∞[0,2]
max
−τ≤s≤0
0≤r≤1

∣∣∣ξ(1) − ξ(2)
∣∣∣

≤M2τ
∥∥∥p(1) − p(2)

∥∥∥
W2,∞[0,2]

and similarly, ∥∥∥p̄(1) − p̄(2)
∥∥∥

L∞[0,1]
≤ M3τ

∥∥∥p(1) − p(2)
∥∥∥

W2,∞[0,2]
,∥∥∥∥ ∂2

∂r2

(
p̄(1) − p̄(2)

)∥∥∥∥
L∞[0,1]

≤ M4τ
∥∥∥p(1) − p(2)

∥∥∥
W2,∞[0,2]

,

where

M2 =
µσ̄Rmax

2r0

(Rmax − r0)3

(Rmin − r0)2 − Mτ
,

M3 =
µσ̄R3

max

4r0

(Rmax − r0)2

(Rmin − r0)2 − Mτ
,

M4 =
3µσ̄Rmax

2r0

(Rmax − r0)4

(Rmin − r0)2 − Mτ
.

Here, we employed the fact that∥∥∥∥∥∂σ∂r
∥∥∥∥∥

L∞[0,2]
=

∥∥∥∥∥∂σ∂r
∥∥∥∥∥

L∞[0,1]
≤
σ̄Rmax

r0
(Rmax − r0)2

by (2.1) and σ ≤ σ̄. Let M5 = M2 + M3 + M4, then M5 is independent of τ and∥∥∥ p̄(1) − p̄(2)
∥∥∥

W2,∞[0,1]
≤ M5τ

∥∥∥p(1) − p(2)
∥∥∥

W2,∞[0,2]
,

which together with Lp(1)(1) = Lp(2)(1) = γ(R∗−r0)
R∗

and (Lp(1))′(0) = (Lp(2))′(0) = 0 implies that∥∥∥Lp(1) − Lp(2)
∥∥∥

W2,∞[0,2]
≤ 2M5τ

∥∥∥p(1) − p(2)
∥∥∥

W2,∞[0,2]
.
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Hence, if τ is sufficiently small such that 2M5τ < 1, then we derive a contracting mapping L. The
existence and uniqueness of p are therefore obtained.

It suffices to prove that there exists a unique R∗ ∈ [Rmin,Rmax] satisfying (2.15). Substituting (2.16)
into (2.15), we find that it is equivalent to solving the following equation for R:

G(R, τ) =
∫ 1

0

r(R − r0) + r0

R + r0

[
σ∗

(
r +

1
(R − r0)3∫ 0

−τ

∂p∗
∂r

((R − r0)ξ(s; r, 0) + r0)ds
)
− σ̃

]
dr = 0.

Clearly,

G(R, 0) =
∫ 1

0

(
σ∗(r; R) − σ̃

)r(R − r0) + r0

R + r0
dr

=

∫ 1

0
σ∗(r; R)

r(R − r0) + r0

R + r0
dr −

σ̃

2
.

Using Lemma 3.1 and Theorem 3.2 in [14] and the condition σ̄ > σ̃, we know that

lim
R→r0

G(R, 0) =
σ̄ − σ̃

2
> 0, lim

R→∞
G(R, 0) = −

σ̃

2
< 0,

∂G(R, 0)
∂R

< 0,

which implies that the equation G(R, 0) = 0 has a unique solution, denoted by RS , and

G
(
1
2

(RS + r0), 0
)
> 0, G

(
3
2

RS , 0
)
< 0.

Since
∂G(R, τ)
∂R

=
∂G(R, 0)
∂R

+
∂2G(R, η)
∂R∂τ

τ + O(τ2), 0 ≤ η ≤ τ

when τ is sufficiently small, ∂G(R,τ)
∂R and ∂G(R,0)

∂R have the same sign. Thus, G(R, τ) is monotone decreasing
in R. Using the fact that G(R, τ) is continuous in τ, we further have

G
(
1
2

(RS + r0), τ
)
> 0, G

(
3
2

RS , τ

)
< 0.

Hence, when τ is sufficiently small, the equation G(R, τ) = 0 has a unique solution R∗. Taking Rmin =
1
2 (RS + r0) and Rmax =

3
2RS , we complete the proof of the theorem.

3. Linear stability

This section is devoted to the linear stability of the radially symmetric stationary solution
(σ∗, p∗,Ω∗) of the problem (1.1)–(1.9) and the effect of time delay on the stability and the size of
the stationary tumor. Let (σ, p,Ω(t)), given by (1.11)–(1.13), be solutions to (1.1)–(1.9), and denote by
e⃗r, e⃗θ the unit normal vectors in r, θ directions, respectively. Written in the rectangular coordinates in
R2,

e⃗r = (cos θ, sin θ)T , e⃗θ = (− sin θ, cos θ)T .
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Using the notation ξ1(s; r, θ, t), ξ2(s; r, θ, t) for the polar radius and angle of ξ(s; r, θ, t), respectively, we
have

ξ(s; r, θ, t) = ξ1(s; r, θ, t)⃗er(ξ) = ξ1(s; r, θ, t)(cos ξ2(s; r, θ, t), sin ξ2(s; r, θ, t))T .

Expand ξ1, ξ2 in ε as ξ1 = ξ10 + εξ11 + O(ε2),
ξ2 = ξ20 + εξ21 + O(ε2),

(3.1)

then we derive from (1.3) and (1.13) that{ dξ10
ds = −

∂p∗
∂r (ξ10), t − τ ≤ s ≤ t,

ξ10

∣∣∣
s=t
= r;

(3.2) dξ11
ds = −

∂2 p∗
∂r2 (ξ10)ξ11 −

∂q
∂r (ξ10, ξ20, s), t − τ ≤ s ≤ t,

ξ11

∣∣∣
s=t
= 0;

(3.3){ dξ20
ds = 0, t − τ ≤ s ≤ t,
ξ20

∣∣∣
s=t
= θ;

(3.4) dξ21
ds = −

1
ξ210

∂q
∂θ

(ξ10, ξ20, s), t − τ ≤ s ≤ t,

ξ21

∣∣∣
s=t
= 0.

