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Abstract: With the growing number of user-side resources connected to the distribution system, an 
occasional imbalance between the distribution side and the user side arises, making short-term power 
load forecasting technology crucial for addressing this issue. To strengthen the capability of load multi-
feature extraction and improve the accuracy of electric load forecasting, we have constructed a novel 
BILSTM-SimAM network model. First, the entirely non-recursive Variational Mode Decomposition 
(VMD) signal processing technique is applied to decompose the raw data into Intrinsic Mode Functions 
(IMF) with significant regularity. This effectively reduces noise in the load sequence and preserves 
high-frequency data features, making the data more suitable for subsequent feature extraction. Second, 
a convolutional neural network (CNN) mode incorporates Dropout function to prevent model 
overfitting, this improves recognition accuracy and accelerates convergence. Finally, the model 
combines a Bidirectional Long Short-Term Memory (BILSTM) network with a simple parameter-free 
attention mechanism (SimAM). This combination allows for the extraction of multi-feature from 
the load data while emphasizing the feature information of key historical time points, further 
enhancing the model’s prediction accuracy. The results indicate that the R2 of the BILSTM-SimAM 
algorithm model reaches 97.8%, surpassing mainstream models such as Transformer, MLP, and 
Prophet by 2.0%, 2.7%, and 3.6%, respectively. Additionally, the remaining error metrics also show a 
reduction, confirming the validity and feasibility of the method proposed. 
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1. Introduction  

Electricity has powered a global technological revolution and transformed people’s lives, the 
stable operation of the electrical system holds significant importance for the orderly development of 
the social economy [1]. Short-term load forecasting [2,3] is important to maintain stable electrical 
system operation. It provides a strong foundation for power dispatch and is crucial for maintaining the 
balance between load supply and demand within the power grid [4]. Short-term load forecasting 
accuracy is greatly challenged by the diversity and complexity of influencing factors, such as 
meteorological factors [5], geographic factors [6], electricity prices [7,8], holidays [9], and more. This 
challenge arises from the high volatility and randomness [10,11] of short-term load sequences. 
Consequently, accurate electricity load forecasting is essential for the effective and smooth operation 
of the power system. There is already a wide variety of load forecasting techniques, which can be 
broadly categorized based on their level of development. 

Prediction techniques based on mathematical models fall under the first group. Examples include 
the use of the Time series method [12], Regression analysis [13], Kalman filter [14], Exponential 
smoothing [15], Trend extrapolation [16], Singular spectrum analysis [17], and others. The benefit of 
these approaches is that the models can be built quickly and predictively, but they have poor 
performance when faced with nonlinear, stochastic load sequences and high smoothness requirements. 
Vlahović et al. [18] proposed a trend extrapolation approach to anticipate the load on the power system. 
This method has the benefit of using fewer load data samples, but it also has the drawback of increasing 
inaccuracy when the load volatility is high. Lekshmi et al. [19] proposed the use of an auto regressive 
moving average (ARMA) model in the time series method for load forecasting, with ambient 
temperature as an influencing factor. Although the forecasting accuracy has improved to some extent, 
as indicated by the reduced volume of load data required for modeling and the high forecasting 
accuracy for smooth data and forecasting, the majority of load sequences in the real world are not 
smooth, leaving room for improvement. 

The second group consists of conventional machine learning prediction techniques. The most 
important ones include Support vector machines (SVM) [20], K-nearest neighbors [21], Decision 
trees [22], Random forests [23], Deep convolutional neural network (DCNN) [24], and others. Actual 
load data exhibits nonlinear and non-smooth characteristics [25], and the structure of machine learning 
prediction models has limitations, making it challenging to achieve the desired prediction accuracy, 
despite the many advantages of machine learning prediction methods over traditional ones. Sun et 
al. [26] employed a multi-objective regression model using K-means and KNN. They utilized the 
KNN algorithm to weigh the prediction points before applying various linear regression techniques for 
modeling. While regression analysis modeling is quick and easy to use on smooth load data, its 
predictive impact is less than ideal and cannot be generalized. Dong et al. [27] proposed a short-term 
electricity load forecasting method based on K-means and SVM. They employed the K-means 
clustering method to categorize seasonal load data according to temperature characteristics as input 
data to explore the effect of temperature on seasonal loads. Subsequently, they trained the SVM 
forecasting model, which improved accuracy and runtime to some extent. However, as the SVM relies 
on quadratic programming to solve support vectors, its predictive performance tends to diminish when 
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dealing with a large number of nonlinear prediction samples, which is not conducive to accurate prediction. 
The combined prediction approach based on deep learning falls under the third category. Actual 

load data is often accompanied by irregular vacancies and noise interference, limiting the prediction 
accuracy of a single machine learning method when data volume is insufficient, even though both 
mathematical modeling methods and machine learning methods have their advantages [28]. 
Combination prediction approaches [29,30] have been proposed to enhance forecast accuracy. Zeng et 
al. [31] proposed a load forecasting method based on empirical mode decomposition (EMD) and long- 
and short-term time-series network (LSTNet). The results indicated that the hybrid method is beneficial 
for improving forecasting accuracy. However, EMD-like algorithms often encounter issues such as 
boundary effects, modal overlap, and sensitivity to noise, potentially impacting the final prediction 
results. As demonstrated in the experiments from [32], VMD outperforms EMD-like algorithms in 
decomposition. VMD reduces prediction difficulty and ensures high accuracy by decomposing the 
original sequence into linear and nonlinear components. Although Chen et al. [33] and Wan et al. [34] 
combined CNNs with GRUs and LSTMs, respectively. Their prediction performance significantly 
improved compared to individual GRUs and LSTMs. Later, ordinary attention mechanisms were 
incorporated into the networks to enhance the influence of important information by assigning different 
weights, leading to improved accuracy in load prediction. However, directly combining multiple 
networks can have certain disadvantages, increasing the likelihood of gradient vanishing, gradient 
explosion, and overfitting in neural networks. According to the experimental results from [35], 
Dropout has a positive effect on reducing the time complexity of neural networks, enhancing prediction 
accuracy, and improving the robustness of short-term load forecasting models. Ji et al. [36] proposed 
a Variational Mode Decomposition (VMD) improved whale optimization algorithm (IWOA) wavelet 
temporal convolutional network (WTCN) bidirectional gated recurrent unit (BIGRU) attention and 
Categorical Boosting (CatBoost) model, which achieves good prediction accuracy. However, its 
complexity and lack of consideration for the holiday factor diminish its practical applicability. Yao et 
al. [37] proposed a CNN-DBILSTM-Attention-based short-term electricity load prediction. The 
attention mechanism allows the neural network to focus on specific features through probability 
allocation, thereby improving prediction accuracy. Nevertheless, the ordinary attention mechanism 
itself has too many parameters. In combination with CNN and DBILSTM, this results in a significant 
increase in training parameters, making the entire model overly complex. This complexity is not 
conducive to improving prediction efficiency. Therefore, the careful selection of appropriate attention 
mechanisms is crucial to enhance the operational efficiency of complex models. 

Building on the previous research results, we further analyze the relationship between the 
volatility and randomness of power load data and multi-features, and subsequently propose an 
improved multi-feature-based short-term forecasting algorithm, BILSTM-SimAM, for power load 
forecasting. To improve the stability of load forecasting, the load sequence is chosen to be partitioned 
into Intrinsic Mode Functions (IMF) using Variational Mode Decomposition [38] (VMD), thereby 
reducing the non-stationarity and complexity of the load signal. Next, we leverage the CNN model, 
augmented with Dropout [39] technology, to extract the key factors influencing load fluctuations, 
leading to more reliable prediction performance. Further refinement is achieved through load 
prediction using the BILSTM [40] neural network in combination with the SimAM [41] attention 
mechanism, resulting in improved predictive accuracy. The major contributions of this paper are as 
follows: 1) Through the utilization of Variational Mode Decomposition (VMD) in data processing, the 
original load data is separated into components with distinct frequencies, hence improving the 
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regularity and consistency of the data. This method is beneficial in the context of multi-feature 
prediction challenges. 2) The BILSTM-SimAM model framework is presented, demonstrating superior 
accuracy in power load forecasting while utilizing a small number of model parameters. This method 
can be readily applied to various power system equipment with adaptability and versatility. 3) The 
analysis of various factors that influence loads, such as holidays, helps address the discrepancy 
between the actual distribution side and the client side. This factor is crucial in guaranteeing the reliable 
functioning of urban electricity networks. 

2. Short-term electric load forecasting algorithm 

2.1. Implementation process 
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Figure 1. BILSTM-SimAM implementation process. 
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We propose an improved short-term forecasting model for electricity load base on multi-feature, 
BILSTM-SimAM, which is mainly divided into four parts: 
• VMD for original load data decomposition; 
• Dropout-CNN for feature extraction; 
• Integration of BILSTM network and SimAM mechanism; 
• Convergence of load forecasting results. 

The following subsections describe the network modeling and improvement methods, 
respectively, and the implementation process is shown in Figure 1. 

2.2. VMD for original load data decomposition 

The time series prediction data utilized pertain to residential electricity demands, which 
incorporate external elements such as temperature, humidity, wind, and holidays. However, a challenge 
arises with many external components, such as climatic features, which exhibit low internal regularity. 
The core idea of the algorithm is to construct and solve the optimal solution of the variational problem 
in the following steps: 

Establish the constrained variational problem. Assuming that the original signal is decomposed 
into K  modal components with different frequency characteristics, the objective is to minimize the 
sum of the estimated bandwidths of each mode while ensuring that the sum of all modes equals that of 
the original signal. The constrained variational expression formula is established as follows:  

                      
𝑚𝑖𝑛{௨ೖ},{ఠೖ}{∑ ∥ ∂௧௄௞ୀଵ [(𝛿(𝑡) + ௝గ௧) ∗ 𝑢௞(𝑡)]eି୨ఠೖ௧ ∥ଶଶ}

 s.t. ∑ 𝑢௞௄௞ୀଵ = 𝑓(𝑡)  (1) 

In Eq (1), where {𝑈௄} represents the 𝑘 modal component of the signal decomposition; where {𝜔௞} represents the frequency center of the 𝑘 modal component; where 𝛿(𝑡) represents the Dirac 
component; where ∗ represents the convolution operator; 

Solve the constrained variational problem optimally. The Lagrange transform is first performed 
to change the above problem into an unconstrained variational problem to be solved. The calculation 
formula is given as follows:  

 

𝐿({𝑢௞}, {𝜔௞}, 𝜆) = ‖𝑓(𝑡) − ∑ 𝑢௞௄௞ୀଵ (𝑡)‖ଶଶ+ 𝛼 ∑ ቛ𝜕௧ ቂቀ𝛿(𝑡) + ௝గ௧ቁ ∗ 𝑢௞(𝑡)ቃ 𝑒ି௝ఠೖ௧ቛଶଶ௄௞ୀଵ+ ⟨𝜆(𝑡), 𝑓(𝑡) − ∑ 𝑢௞௄௞ୀଵ (𝑡)⟩  (2) 

In Eq (2), where represents the quadratic penalty term factor, where 𝜆 represents the Lagrange 
multiplier operator; 

In order to find the optimal solution of the problem, the alternating direction multi-plier 
method is used to update each modal component and its center frequency. The calculation formula 
is given as follows: 
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⎩⎪⎨
⎪⎧𝑢ො௞௡ାଵ(𝜔) = ௙መ(ఠ)ି∑ ௨ෝ೔೔ಯೖ (ఠ)ାഊ෡(ഘ)మଵାଶఈ(ఠିఠೖ)మ𝜆መ௡ାଵ(𝜔) = 𝜆መ௡(𝜔) + 𝜏൫𝑓መ(𝜔) − ∑ 𝑢ො௞௡ାଵ௄௞ୀଵ (𝜔)൯𝜔௞௡ାଵ = ׬ ఠ∞బ ห௨ෝೖ೙శభ(ఠ)หమௗఠ׬ ห௨ෝೖ೙శభ(ఠ)หమ∞బ ௗఠ

 (3) 

In Eq (3), where n represents the number of iterations; where 𝜏 represents the up-date parameter; 
where Λ represents the Fourier transform of the corresponding signal. 