(3.5)

It is evident that ξ20 ≡ θ. Noticing that the equation for ξ10 is the same as that for ξ∗ in the radially
symmetric case, ξ10 is independent of θ.

Substituting (1.11)–(1.13) and (3.1)–(3.5) into (1.1), (1.2), (1.4)–(1.6), using the mean-curvature
formula in the 2-dimensional case for the curve r = ρ(θ):

κ =
ρ2 + 2ρ2

θ − ρ · ρθθ

(ρ2 + (ρθ)2)3/2

and collecting the ε-order terms, we obtain the linearized system in BR∗ × {t > 0}:

∆ω(r, θ, t) = ω(r, θ, t), ω(r0, θ, t) = 0,
∂ω

∂r
(R∗, θ, t) + σ∗(R∗)ρ(θ, t) = 0, (3.6) ∆q(r, θ, t) = −µ∂σ∗

∂r (ξ10(t − τ; r, t))ξ11(t − τ; r, θ, t) − µw(ξ10(t − τ; r, t), θ, t − τ),
∂q
∂r (r0, θ, t) = 0, q(R∗, θ, t) +

γ

R2
∗

(
ρ(θ, t) + ∂

2ρ

∂θ2
(θ, t)

)
= 0,

(3.7)

∂ρ(θ, t)
∂t

= −
∂q
∂r

(R∗, θ, t) −
∂2 p∗
∂r2 (R∗, θ, t)ρ(θ, t). (3.8)

Due to the presence of the time delay, the linearization problem (3.6)–(3.8) cannot be solved explic-
itly. Assume that ω, q, ρ and ξ11 have the following Fourier expansions:

ω(r, θ, t) = A0(r, t) +
∑∞

n=1[An(r, t) cos nθ + Bn(r, t) sin nθ],
q(r, θ, t) = E0(r, t) +

∑∞
n=1[En(r, t) cos nθ + Fn(r, t) sin nθ],

ρ(θ, t) = a0(t) +
∑∞

n=1[an(t) cos nθ + bn(t) sin nθ],
ξ11(s; r, θ, t) = e0(s; r, t) +

∑∞
n=1[en(s; r, t) cos nθ + fn(s; r, t) sin nθ].

(3.9)
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Substituting (3.9) into (3.6)–(3.8) yields the following system in BR∗ × {t > 0}:{
∂2An
∂r2 (r, t) + 1

r
∂An
∂r (r, t) − n2

r2 An(r, t) = An(r, t),
An(r0, t) = 0, ∂An

∂r (R∗, t) + σ∗(R∗)an(t) = 0,
(3.10){

∂2Bn
∂r2 (r, t) + 1

r
∂Bn
∂r (r, t) − n2

r2 Bn(r, t) = Bn(r, t),
Bn(r0, t) = 0, ∂Bn

∂r (R∗, t) + σ∗(R∗)bn(t) = 0,
(3.11)

∂2En
∂r2 (r, t) + 1

r
∂En
∂r (r, t) − n2

r2 En(r, t)
= −µ∂σ∗

∂r (ξ10(t − τ; r, t))en(t − τ; r, t) − µAn(ξ10(t − τ; r, t), t − τ),
∂En
∂r (r0, t) = 0, En(R∗, t) +

γ(1−n2)
R2
∗

an(t) = 0,
(3.12)


∂2Fn
∂r2 (r, t) + 1

r
∂Fn
∂r (r, t) − n2

r2 Fn(r, t)
= −µ∂σ∗

∂r (ξ10(t − τ; r, t)) fn(t − τ; r, t) − µBn(ξ10(t − τ; r, t), t − τ),
∂Fn
∂r (r0, t) = 0, Fn(R∗, t) +

γ(1−n2)
R2
∗

bn(t) = 0,
(3.13)

{
∂en
∂s (s; r, t) = −∂

2 p∗
∂r2 (ξ10)en(s; r, t) − ∂En

∂r (ξ10, s), t − τ ≤ s ≤ t,
en |s=t= 0,

(3.14){
∂ fn
∂s (s; r, t) = −∂

2 p∗
∂r2 (ξ10) fn(s; r, t) − ∂Fn

∂r (ξ10, s), t − τ ≤ s ≤ t,
fn |s=t= 0,

(3.15)

dan(t)
dt
= −
∂2 p∗
∂r2 (R∗)an(t) −

∂En

∂r
(R∗, t), (3.16)

dbn(t)
dt
= −
∂2 p∗
∂r2 (R∗)bn(t) −

∂Fn

∂r
(R∗, t). (3.17)

Since it is impossible to solve the systems (2.1)–(2.4) and (3.10)–(3.17) explicitly and the time
delay τ is actually very small, in what follows, we analyze the expansion in τ for (2.1)–(2.4) and
(3.10)–(3.17).

3.1. Expansion in τ

Let

R∗ = R0
∗ + τR

1
∗ + O(τ2),

σ∗ = σ
0
∗ + τσ

1
∗ + O(τ2),

p∗ = p0
∗ + τp

1
∗ + O(τ2),

An = A0
n + τA

1
n + O(τ2),

Bn = B0
n + τB

1
n + O(τ2),

En = E0
n + τE

1
n + O(τ2),

Fn = F0
n + τF

1
n + O(τ2),

an = a0
n + τa

1
n + O(τ2),

bn = b0
n + τb

1
n + O(τ2).