It is evident that the variational load data decomposition technique has processed the original load 
data, significantly improving its periodicity and smoothness. This enhancement enables better 
avoidance of the impact of the original load data’s volatility and randomness characteristics on 
load forecasting.  

2.3. Designing Dropout-CNN module for multi-feature extraction 

Electricity load variation is influenced by multiple factors. Extracting features from these 
influencing factors is crucial for load variation prediction. Therefore, a Dropout-CNN module is 
designed to perform multi-feature extraction. CNN, also known as a convolutional neural network, is 
a powerful tool for extracting data features and Dropout makes CNN networks more stable. 
Consequently, Dropout-CNN can effectively extract feature quantities that have a significant impact 
on load variations.  

The majority of CNN consists of the convolutional layer and the pooling layer. The convolutional 
layer employs convolutional kernels to efficiently extract nonlinear local feature from electricity load 
data, while the pooling layer compresses the extracted feature to generate more significant feature 
information, enhancing generalization capability. These features are transformed into vectors before 
being transmitted to the fully connected layer, which primarily maps the features’ space to the sample 
labeling space to enhance network robustness. Finally, the output layer is responsible for data export.  

We chose to utilize the well-known CNN LeNet model, renowned for its typical structure 
comprising 3-layer convolution, 2-layer pooling, and 1-layer complete connection. This model is 
specifically tailored to accommodate the volume and size of the collected data, characterized by its 
simplicity and broad applicability. However, in the actual local multi-feature extraction process of 
LeNet, employing a more complex model for training with relatively limited training data can lead to 
issues, such as an excessively large loss function in the test load data, resulting in overfitting. This 
phenomenon reduces the model’s generalizability, hampering effective predictions. To address these 
challenges, we introduced a Dropout layer, incorporating a random deactivation function, to enhance 
the LeNet model. This modification streamlines training, effectively preventing overfitting and 
improving generalizability. The construction of the Dropout random deactivation function is illustrated 
in Figure 2. 
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Figure 2. Dropout structure. 

The convolutional layer extracts effective nonlinear local feature from the load data, while the 
pooling layer selects the optimal pooling method to compress the extracted feature and generate more 
essential feature information. Additionally, a Dropout function layer is introduced after the pooling 
layer, serving the dual purpose of preventing overfit-ting and improving generalization while reducing 
model complexity. After the LeNet model has extracted and flattened the load data, the inherent 
characteristics of the load data are automatically retrieved and then input into the BILSTM model for 
load prediction. Figure 3 illustrates the basic structure of the Dropout-CNN. 
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Figure 3. Dropout-CNN model structure. 

2.4. Integration of BILSTM network and SimAM mechanism for load forecasting 

LSTM stands for Long Short-Term Memory Neural Network. It is essentially a type of recurrent 
neural network designed to address the limitations of traditional RNN, specifically tailored to handle 
long-term dependencies. LSTM has made significant advancements and finds extensive use in various 
fields such as speech recognition, visual description, natural language processing, and more. Figure 4 
illustrates the LSTM cell structure.  

Multi-featured electric load forecasting is characterized by the requirement of training the 
network to capture the past and future of the input data and to learn the long-term dependencies in the 
data, through the analysis we selected BILSTM neural network for multi-featured electric load 
forecasting. BILSTM, an enhancement of the standard unidirectional LSTM, combines both a forward 
and a backward LSTM layer, both of which influence the output results. While LSTM fully utilizes 
historical load data information to prevent the generation of long-distance dependence situations, 
BILSTM incorporates both forward and backward sequence information inputs, considering past and 
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future information. This approach is conducive to further improving model prediction accuracy. 
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Figure 4. LSTM cell structure. 

The structure of BILSTM is shown in Figure 5. Where, 𝑥ଵ, 𝑥ଶ, . . . , 𝑥௧ denote the corresponding 
input data at each moment Aଵ, A୲, … , A୲, Bଵ,Bଶ...,B୲ denote the corresponding forward and backward 
iterative LSTM hidden states, respectively. 𝑦ଵ, 𝑦ଶ, . . . , 𝑦ଷ denote the corresponding output data. 
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Figure 5. BILSTM neural network structure. 

The forgetting gate determines which information should be forgotten from the cell state C(t-1) at 
time t-1, as depicted in Eq (4). The forgetting gate considers the hidden layer state h(t-1) at time t-1 and 
the input sequence x(t) at time t. It produces an output value between 0 and 1, where 1 signifies the 
retention of complete information and 0 implies complete information discard. The calculation formula 
is as follows: 

 𝑓(௧) = 𝜎൫𝑊௙ ⋅ ൣℎ(௧ିଵ), 𝑥(௧)൧ + 𝑏௙൯ (4) 
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In Eq (4), where f(t) is the oblivious gate state at moment t; Wf and bf are the weight and bias of 
the oblivious gate; and sig is the bipolar sigmoid activation function. 

The input gate reads the input 𝑥(௧) at moment t and determines the information stored in the 
neuron. Then the temporary state 𝐶ሚ(௧) of the memory cell at moment t is generated by the tanh layer. 
Finally, the cell state is then updated to obtain the new cell state 𝐶(௧). The calculation formula is given 
as follows： 

 𝑖(௧) = 𝜎 ቀ𝑊௜ ⋅ ቂℎ(௧ିଵ), 𝑥(௧)ቃ + 𝑏௜ቁ (5) 

 𝐶ሚ(௧) = 𝑡𝑎𝑛ℎ ቀ𝑊௖ ⋅ ቂℎ(௧ିଵ), 𝑥(௧)ቃ + 𝑏௖ቁ (6) 

 𝐶(௧) = 𝑓(௧) ⊗ 𝐶(௧ିଵ) + 𝑖(௧) ⊗ 𝐶ሚ(௧) (7) 

In Eqs (5)–(7), i(t) is the input gate state at moment t, which controls the amount of information 
passed from x(t) to C(t); Wi and bi are the weight and bias of the input gate; Wc and bc are the weight 
matrix and bias term of the cell state; tanh is the hyperbolic tangent activation function; and ⊗ is the 
Hadamard product. 