Substitute these expansions into (2.1)–(2.4) and (3.10)–(3.17). Since an(t) and bn(t) have the same
asymptotic behavior at ∞, we will only make an analysis of an(t). For this, we discuss the expansions
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of R∗, σ∗, p∗, An, En and an. Since the equations for the expansions of σ∗, p∗, An, En and an are the
same as those in [16], here we only compute the expansions of the boundary conditions of σ∗, p∗, An

and En.

• Expansions of the boundary conditions of σ∗:
It follows from (2.10) and (2.11) that

σ∗(r) =σ̄
K1(R∗)I0(r) + I1(R∗)K0(r)

I0(r0)K1(R∗) + I1(R∗)K0(r0)

=σ̄
K1(R0

∗)I0(r) + I1(R0
∗)K0(r)

I0(r0)K1(R0
∗) + I1(R0

∗)K0(r0)
+ τ
σ̄R1
∗

R0
∗

I0(r0)K0(r) − K0(r0)I0(r)
[I0(r0)K1(R0

∗) + I1(R0
∗)K0(r0)]2 + O(τ2),

which implies

σ0
∗(r) = σ̄

K1(R0
∗)I0(r) + I1(R0

∗)K0(r)
I0(r0)K1(R0

∗) + I1(R0
∗)K0(r0)

, (3.18)

σ1
∗(r) =

σ̄R1
∗

R0
∗

I0(r0)K0(r) − K0(r0)I0(r)
[I0(r0)K1(R0

∗) + I1(R0
∗)K0(r0)]2 . (3.19)

By the boundary conditions in (2.1), we find

σ0
∗(r0) + τσ1

∗(r0) + O(τ2) = σ̄,

∂σ0
∗

∂r
(R0
∗) + τ

∂2σ0
∗

∂r2 (R0
∗)R

1
∗ + τ

∂σ1
∗

∂r
(R0
∗) + O(τ2) = 0.

• Expansions of the boundary conditions of p∗:
One obtains from the boundary conditions in (2.2) that

∂p0
∗

∂r
(r0) + τ

∂p1
∗

∂r
(r0) + O(τ2) = 0,

p0
∗(R

0
∗) + τ

∂p0
∗

∂r
(R0
∗)R

1
∗ + τp

1
∗(R

0
∗) + O(τ2) =

γ

R0
∗

− τ
γR1
∗

(R0
∗)2 + O(τ2).

• Expansion of (2.4):
In view of (4.31) in [16], there holds

0 =
∫ R∗

r0

[σ∗(ξ(−τ; r, 0)) − σ̃]rdr

=

∫ R∗

r0

[σ0
∗(r) − σ̃]rdr + τ

∫ R0
∗

r0

(
∂σ0
∗

∂r
(r)
∂p0
∗

∂r
(r) + σ1

∗(r)
)

rdr + O(τ2). (3.20)

Using (3.18), we compute∫ R∗

r0

[σ0
∗(r) − σ̃]rdr =

∫ R∗

r0

(
σ̄

K1(R0
∗)I0(r) + I1(R0

∗)K0(r)
I0(r0)K1(R0

∗) + I1(R0
∗)K0(r0)

− σ̃

)
rdr

=σ̄r0
I1(R0

∗)K1(r0) − I1(r0)K1(R0
∗)

I0(r0)K1(R0
∗) + I1(R0

∗)K0(r0)
+
σ̃

2
[r2

0 − (R0
∗)

2]
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+ τR1
∗

(
σ̄

I0(r0)K1(R0
∗) + I1(R0

∗)K0(r0)
− σ̃R0

∗

)
+ O(τ2). (3.21)

A combination of (3.20) and (3.21) gives

τ
[ σ̄R1

∗

I0(r0)K1(R0
∗) + I1(R0

∗)K0(r0)
− σ̃R0

∗R
1
∗ +

∫ R0
∗

r0

(
∂σ0
∗

∂r
(r)
∂p0
∗

∂r
(r) + σ1

∗(r)
)

rdr
]

+ σ̄r0
I1(R0

∗)K1(r0) − I1(r0)K1(R0
∗)

I0(r0)K1(R0
∗) + I1(R0

∗)K0(r0)
+
σ̃

2
[r2

0 − (R0
∗)

2] + O(τ2) = 0. (3.22)

• Expansions of the boundary conditions of An:
We derive from the boundary conditions in (3.10) that

A0
n(r0, t) + τA1

n(r0, t) + O(τ2) = 0,

0 =
∂A0

n

∂r
(R0
∗ + τR

1
∗, t) + τ

∂A1
n

∂r
(R0
∗, t) + [σ0

∗(R
0
∗ + τR

1
∗) + τσ

1
∗(R

0
∗)][a

0
n(t) + τa1

n(t)] + O(τ2)

=
∂A0

n

∂r
(R0
∗, t) + σ

0
∗(R

0
∗)a

0
n(t) + τ

(∂2A0
n

∂r2 (R0
∗, t)R

1
∗ +
∂A1

n

∂r
(R0
∗, t) +

∂σ0
∗

∂r
(R0
∗, t)R

1
∗a

0
n(t)

+ σ0
∗(R

0
∗)a

1
n(t) + σ1

∗(R
0
∗)a

0
n(t)

)
+ O(τ2).