The output gate selects crucial information from the current state for output. The sigmoid layer 
initially determines which part of the neuron state should be output. Then, the neuron state earmarked 
for output passes through the tanh layer and is multiplied by the output of the sigmoid layer to yield 
the output value h(t), which also serves as the input value for the subsequent hidden layer. The 
calculation formula is as follows: 

 𝑂(௧) = 𝜎 ቀ𝑊ை ⋅ ቂℎ(௧ିଵ), 𝑥(௧)ቃ + 𝑏ைቁ (8) 

 ℎ(௧) = 𝑂(௧) ⊗ 𝑡𝑎𝑛ℎ𝐶(௧) (9) 

In Eqs (8) and (9), where 𝑂(௧) represents the output gate state at moment t; 𝑊ை, 𝑏ை represent the 
weight matrix and bias term of the output gate. 

Temperature, humidity, and wind represent the three types of influencing factors in the original 
load data. In order to mitigate the extent to which the less-correlated wind factor impacts the load, we 
employ the feature generated by the BILSTM hidden layer as inputs to the simple parameter-free 
attention mechanism known as SimAM. SimAM automatically assesses the significance of temporal 
information extracted from the BILSTM hidden layer by comparing it to temporal data extracted from 
the original load dataset. Deep temporal correlations are discovered by utilizing the inherent time-
series properties of the load data to systematically reduce the weights assigned to factors with low 
correlation with actual loads, and focusing attention on the temperature and humidity factors with 
higher correlation, thereby reducing the impact of redundant information on the load prediction results. 
This is achieved by constructing a BILSTM model that integrates the SimAM attention mechanism. 

SimAM is a simple parameter-free attention module, which constructs an energy function based 
on neuroscience theory to identify key neurons. SimAM attention outperforms standard attention 
mechanisms by offering higher performance with fewer parameters. The SimAM algorithm initially 
evaluates the relevance of each neuron. In neuroscience, information-rich neurons often display 
distinct firing patterns compared to surrounding neurons. Moreover, active neurons frequently inhibit 
adjacent neurons, resulting in null-space inhibition. Therefore, neurons with null-space inhibitory 
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effects should be given priority. The following is the energy function used to identify key neurons by 
assessing the linear separability between neurons: 

 𝑒௧(𝑤௧, 𝑏௧, 𝑦, 𝑥௜) = (𝑦௧ − 𝑡̂)ଶ + ଵெିଵ෌ (𝑦଴ − 𝑥ො௜)ଶெିଵ௜ୀଵ  (10) 

In Eq (10), where 𝑡̂ = 𝑤௧𝑡 + 𝑏௧, 𝑥ො௜ = 𝑤௧𝑥௜ + 𝑏௧. 
Minimizing the above equation is equivalent to training the linear separability between neurons 

within the unified channel and other neurons. By employing binary labeling and incorporating 
regularization terms, the final energy function is presented as follows: 

 𝑒௧(𝑤௧, 𝑏௧, 𝑦, 𝑥௜) = ଵெିଵ෌ (−1 − (𝑤௧𝑥௜ + 𝑏௧))ଶெିଵ௜ୀଵ + (1 − (𝑤௧𝑡 + 𝑏௧))ଶ + 𝜆𝑤௧ଶ (11) 

Figure 6 illustrates the non-parametric attention mechanism SimAM module. It is evident that the 
attention mechanism assigns different weights based on the significance of the original data, while also 
considering the feature of various channels. This enables the model to focus more on the feature 
attributes that exert the greatest influence on load prediction. 

X
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Expansion
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Figure 6. Simple attention mechanism. 

3. Results 

3.1. Data processing and correlation analysis 

The experimental data in this paper comes from the Kaggle public dataset Smart Meters in 
London, which includes contains the energy consumption readings for a sample of 5567 London 
Households that took part in the UK Power Networks led Low Carbon London project between 
November 2011 and February 2014. The weather data is sourced from the official weather station, 
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collecting various weather metrics at a sampling period of 1 day, these include maximum temperature, 
dew point temperature, wind speed, pressure, visibility, humidity, moon phase, UV, and cloud cover. 
Additionally, holiday data is incorporated, accounting for important holidays that significantly impact 
residents’ electricity consumption; these include New Years Day, Good Friday, Easter Monday, May 
Day Bank Holiday, Spring Bank Holiday, Summer Bank Holiday, Christmas Day, and Boxing Day. 
The experiment is a short-term load forecast, and the data range is selected from January 1, 2012 to 
December 31, 2013, with a time interval of one day, and the load forecast time scale is divided as 
shown in Table 1. Preprocessing operations must be carried out on the dataset before model training 
can commence, the main steps include outlier handling, screening for correlations, special value 
handling, data expansion, and normalization. 

Table 1. Load forecasting time scale division. 

Load forecasting Ultra-short-term Short-term Mid-term Long-term 
Time scale Within one hour One day to one week January to one year More than one year 

Outlier handling: The load data may contain missing data, unexpected fluctuations, and other 
issues throughout the collection or transmission process due to the characteristics of measurement 
equipment, energy supply restrictions, and other variables. Using raw data directly would introduce 
too many intervening elements that could impact the prediction results. Therefore, we fill in the 
missing and aberrant values with the average values of the relevant time points before and after the 
point, ensuring the correctness and completeness of the data. 

Screening for correlations: Included in the dataset are meteorological variables such as maximum 
temperature, dew point temperature, wind speed, pressure, visibility, humidity, moon phase, UV, and 
cloud cover. Utilizing the Pearson correlation coefficient, we computed the correlation coefficient 
matrix between each weather element and the load value. The analysis revealed that the load value is 
of particular interest due to its strong positive correlation with humidity and a significant negative 
correlation with temperature. The depth of color in the correlation matrix visually represents the degree 
of association. Pressure and moon phases exhibited the least correlation with energy consumption, 
leading to their exclusion from further analysis. While wind speed demonstrates a lower correlation 
with the load value, it is not significantly correlated with other factors, making it a viable variable for 
consideration. Conversely, dew point temperature and UV are highly correlated with temperature, 
leading to their exclusion. Similarly, cloud cover and visibility exhibit multicollinearity with humidity, 
resulting in their exclusion from further analysis. Figure 7 illustrates the correlation coefficient values 
obtained from this analysis. 

Special value processing: In general, when a regular family has a holiday, the time spent at home 
is always longer than on a workday, and energy consumption increases. Therefore, the holiday 
becomes a particular node in the forecast process. Time series prediction algorithms that do not take 
into account holiday information will produce poor prediction results at these nodes, lowering the 
model’s overall forecast accuracy. Hence, the dates corresponding to holidays in the dataset are 
explicitly eliminated. Table 2 displays some of the holiday statistics. 
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Figure 7. Weather factor correlation coefficient values. 

Table 2. Data on selected holidays. 

First year Holidays Second year Holidays 

01/02 New Years Day  01/01 New Years Day 
04/06 Good Friday 03/29 Good Friday 
04/09 Easter Monday 04/01 Easter Monday 
05/07 May Day Bank Holiday 05/06 May Day Bank Holiday 
06/04 Spring Bank Holiday 05/27 Spring Bank Holiday 
08/27 Summer Bank Holiday 08/26 Summer Bank Holiday 
12/25 Christmas Day 12/25 Christmas Day 
12/26 Boxing Day 12/26 Boxing Day 

Data expansion: After the preliminary experimental analysis, it was found that relying only on a 
small amount of cyclical data from January 1, 2012, to December 31, 2013, in the dataset does not 
yield good prediction results. Therefore, we decided to use generative adversarial networks (GAN) to 
expand the original data volume by learning the stochastic statistical laws implicit in the original real 
load data. This approach allows us to generate corresponding period data, ensuring that the model can 
fully extract the load characteristics and thereby improving the generalization ability of the model. 
Taking the original data as the benchmark, the experimental data date is expanded to October 10, 2023, 
increasing the dataset from the original 714 data to 4284 data. The distribution of the original and 
generated data is shown in Figure 8. 
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Figure 8. Before and after data expansion. 

Processing for normalization: The normalization procedure serves to accelerate the convergence 
rate of the loss function, prevent gradient explosions, and improve computational accuracy. 
Normalizing the data is essential because, in real load forecasting, the model’s input typically consists 
of data with varying scales. Removing the influence of different scales on the prediction results 
enhances both the model’s accuracy and efficiency. Data normalization is achieved using the Min-Max 
method, scaling the data to the range [0, 1], and the calculation formula is as follows: 

 𝑋௜∗ = ௑೔ି௑min௑maxି௑min (12) 

In Eq (12), 𝑋௜  represents the original measured data of the 𝑖 sampling point; 𝑋௜∗ represents the 
value after normalization of 𝑋௜; 𝑋max and 𝑋min represent the maximum and minimum values in the 
measured data. 

3.2. VMD data preprocessing 

When the decomposition layer K value of VMD is too little, data under-decomposition occurs, 
decreasing prediction accuracy, and when the K value is too big, modal repetition occurs, introducing 
noise. Therefore, the center frequency method of Optimal Variational Mode Decomposition (OVMD) 
is used to determine the optimal number of decomposition layers K. The most suitable penalty factor, 
alpha, is determined using the Particle Swarm Optimization (PSO) method, while the remaining 
parameters are set to their default values. Table 3 lists the optimal values for each parameter of VMD. 
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Table 3. VMD parameter settings. 

VMD K (Modal number)  Alpha (Bandwidth constraint) 
Values 5  1864 

For regional electricity loads, meteorological parameters such as temperature and humidity 
influence both the magnitude and timing of the daily load curve peak, introducing uncertainty into the 
load data. When we analyze the five modal components obtained through VMD decomposition, IMF1 
and IMF2 exhibit relatively low-frequency volatility but demonstrate noticeable periodicity. This 
periodicity can partially reflect the load data in cyclic patterns and is advantageous for forecasting. On 
the other hand, IMF3 to IMF5 display high-frequency and relatively abrupt changes, reflecting the 
stochastic nature of the load data to some extent, and they can also be valuable for forecasting purposes. 
Among them, the raw data components and the results of each modal decomposition have been 
demonstrated in Figure 1. However, the residual component, characterized by low-frequency volatility, 
lacks visible periodicity and can be safely disregarded. The time series load forecast data selected for 
this paper is displayed in Figure 9 after undergoing VMD. 

 

Figure 9. Comparison of data waveforms before and after VMD processing. 

3.3. Parameterization and evaluation metrics 

Since deep learning inherently includes some randomness, this experiment employs multiple 
cross-validations to ensure the results are more accurate and reliable. The final experimental results 
are obtained by averaging the outcomes of 10 load prediction runs, which helps mitigate the impact of 
any particular outlier experiment. The model takes an input window of 24 days, predicts a single step 
for 1 day, is trained on data from day 0 to 3800, and predicts the range from day 3800 to 4284. The 
neural network model for Dropout-CNN is configured with 64 convolutional kernels, 3 convolutional 
layers, 2 pooling layers, 1 fully connected layer, a Dropout function layer with a parameter of 0.2, and 
the ReLU activation function. For the BILSTM model, both forward and reverse neuron counts are set 
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to 12, the optimizer used is RMSprop, the error evaluation employs the mean square error loss function, 
there are 300 training cycles, and a total of 256 training batches. To ensure fair comparison experiments 
and evaluate the learning performance of the proposed model, this study maintains consistent model 
parameters with other comparable models in Table 4. 

Table 4. Model parameter settings. 

The dataset is partitioned into training, testing, and validation sets with a distribution ratio of 7:2:1. 
The neural network model undergoes training and validation, followed by predictions using the 
validation set. Evaluation of the model relies on the coefficient of determination (R2), Mean Absolute 
Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE) as 
indices. R2, which falls within the range of 0 to 1, quantifies the percentage of variance in the dependent 
variable that can be attributed to the independent variable. A value closer to 1 signifies a stronger 
regression fit, indicating a closer relationship between the regression sum of squares and the total sum 
of squares, a better alignment of the regression line with the data, and a tighter association between the 
variations in y and x. For this reason, R2 is often referred to as the “Goodness of Fit” statistic. 
Furthermore, smaller values of MAE, RMSE, and MAPE suggest reduced errors and improved model 
accuracy. The following formulas are used for calculation: 

 𝑅ଶ = 1 − ∑(௬೔ି௬ො೔)మ∑(௬೔ି௬̄)మ  (13) 

 𝑒୑୅୉ = ଵ௡∑ |𝑦ො௜ − 𝑦௜|௡௜ୀଵ  (14) 

 𝑒ୖ୑ୗ୉ = ට෌ (𝑦௜ − 𝑦ො௜)ଶ௡௜ୀଵ  (15) 

 𝑒୑୅୔୉ = ଵ଴଴%௡ ෍ | ௬ො೔ି௬೔௬೔ |௡௜ୀଵ  (16) 

In Eqs (13)–(16), where 𝑦௜ represents the true value, 𝑦ො௜ represents the predicted value, where 𝑦̄ 
represents the sample mean; n represents the total number of test samples. 