• Expansions of the boundary conditions of En:
Substituting the expansion of En into the boundary conditions in (3.12) yields

∂E0
n

∂r
(r0, t) + τ

∂E1
n

∂r
(r0, t) + O(τ2) = 0,

0 = E0
n(R0

∗ + τR
1
∗, t) + τE

1
n(R0

∗, t) + γ
1 − n2

(R0
∗ + τR1

∗)2 [a0
n(t) + τa1

n(t)] + O(τ2)

= E0
n(R0

∗, t) + γ
1 − n2

(R0
∗)2 a0

n(t) + τ
(∂E0

n

∂r
(R0
∗, t)R

1
∗ + E1

n(R0
∗, t)

− 2γ
1 − n2

(R0
∗)3 R1

∗a
0
n(t) + γ

1 − n2

(R0
∗)2 a1

n(t)
)
+ O(τ2).

3.2. Zeroth-order terms in τ

Collecting all zeroth-order terms in τ leads to the following system for r0 < r < R0
∗:

−
∂2σ0

∗

∂r2 −
1
r
∂σ0
∗

∂r
= −σ0

∗, σ0
∗(r0) = σ̄,

∂σ0
∗

∂r
(R0
∗) = 0, (3.23)

−
∂2 p0

∗

∂r2 −
1
r
∂p0
∗

∂r
= µ(σ0

∗ − σ̃),
∂p0
∗

∂r
(r0) = 0, p0

∗(R
0
∗) =

γ

R0
∗

, (3.24)

σ̄r0
I1(R0

∗)K1(r0) − I1(r0)K1(R0
∗)

I0(r0)K1(R0
∗) + I1(R0

∗)K0(r0)
+
σ̃

2
[r2

0 − (R0
∗)

2] = 0, (3.25) −
∂2A0

n
∂r2 −

1
r
∂A0

n
∂r +

(
n2

r2 + 1
)
A0

n = 0,

A0
n(r0, t) = 0, ∂A0

n
∂r (R0

∗, t) + σ
0
∗(R

0
∗)a

0
n(t) = 0,

(3.26)
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∂2B0

n
∂r2 −

1
r
∂B0

n
∂r +

(
n2

r2 + 1
)
B0

n = 0,

B0
n(r0, t) = 0, ∂B0

n
∂r (R0

∗, t) + σ
0
∗(R

0
∗)b

0
n(t) = 0,

(3.27)

 −∂
2E0

n
∂r2 −

1
r
∂E0

n
∂r +

n2

r2 E0
n = µA

0
n,

∂E0
n
∂r (r0, t) = 0, E0

n(R0
∗, t) = γ

n2−1
(R0
∗)2 a0

n(t),
(3.28) −∂

2F0
n

∂r2 −
1
r
∂F0

n
∂r +

n2

r2 F0
n = µB0

n,
∂F0

n
∂r (r0, t) = 0, F0

n(R0
∗, t) = γ

n2−1
(R0
∗)2 b0

n(t),
(3.29)

da0
n(t)
dt
= −
∂2 p0

∗

∂r2 (R0
∗)a

0
n(t) −

∂E0
n

∂r
(R0
∗, t), (3.30)

db0
n(t)
dt
= −
∂2 p0

∗

∂r2 (R0
∗)b

0
n(t) −

∂F0
n

∂r
(R0
∗, t). (3.31)

A direct calculation gives

∂p0
∗

∂r
(r) =

µσ̄

I0(r0)K1(R0
∗) + I1(R0

∗)K0(r0)

{
K1(R0

∗)
(r0

r
I1(r0) − I1(r)

)
+ I1(R0

∗)
(
K1(r) −

r0

r
K1(r0)

) }
+
µσ̃r

2
−
µσ̃r2

0

2r
, (3.32)

∂2 p0
∗

∂r2 (R0
∗) =

µσ̄

R0
∗[(R0

∗)2 − r2
0]

2r0R0
∗[I1(R0

∗)K1(r0) − I1(r0)K1(R0
∗)] − (R0

∗)
2 + r2

0

I0(r0)K1(R0
∗) + I1(R0

∗)K0(r0)
, (3.33)

A0
n(r, t) =

σ̄a0
n(t)hn(r0,R0

∗)
R0
∗

Kn(r0)In(r) − In(r0)Kn(r)
I0(r0)K1(R0

∗) + I1(R0
∗)K0(r0)

, (3.34)

∂A0
n

∂r
(r, t) =

−σ̄a0
n(t)hn(r0,R0

∗)
R0
∗[I0(r0)K1(R0

∗) + I1(R0
∗)K0(r0)]

1
hn(r0, r)

, (3.35)

∂2A0
n

∂r2 (R0
∗, t) =

−σ̄a0
n(t)hn(r0,R0

∗)gn(r0,R0
∗)

R0
∗[I0(r0)K1(R0

∗) + I1(R0
∗)K0(r0)]

, (3.36)

where

hn(r0, x) =
1

In(r0)
(

n
x Kn(x) − Kn+1(x)

)
− Kn(r0)

(
n
x In(x) + In+1(x)

) , (3.37)

gn(r0, x) = In(r0)
[(

1 +
n(n − 1)

x2

)
Kn(x) +

1
x

Kn+1(x)
]

− Kn(r0)
[ (

1 +
n(n − 1)

x2

)
In(x) −

1
x

In+1(x)
]
.

Let η0
n = E0

n + µA
0
n, then we find from (3.26) and (3.28) that η0

n satisfies

−
∂2η0

n

∂r2 −
1
r
∂η0

n

∂r
+

n2

r2 η
0
n = 0,

whose solution is

η0
n(r, t) = C1(t)rn +C2(t)r−n
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and thus,
E0

n(r, t) = η0
n(r, t) − µA0

n(r, t) = C1(t)rn +C2(t)r−n − µA0
n(r, t), (3.38)

where C1(t) and C2(t) are to be determined by the boundary conditions in (3.28). By (2.10), (3.34),
(3.35) and (3.37), we get

C1(t) =
µσ̄a0

n(t)hn(r0,R0
∗)

nR0
∗[(R0

∗)2n + r2n
0 ]

n(R0
∗)

n[In(R0
∗)Kn(r0) − In(r0)Kn(R0

∗)] + rn
0

I0(r0)K1(R0
∗) + I1(R0

∗)K0(r0)

+
(n2 − 1)γa0

n(t)
(R0
∗)2n + r2n

0

(R0
∗)

n−2, (3.39)

C2(t) =
µσ̄a0

n(t)hn(r0,R0
∗)r

n
0(R0

∗)
n

nR0
∗[(R0

∗)2n + r2n
0 ]

nrn
0[In(R0

∗)Kn(r0) − In(r0)Kn(R0
∗)] − (R0

∗)
n

I0(r0)K1(R0
∗) + I1(R0

∗)K0(r0)

+
(n2 − 1)γa0

n(t)
(R0
∗)2n + r2n

0

r2n
0 (R0

∗)
n−2. (3.40)

Using (3.35) and (3.38)–(3.40), we further derive

∂E0
n

∂r
(r, t) =

µσ̄a0
n(t)hn(r0,R0

∗)
R0
∗[I0(r0)K1(R0

∗) + I1(R0
∗)K0(r0)]

{
rn

0
rn−1 + (R0

∗)
2nr−n−1

(R0
∗)2n + r2n

0

+ n(R0
∗)

n rn−1 − r2n
0 r−n−1

(R0
∗)2n + r2n

0

[In(R0
∗)Kn(r0) − In(r0)Kn(R0

∗)]

+
1

hn(r0, r)

}
+ n(n2 − 1)γa0

n(t)(R0
∗)

n−2 rn−1 − r2n
0 r−n−1

(R0
∗)2n + r2n

0

. (3.41)

Substituting (3.33) and (3.41) into (3.30) yields

da0
n(t)
dt
= Un(r0,R0

∗)a
0
n(t), (3.42)

whose solution is explicitly given by

a0
n(t) = a0

n(0) exp{Un(r0,R0
∗)t}. (3.43)

Here,

Un(r0,R0
∗) =

µσ̄hn(r0,R0
∗)

I0(r0)K1(R0
∗) + I1(R0

∗)K0(r0)

[2r0(I1(r0)K1(R0
∗) − I1(R0

∗)K1(r0))
hn(r0,R0

∗)[(R0
∗)2 − r2

0]

+
n

(R0
∗)2

(R0
∗)

2n − r2n
0

(R0
∗)2n + r2n

0

(In(r0)Kn(R0
∗) − In(R0

∗)Kn(r0)) −
2rn

0(R0
∗)

n−2

(R0
∗)2n + r2n

0

]
−
γn(n2 − 1)

(R0
∗)3

(R0
∗)

2n − r2n
0

(R0
∗)2n + r2n

0

. (3.44)

It was proven in Lemma 4.4 of [14] that Un(r0,R0
∗) < 0 for any n ≥ 0. Thus, we have the following:

Lemma 3.1. For any n ≥ 0, there exists δ > 0 such that |an
0(t)| ≤ |an

0(0)|e−δt for all t > 0.

Lemma 3.1 shows that a0
n(t) decays to 0 exponentially at +∞; hence, when τ = 0, the radially

symmetric stationary solution is asymptotically stable for all µ > 0.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2344–2365.



2358

3.3. Sign of R1
∗

Recalling that R∗ = R0
∗ + τR

1
∗ +O(τ2), in order to see the effect of the time delay τ on the size of the

stationary tumor, in this subsection we discuss the sign of R1
∗ by a theoretical analysis combined with

numerical simulations.
We obtain from (3.22) that

σ̄R1
∗

I0(r0)K1(R0
∗) + I1(R0

∗)K0(r0)
− σ̃R0

∗R
1
∗ +

∫ R0
∗

r0

(
∂σ0
∗

∂r
(r)
∂p0
∗

∂r
(r) + σ1

∗(r)
)

rdr = 0, (3.45)

then by using (2.6)–(2.10), (3.18), (3.19), (3.25) and (3.32), one can solve (3.45) to obtain

R1
∗ = −

µσ̄

2R0
∗

T (r0,R0
∗)

S (r0,R0
∗)
, (3.46)

where

T (r0,R0
∗) = 1 − r2

0[I0(r0)K1(R0
∗) + I1(R0

∗)K0(r0)]2 + r2
0

(R0
∗)

2 − r2
0 − 4

(R0
∗)2 − r2

0

[I1(R0
∗)K1(r0) − I1(r0)K1(R0

∗)]
2,

S (r0,R0
∗) =

2r0

(R0
∗)2 − r2

0

[I1(r0)K1(R0
∗) − I1(R0

∗)K1(r0)][I0(r0)K1(R0
∗) + I1(R0

∗)K0(r0)] +
1

(R0
∗)2 .

Since
U0(r0,R0

∗) =
µσ̄

[I0(r0)K1(R0
∗) + I1(R0

∗)K0(r0)]2 S (r0,R0
∗)

by (3.44), we know S (r0,R0
∗) < 0. Additionally, we numerically compute the function T (r0,R0

∗) and find
it is positive (see Figure 1). Hence, it follows from (3.46) that R1

∗ > 0 and R1
∗ is monotone increasing

in µ.

Figure 1. The graph of min0.0001≤r0<R0
∗
T (r0,R0

∗) with R0
∗ ∈ [0.0001, 10].
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Remark 3.1. The discussion above indicates that the presence of the time delay leads to a larger
stationary tumor. Furthermore, the bigger the tumor aggressive parameter µ is, the greater the effect
of time delay on the size of the stationary tumor is.