3.4. Ablation experiment 

In order to verify the superiority of the BILSTM-SimAM algorithm proposed in load forecasting, 
the test set sampling points used included 3800 to 4284 for a total of 484 days, this paper adopts the 
ablation experimental method model with variables including: 

Name Parameters Name Parameters 
Filters 64 Loss MSE 
Kernel_size  3 Epochs 300 
Pool_size 
Strides 

2 
1 

Batcha_size 
BILSTM (forward) 

256 
12 

Activation 
Dropout 

RELU 
0.2 

BILSTM (backward) 
BILSTM (l2) 

12 
0.01 

RMSprop 0.01 SimAM (λ) 0.0001 
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• Original BILSTM: BILSTM; 
• BILSTM-1: CNN+BILSTM+Attention; 
• BILSTM-2: Dropout-CNN+BILSTM+Attention; 
• BILSTM-3: VMD+Dropout-CNN+BILSTM+Attention; 
• BILSTM-SimAM: VMD+Dropout-CNN+BILSTM+SimAM. 

Table 5. Comparison of evaluation indexes of ablation experimental. 

Method R2 MAE RMSE MAPE
Original BILSTM 
(BILSTM) 

0.927 0.393 0.469 0.042 

BILSTM-1 
(CNN+BILSTM+Attention) 

0.935 0.355 0.441 0.029 

BILSTM-2 
(Dropout-CNN+BILSTM+Attention) 

0.948 0.332 0.329 0.021 

BILSTM-3 
(VMD+Dropout-CNN+BILSTM+Attention) 

0.965 0.243 0.302 0.018 

BILSTM-SimAM 
(VMD+Dropout-CNN+BILSTM+SimAM) 

0.978 0.192 0.245 0.016 

 

Figure 10. Decomposition predicted effect of ablation experiment. 

The R2 coefficient of the original BILSTM model is 92.7%. BILSTM-1 incorporates the traditional 
CNN model and the Attention mechanism, resulting in an improved R2 of 93.5%. BILSTM-2 introduces 
the Dropout function to the CNN model, leading to an R2 of 94.8% and highlighting the positive impact 
of Dropout on network accuracy. BILSTM-3 achieves an R2 of 96.5% by utilizing VMD for modal 
decomposition of the original data. BILSTM-SimAM enhances the traditional Attention mechanism 
with SimAM, combining VMD, Dropout-CNN, and SimAM, which significantly improves accuracy, 
resulting in an R2 of 97.8%, a 5.1% increase over the original BILSTM. Table 5 shows the results of 
the ablation experiment. 
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To provide a clearer demonstration of the improved model is efficiency, we tested it on the test 
dataset. The results, depicted in Figure 10, show that the prediction curve generated by the BILSTM-
SimAM algorithm closely aligns with the actual value curve. This verification confirms the 
effectiveness and superiority of the algorithm proposed. 

3.5. Comparison experiment 

Figure 11 illustrates that the prediction curve generated by our proposed short-term load 
forecasting algorithm closely resembles the actual value curve. This demonstrates the superior 
prediction performance of the BILSTM-SimAM algorithm when compared to single models such as 
CNN-LSTM, CNN-DBILSTM-Attention, Prophet, MLP, and Transformer. 

Table 6. Comparison of evaluation indexes of contrasting experimental. 

 

Figure 11. Comparison of experimental model prediction effects. 

The fitting impact of the composite neural network model put forward in comparison to the 
Transformer, MLP, Prophet, CNN-DBILSTM-Attention, and CNN-LSTM models is then verified by 
a set of comparative tests. Table 6 displays the prediction results, comparing the predicted values to the 
actual values for each model. Compared with the baseline algorithm, the model presented demonstrates 
significant improvements: I average R2 increases by 2.0%, 2.7%, 3.6%, 4.3%, and 5.5%, respectively; 
the average MAE decreases by 6.4%, 10.6%, 14.4%, 15.9%, and 19.3%; the average RMSE decreases 

Method R2 MAE RMSE MAPE
CNN-LSTM 
CNN-DBILSTM-Attention 
Prophet 
MLP 
Transformer 

0.923 
0.935 
0.942 
0.951 
0.958 

0.385 
0.351 
0.336 
0.298 
0.256 

0.467 
0.435 
0.412 
0.378 
0.336 

0.046 
0.032 
0.028 
0.024 
0.023 

BILSTM-SimAM 0.978 0.192 0.245 0.016 
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by 9.1%, 13.3%, 16.7%, 19.0%, and 22.2%; and the average MAPE decreases by 0.7%, 0.8%, 1.2%, 1.6%, 
and 3.0%. 

TIe improved algorithm BILSTM-SimAM proposed shows a significant improvement in R2 and 
a considerable decrease in MAE, RMSE, and MAPE. These results indicate that the model prediction 
performance is significantly enhanced, confirming the validity of the BILSTM-SimAM algorithm for 
short-term electric electricity load forecasting. 

4. Discussion 

In conclusion, our proposed algorithm takes into account multiple features influencing load 
changes on the customer side and demonstrates promising results in short-term electricity load 
forecasting. Notably, no other mainstream algorithms have achieved comparable accuracy based on 
the same experimental setup. Due to limitations in the dataset, we were unable to explore holiday load 
forecasting or study the influence of economic factors on household electricity load. In our future 
research, we plan to incorporate electricity prices as one of the features affecting load forecasting and 
investigate holiday load forecasting to achieve more accurate predictions. Additionally, the algorithms 
in this paper will exhibit excellent applicability in the context of a smart city energy internet. 