3.4. First-order terms in τ

Now, we tackle the system consisting of all the first-order terms in τ for r0 < r < R0
∗:

−
∂2σ1

∗

∂r2 −
1
r
∂σ1
∗

∂r
= −σ1

∗, σ
1
∗(r0) = 0,

∂σ1
∗

∂r
(R0
∗) +
∂2σ0

∗

∂r2 (R0
∗)R

1
∗ = 0, (3.47) −∂

2 p1
∗

∂r2 −
1
r
∂p1
∗

∂r = µ
∂σ0
∗

∂r
∂p0
∗

∂r + µσ
1
∗,

∂p1
∗

∂r (r0) = 0, p1
∗(R

0
∗) = −

γR1
∗

(R0
∗)2 −

∂p0
∗

∂r (R0
∗)R

1
∗,

(3.48)

σ̄R1
∗

I0(r0)K1(R0
∗) + I1(R0

∗)K0(r0)
− σ̃R0

∗R
1
∗ +

∫ R0
∗

r0

(
∂σ0
∗

∂r
(r)
∂p0
∗

∂r
(r) + σ1

∗(r)
)

rdr = 0, (3.49) −∂
2A1

n
∂r2 −

1
r
∂A1

n
∂r +

(
n2

r2 + 1
)

A1
n = 0,

A1
n(r0, t) = 0, ∂2A0

n
∂r2 (R0

∗, t)R
1
∗ +

∂A1
n
∂r (R0

∗, t) + σ
0
∗(R

0
∗)a

1
n(t) + σ1

∗(R
0
∗)a

0
n(t) = 0,

(3.50) −∂
2B1

n
∂r2 −

1
r
∂B1

n
∂r +

(
n2

r2 + 1
)

B1
n = 0,

B1
n(r0, t) = 0, ∂2B0

n
∂r2 (R0

∗, t)R
1
∗ +

∂B1
n
∂r (R0

∗, t) + σ
0
∗(R

0
∗)b

1
n(t) + σ1

∗(R
0
∗)b

0
n(t) = 0,

(3.51) −∂
2E1

n
∂r2 −

1
r
∂E1

n
∂r +

n2

r2 E1
n = µ

∂σ0
∗

∂r
∂E0

n
∂r + µ

∂A0
n
∂r
∂p0
∗

∂r − µ
∂A0

n
∂t + µA

1
n,

∂E1
n
∂r (r0, t) = 0, E1

n(R0
∗, t) = γ

n2−1
(R0
∗)2 a1

n(t) − ∂E
0
n
∂r (R0

∗, t)R
1
∗ − 2γ n2−1

(R0
∗)3 R1

∗a
0
n(t),

(3.52) −∂
2F1

n
∂r2 −

1
r
∂F1

n
∂r +

n2

r2 F1
n = µ

∂σ0
∗

∂r
∂F0

n
∂r + µ

∂B0
n
∂r
∂p0
∗

∂r − µ
∂B0

n
∂t + µB1

n,
∂F1

n
∂r (r0, t) = 0, F1

n(R0
∗, t) = γ

n2−1
(R0
∗)2 b1

n(t) − ∂F
0
n
∂r (R0

∗, t)R
1
∗ − 2γ n2−1

(R0
∗)3 R1

∗b
0
n(t),

(3.53)

da1
n(t)
dt
= −
∂2 p0

∗

∂r2 (R0
∗)a

1
n(t) −

∂3 p0
∗

∂r3 (R0
∗)R

1
∗a

0
n(t)

−
∂2 p1

∗

∂r2 (R0
∗)a

0
n(t) −

∂2E0
n

∂r2 (R0
∗, t)R

1
∗ −
∂E1

n

∂r
(R0
∗, t), (3.54)

db1
n(t)
dt
= −
∂2 p0

∗

∂r2 (R0
∗)b

1
n(t) −

∂3 p0
∗

∂r3 (R0
∗)R

1
∗b

0
n(t)

−
∂2 p1

∗

∂r2 (R0
∗)b

0
n(t) −

∂2F0
n

∂r2 (R0
∗, t)R

1
∗ −
∂F1

n

∂r
(R0
∗, t). (3.55)

To obtain the asymptotic behavior of a1
n(t) as ∞, by (3.54) and the boundedness of the modified

Bessel functions In(r) and Kn(r) on [r0,R0
∗], it suffices to analyze ∂E

1
n
∂r (R0

∗, t). For this purpose, in view
of (3.52), we first compute A1

n(r, t). Solving (3.50) yields

A1
n(r, t) =

σ̄hn(r0,R0
∗)

R0
∗

In(r0)Kn(r) − Kn(r0)In(r)
I0(r0)K1(R0

∗) + I1(R0
∗)K0(r0)

Vn(r0,R0
∗,R

1
∗, a

0
n(t), a1

n(t)) (3.56)

with

Vn(r0,R0
∗,R

1
∗, a

0
n(t), a1

n(t)) =a0
n(t)R1

∗hn(r0,R0
∗)gn(r0,R0

∗) − a1
n(t)

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2344–2365.
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+ a0
n(t)R1

∗

I0(R0
∗)K0(r0) − I0(r0)K0(R0

∗)
I0(r0)K1(R0

∗) + I1(R0
∗)K0(r0)

,

where we have employed (2.8)–(2.10), (3.19), (3.36) and (3.37). Furthermore,

∂A1
n

∂r
(r, t) =

σ̄hn(r0,R0
∗)Vn(r0,R0

∗,R
1
∗, a

0
n(t), a1

n(t))
R0
∗[I0(r0)K1(R0

∗) + I1(R0
∗)K0(r0)]

1
hn(r0, r)

. (3.57)

Next, being similar to the computation of E0
n, we set η1

n = E1
n + µA

1
n, then we derive from (3.50),

(3.52) and (3.56) that −∂
2η1

n
∂r2 −

1
r
∂η1

n
∂r +

n2

r2 η
1
n = µ

∂σ0
∗

∂r
∂E0

n
∂r + µ

∂A0
n
∂r
∂p0
∗

∂r − µ
∂A0

n
∂t ,

∂η1
n
∂r (r0, t) = µ

∂A1
n
∂r (r0, t), η1

n(R0
∗, t) = E1

n(R0
∗, t) + µA

1
n(R0
∗, t).