5. Conclusions 

In this paper, we propose an improved short-term forecasting algorithm for electric load based on 
multiple features. To address the volatility and randomness of the time load sequence, the original load 
sequence is first divided into IMF modal components with smoother features using VMD. Each IMF 
modal component is then input into the improved CNN network, which utilizes the stochastic 
deactivation function for multi-feature extraction. Finally, the feature change patterns are learned using 
the BILSTM model, incorporating the simple parameter-free attention mechanism. The validation and 
analysis of real load datasets demonstrate that the BILSTM-SimAM combined network proposed in 
this paper outperforms the BILSTM single model. It results in reductions of 20.1%, 22.2%, and 2.6% 
in the MAE, RMSE, and MAPE error evaluation indices, respectively, and an increase of 5.1% in the 
R2 coefficient of determination. This confirms the validity and practicality of the model presented in 
this article, which can serve as a guide for load forecasting on the energy consumption side of the 
intelligent integrated energy internet systems, and provides a basis for the construction of smart cities. 

Use of AI tools declaration  

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article. 

Acknowledgments  

This research was funded by the Natural Science Foundation of Sichuan, grant number 
2023NSFSC1987, supported by the Opening Fund of Artificial Intelligence Key Laboratory of Sichuan 
Province (2023RYY07), the Opening Fund of Power Internet of Things Key Laboratory of Sichuan 
Province (PIT-F-202303), and the Sichuan University of Science and Engineering Postgraduate 
Innovation Fund Project, grant number Y2023302. 



2341 

Mathematical Biosciences and Engineering  Volume 21, Issue 2, 2323–2343. 

Conflict of interest 

The authors declare that there are no conflicts of interest. 

References 

1. I. S. Jahan, V. Snasel, S. Misak, Intelligent systems for power load forecasting: A study review, 
Energies, 13 (2020). https://doi.org/10.3390/en13226105 

2. A. K. Singh, S. Khatoon, M. Muazzam, D. Chaturvedi, Load forecasting techniques and 
methodologies: A review, in 2012 2nd International Conference on Power, Control and 
Embedded Systems, (2012), 1–10. https://doi.org/ 10.1109/ICPCES.2012.6508132 

3. J. Zhu, H. Dong, W. Zheng, S. Li, Y. Huang, L. Xi, Review and prospect of data-driven techniques 
for load forecasting in integrated energy systems, Appl. Energy, 321 (2022). 
https://doi.org/10.1016/j.apenergy.2022.119269 

4. N. Ahmad, Y. Ghadi, M. Adnan, M. Ali, Load forecasting techniques for power system: Research 
challenges and survey, IEEE Access, 10 (2022) 71054–71090. 
https://doi.org/10.1109/access.2022.3187839 

5. R. Jiao, S. Wang, T. Zhang, H. Lu, H. He, B. B. Gupta, Adaptive feature selection and construction 
for day-ahead load forecasting use deep learning method, IEEE Trans. Netw. Serv. Manage., 18 
(2021), 4019–4029. https://doi.org/10.1109/tnsm.2021.3110577 

6. H. L. Willis, J. E. Northcote-Green, Spatial electric load forecasting: A tutorial review, Proc. 
IEEE, 71 (1983), 232–253. https://doi.org/10.1109/tnsm.2021.3110577 

7. V. Azarova, D. Engel, C. Ferner, A. Kollmann, J. Reichl, Exploring the impact of network tariffs 
on household electricity expenditures using load profiles and socio-economic characteristics, Nat. 
Energy, 3 (2018), 317–325. https://doi.org/10.1038/s41560-018-0105-4 

8. A. Ghasemi, H. Shayeghi, M. Moradzadeh, M. Nooshyar, A novel hybrid algorithm for electricity 
price and load forecasting in smart grids with demand-side management, Appl. Energy, 177 (2016), 
40–59. https://doi.org/10.1016/j.apenergy.2016.05.083 

9. F. Ziel, Modeling public holidays in load forecasting: A German case study, J. Mod. Power Syst. 
Clean Energy, 6 (2018), 191–207. https://doi.org/10.1007/s40565-018-0385-5 

10. F. M. Butt, L. Hussain, A. Mahmood, K. J. Lone, Artificial Intelligence based accurately load 
forecasting system to forecast short and medium-term load demands, Math. Biosci. Eng., 18 
(2020), 400–425. https://doi.org/10.3934/mbe.2021022 

11. S. R. Khuntia, J. L. Rueda, M. A. van Der Meijden, Forecasting the load of electrical power 
systems in mid- and long-term horizons: A review, IET Gener. Transm. Distrib., 10 (2016), 3971–
3977. https://doi.org/10.1049/iet-gtd.2016.0340 

12. M. T. Hagan, S. M. Behr, The time series approach to short term load forecasting, IEEE Trans. 
Power Syst., 2 (1987), 785–791. https://doi.org/10.1109/TPWRS.1987.4335210 

13. T. Hong, and P. Wang, Fuzzy interaction regression for short term load forecasting. Fuzzy 
Optimization and Decision Making, 13 (2013) 91-103. https://doi.org/10.1007/s10700-013-9166-
9 

14. H. M. Al-Hamadi, S. A. Soliman, Fuzzy short-term electric load forecasting using Kalman filter, 
IEE Proc. Gener. Transm. Distrib., 153 (2006), 217–227. https://doi.org/10.1049/ip-
gtd:20050088 



2342 

Mathematical Biosciences and Engineering  Volume 21, Issue 2, 2323–2343. 

15. J. W. Taylor, Short-term electricity demand forecasting using double seasonal exponential 
smoothing, J. Oper. Res. Soc., 54 (2017), 799–805. https://doi.org/10.1057/palgrave.jors.2601589 

16. J. W. Taylor, R. Buizza, Neural network load forecasting with weather ensemble predictions, 
IEEE Trans. Power Syst., 17 (2002), 626–632. https://doi.org/10.1109/TPWRS.2002.800906 

17. W. Sulandari, S. Subanar, M. H. Lee, P. C. Rodrigues, Indonesian electricity load forecasting 
using singular spectrum analysis, fuzzy systems and neural networks, Energy, 190 (2020). 
https://doi.org/10.1016/j.energy.2019.116408 

18. V. Vlahović, I. Vujošević, Long-term forecasting: A critical review of direct-trend extrapolation 
methods, Int. J. Electr. Power Energy Syst., 9 (1987), 2–8. https://doi.org/10.1016/0142-
0615(87)90019-6 

19. M. Lekshmi, K. A. Subramanya, Short-term load forecasting of 400 kV grid substation using R-
tool and study of influence of ambient temperature on the forecasted load, in 2019 Second 
International Conference on Advanced Computational and Communication Paradigms 
(ICACCP), (2019), 1–5. https://doi.org/ 10.1109/ICACCP.2019.8883005 

20. M. Mohandes, Support vector machines for short-term electrical load forecasting, Int. J. Energy 
Res., 26 (2002), 335–345. https://doi.org/10.1002/er.787 

21. Y. Dong, X. Ma, T. Fu, Electrical load forecasting: A deep learning approach based on K-nearest 
neighbors, Appl. Soft Comput., 99 (2021). https://doi.org/10.1016/j.asoc.2020.106900 

22. Z. Xie, R. Wang, Z. Wu, T. Liu, Short-term power load forecasting model based on fuzzy neural 
network using improved decision tree, in 2019 IEEE Sustainable Power and Energy Conference 
(iSPEC), (2019), 482–486. https://doi.org/10.1109/iSPEC48194.2019.8975070 

23. G. Dudek, Short-term load forecasting using random forests, in Intelligent Systems’2014, Springer, 
(2015), 821–828. https://doi.org/10.1007/978-3-319-11310-47_1 

24. K. B. Lindberg, P. Seljom, H. Madsen, D. Fischer, M. Korpås, Long-term electricity load 
forecasting: Current and future trends, Util. Policy, 58 (2019), 102–119. 
https://doi.org/10.1016/j.jup.2019.04.001 

25. Z. A. Khan, A. Ullah, I. Ul Haq, M. Hamdy, G. M. Mauro, K. Muhammad, et al., Efficient short-
term electricity load forecasting for effective energy management, Sustainable Energy Technol. 
Assess., 53 (2022). https://doi.org/10.1016/j.seta.2022.102337 

26. X. Sun, Z. Ouyang, D. Yue, Short-term load forecasting based on multivariate linear regression, 
in 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), (2017), 1–5. 
https://doi.org/ 10.1109/EI2.2017.8245401 

27. X. Dong, S. Deng, D. Wang, A short-term power load forecasting method based on k-means and 
SVM, J. Ambient Intell. Hum. Comput., 13 (2021), 5253–5267. https://doi.org/10.1007/s12652-
021-03444-x 

28. S. Fallah, M. Ganjkhani, S. Shamshirband, K. Chau, Computational intelligence on short-term 
load forecasting: A methodological overview, Energies, 12 (2019). 
https://doi.org/10.3390/en12030393 

29. A. Heydari, M. M. Nezhad, E. Pirshayan, D. A. Garcia, F. Keynia, L. De Santoli, Short-term 
electricity price and load forecasting in isolated power grids based on composite neural network 
and gravitational search optimization algorithm, Appl. Energy, 277 (2020). 
https://doi.org/10.1016/j.apenergy.2020.115503 



2343 

Mathematical Biosciences and Engineering  Volume 21, Issue 2, 2323–2343. 

30. M. Chen, Z. Lan, Z. Duan, S. Yi, Q. Su, HDS-YOLOv5: An improved safety harness hook 
detection algorithm based on YOLOv5s, Math. Biosci. Eng., 20 (2023), 15476–15495. 
https://doi.org/10.3934/mbe.2023691 

31. W. Zeng, J. Li, C. Sun, L. Cao, X. Tang, S. Shu, et al., Ultra short-term power load forecasting 
based on similar day clustering and ensemble empirical mode decomposition, Energies, 16 (2023). 
https://doi.org/10.3390/en16041989 

32. X. Yan, M. Jia, Application of CSA-VMD and optimal scale morphological slice bispectrum in 
enhancing outer race fault detection of rolling element bearings, Mech. Syst. Signal Process., 122 
(2019), 56–86.https://doi.org/10.1016/j.ymssp.2018.12.022 

33. J. Chen, J. Zhang, A dual attention-based CNN-GRU model for short-term electric load 
forecasting, in The Proceedings of the 10th Frontier Academic Forum of Electrical Engineering 
(FAFEE2022), Springer, (2023), 715–725. https://doi.org/10.1007/978-981-99-3404-1_63 

34. A. Wan, Q. Chang, K. Al-Bukhaiti, J. He, Short-term power load forecasting for combined heat 
and power using CNN-LSTM enhanced by attention mechanism, Energy, 282 (2023). 
https://doi.org/10.1016/j.energy.2023.128274 

35. Q. Chen, W. Zhang, K. Zhu, D. Zhou, H. Dai, Q. Wu, A novel trilinear deep residual network 
with self-adaptive Dropout method for short-term load forecasting, Expert Syst. Appl., 182 (2021). 
https://doi.org/10.1016/j.eswa.2021.115272 

36. X. Ji, D. Liu, P. Xiong, Multi-model fusion short-term power load forecasting based on improved 
WOA optimization, Math. Biosci. Eng., 19 (2022), 13399–13420. 
https://doi.org/10.3934/mbe.2022627 

37. Z. Yao, T. Zhang, Q. Wang, Y. Zhao, R. Wang, Short-term power load forecasting of integrated 
energy system based on attention-CNN-DBILSTM, Math. Probl. Eng., 2022 (2022), 1–12. 
https://doi.org/10.1155/2022/1075698 

38. K. Dragomiretskiy, D. Zosso, Variational Mode Decomposition, IEEE Trans. Signal Process., 62 
(2014), 531–544. https://doi.org/10.1109/tsp.2013.2288675 

39. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: A simple way 
to prevent neural networks from overfitting, J. Mach. Learn. Res., 15 (2014), 1929–1958.  

40. Z. Huang, W. Xu, K. Yu, Bidirectional LSTM-CRF models for sequence tagging, arXiv preprint, 
(2015), arXiv:1508.01991. https://doi.org/10.48550/arXiv.1508.01991 

41. L. Yang, R. Y. Zhang, L. Li, X. Xie, In SimAM: A simple, parameter-free attention module for 
convolutional neural networks, in International Conference on Machine Learning, PMLR, (2021), 
11863–11874. https://icml.cc/virtual/2021/spotlight/8922 

©2024 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 

 
 