(3.58)

For brevity, we introduce the differential operator Ln = −∂rr−
1
r∂r+

n2

r2 and write η1
n = u(1)

n +u(2)
n +u(3)

n +u(4)
n ,

where u(1)
n , u(2)

n , u(3)
n and u(4)

n solve the following problems, respectively: Lnu(1)
n = µ

∂σ0
∗

∂r
∂E0

n
∂r ,

∂u(1)
n
∂r (r0, t) = 0, u(1)

n (R0
∗, t) = 0;

(3.59) Lnu(2)
n = µ

∂A0
n
∂r
∂p0
∗

∂r ,
∂u(2)

n
∂r (r0, t) = 0, u(2)

n (R0
∗, t) = 0;

(3.60) Lnu(3)
n = −µ

∂A0
n
∂t ,

∂u(3)
n
∂r (r0, t) = 0, u(3)

n (R0
∗, t) = 0;

(3.61) Lnu(4)
n = 0,

∂u(4)
n
∂r (r0, t) = µ

∂A1
n
∂r (r0, t), u(4)

n (R0
∗, t) = E1

n(R0
∗, t) + µA

1
n(R0
∗, t).

(3.62)

Let us first estimate u(1)
n . By (3.18), (3.41) and (3.59), we have

Lnu(1)
n =µσ̄a0

n(t)
K1(R0

∗)I1(r) − I1(R0
∗)K1(r)

I0(r0)K1(R0
∗) + I1(R0

∗)K0(r0)

{
n(n2 − 1)γ(R0

∗)
n−2 rn−1 − r2n

0 r−n−1

(R0
∗)2n + r2n

0

+
µσ̄hn(r0,R0

∗)
R0
∗[I0(r0)K1(R0

∗) + I1(R0
∗)K0(r0)]

[ 1
hn(r0, r)

+ rn
0
rn−1 + (R0

∗)
2nr−n−1

(R0
∗)2n + r2n

0

+ n(R0
∗)

n rn−1 − r2n
0 r−n−1

(R0
∗)2n + r2n

0

(In(R0
∗)Kn(r0) − In(r0)Kn(R0

∗))
]}
. (3.63)

Based on the properties of the modified Bessel functions In(r) and Kn(r), the righthand side of (3.63)
is less than Q(n)a0

n(t) when r0 ≤ r < R0
∗. Here, Q(n) denotes a polynomial function of n. Similar

estimates can be established for u(2)
n and u(3)

n by (3.60) and (3.61).

Lemma 3.2. Consider the elliptic problem

− ∆ω(x, t) +
n2

|x|2
ω(x, t) = b(x, t), x ∈ ΩR, (3.64)
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∂n⃗ω
∣∣∣
|x|=r0
= 0, ω

∣∣∣
|x|=R
= 0, (3.65)

where ΩR =
{
x ∈ R2 : r0 < |x| < R

}
. If b(x, t) = b(|x|, t) and b(·, t) ∈ L2(ΩR), then the problem (3.64)

and (3.65) admits a unique solution ω in H2(ΩR) with estimates

∥ω(·, t)∥H2(ΩR) ≤ C
( ∫ R

r0

|b(r, t)|2rdr
)1/2

; (3.66)

∥∥∥∂ν⃗ω(·, t)
∥∥∥

L∞(∂BR)
≤ C

( ∫ R

r0

|b(r, t)|2rdr
)1/2

, (3.67)

where the constant C in (3.66) and (3.67) is independent of n.

The lemma can be proven by combining the proofs of [16, Lemma 4.6] and [17, Lemma 3.2]. The
details are omitted here.

Lemma 3.2 ensures the existence and uniqueness of u(k)
n in H2(Ω∗) for k = 1, 2, 3. Furthermore,

there holds ∣∣∣∣∣∂u(1)
n

∂r
(R0
∗, t)

∣∣∣∣∣ + ∣∣∣∣∣∂u(2)
n

∂r
(R0
∗, t)

∣∣∣∣∣ + ∣∣∣∣∣∂u(3)
n

∂r
(R0
∗, t)

∣∣∣∣∣ ≤ Ce−δt. (3.68)

Obviously, the solution u(4)
n to the problem (3.62) has the form:

u(4)
n (r, t) = C5(t)rn +C6(t)r−n, (3.69)

where C5(t) and C6(t) are determined by the boundary conditions in (3.62). Using (2.10), (3.41), (3.56),
(3.57) and the boundary conditions in (3.52), we get

C5(t) =
a1

n(t)
(R0
∗)2n + r2n

0

{ µσ̄hn(r0,R0
∗)

R0
∗[I0(r0)K1(R0

∗) + I1(R0
∗)K0(r0)]

[rn
0

n
+ (R0

∗)
n(Kn(r0)In(R0

∗)

− In(r0)Kn(R0
∗))

]
+ γ(n2 − 1)(R0

∗)
n−2

}
+ H1(r0,R0

∗,R
1
∗)a

0
n(t), (3.70)

C6(t) =
a1

n(t)rn
0(R0

∗)
n

(R0
∗)2n + r2n

0

{ µσ̄hn(r0,R0
∗)

R0
∗[I0(r0)K1(R0

∗) + I1(R0
∗)K0(r0)]

[
−

(R0
∗)

n

n
+ rn

0(Kn(r0)In(R0
∗)

− In(r0)Kn(R0
∗))

]
+
γ(n2 − 1)rn

0

(R0
∗)2

}
+ H2(r0,R0

∗,R
1
∗)a

0
n(t), (3.71)

where H1, H2 are functions of r0, R0
∗ and R1

∗.
Now, since

E1
n(r, t) = η1

n − µA
1
n = u(1)

n + u(2)
n + u(3)

n + u(4)
n − µA

1
n,

we derive

∂E1
n

∂r
(R0
∗, t) =

∂u(1)
n

∂r
(R0
∗, t) +

∂u(2)
n

∂r
(R0
∗, t) +

∂u(3)
n

∂r
(R0
∗, t) +

∂u(4)
n

∂r
(R0
∗, t) − µ

∂A1
n

∂r
(R0
∗, t). (3.72)

By (3.33), (3.57) and (3.69)–(3.72), we obtain from (3.54) that

da1
n(t)
dt
= −
∂2 p0

∗

∂r2 (R0
∗)a

1
n(t) −

∂3 p0
∗

∂r3 (R0
∗)R

1
∗a

0
n(t) −

∂2 p1
∗

∂r2 (R0
∗)a

0
n(t) −

∂2E0
n

∂r2 (R0
∗, t)R

1
∗ −
∂E1

n

∂r
(R0
∗, t)
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=a1
n(t)

{ µσ̄hn(r0,R0
∗)

I0(r0)K1(R0
∗) + I1(R0

∗)K0(r0)

[ n
(R0
∗)2

(R0
∗)

2n − r2n
0

(R0
∗)2n + r2n

0

(In(r0)Kn(R0
∗) − In(R0

∗)Kn(r0))

+
2r0(I1(r0)K1(R0

∗) − I1(R0
∗)K1(r0))

(R0
∗)2 − r2

0

1
hn(r0,R0

∗)
−

2rn
0(R0

∗)
n−2

(R0
∗)2n + r2n

0

]
−
γn(n2 − 1)

(R0
∗)3

(R0
∗)

2n − r2n
0

(R0
∗)2n + r2n

0

}
+ H̃(n, r0,R0

∗,R
1
∗)a

0
n(t)

−
∂u(1)

n

∂r
(R0
∗, t) −

∂u(2)
n

∂r
(R0
∗, t) −

∂u(3)
n

∂r
(R0
∗, t)

=a1
n(t)Un(r0,R0

∗) −
∂u(1)

n

∂r
(R0
∗, t) −

∂u(2)
n

∂r
(R0
∗, t) −

∂u(3)
n

∂r
(R0
∗, t) + H̃(n, r0,R0

∗,R
1
∗)a

0
n(t),

where H̃ is a known function of n, r0, R0
∗, R1

∗ and satisfies

|H̃(n, r0,R0
∗,R

1
∗)| ≤ C. (3.73)

Thus, using Lemma 3.1, (3.68) and (3.73) gives∣∣∣∣∣da1
n(t)
dt
− a1

n(t)Un(r0,R0
∗)
∣∣∣∣∣

≤|H̃(n, r0,R0
∗,R

1
∗)a

0
n(t)| +

∣∣∣∣∣∂u(1)
n

∂r
(R0
∗, t)

∣∣∣∣∣ + ∣∣∣∣∣∂u(2)
n

∂r
(R0
∗, t)

∣∣∣∣∣ + ∣∣∣∣∣∂u(3)
n

∂r
(R0
∗, t)

∣∣∣∣∣
≤Ce−δt. (3.74)

In addition, for n ≥ 0, Lemma 3.1 implies

−Un(r0,R0
∗) > δ > 0.

Therefore, applying [16, Lemma 4.7] to (3.74) yields

|a1
n(t)| ≤ Ce−δt, t > 0, (3.75)

i.e., a1
n(t) decays exponentially as t → ∞. Noticing that bn(t) and an(t) have the same asymptotic

behavior, we also have

|b0
n(t)| + |b1

n(t)| ≤ Ce−δt, t > 0. (3.76)

Proof of Theorem 1.2 The desired result (1.14) follows from Lemma 3.1, (3.75) and (3.76). The
proof is complete.

Remark 3.2. The results on tumor cord without time delays in [14] show that the radially symmetric
stationary solution is asymptotically stable under nonradially symmetric perturbations. Here, our
Theorem 1.2 says that such asymptotic stability does not be affected by small time delay.
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4. Conclusions

In this paper, we have investigated the effects of a time delay in cell proliferation on the growth
of tumor cords, where the domain is a bounded subset in R2 and its boundary consists of two disjoint
closed curves, one fixed and the other moving and a priori unknown. The existence, uniqueness and
linear stability of the radially symmetric stationary solution were studied.

Here are some interesting findings. 1) Adding the time delay would not change the stability of the
radially symmetric stationary solution when compared with the same system without delay [14], but
adding the time delay would result in a larger stationary tumor. The bigger the tumor growth intensity
µ is, the greater impact that time delay has on the size of the stationary tumor. 2) By the result of [16],
we know that for tumor spheroids with the same time delay, there exists a threshold µ∗ > 0 for the
tumor aggressiveness constant µ such that only for µ < µ∗, the radially symmetric stationary solution
is linearly stable under non-radial perturbations. For tumor cords, however, from Theorem 1.2 we saw
that the radially symmetric stationary solution is always linearly stable, regardless of the value of µ. It
showed that there is an essential difference between tumor cords and tumor spheroids with the same
time delay.

We think that the linear stability analysis for the full system without quasi-steady state simplifica-
tion, i.e., c > 0, may be very challenging, which we expect to solve in future work.
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