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Abstract: Low-light image enhancement (LLIE) improves lighting to obtain natural normal-light
images from images captured under poor illumination. However, existing LLIE methods do not
effectively utilize positional and frequency domain image information. To address this limitation, we
proposed an end-to-end low-light image enhancement network called HPCDNet. HPCDNet uniquely
integrates a hybrid positional coding technique into the self-attention mechanism by appending hybrid
positional codes to the query and key, which better retains spatial positional information in the image.
The hybrid positional coding can adaptively emphasize important local structures to improve modeling
of spatial dependencies within low-light images. Meanwhile, frequency domain image information
lost under low-light is recovered via discrete wavelet and cosine transforms. The resulting two
frequency domain feature types are weighted and merged using a dual-attention module. More
effective use of frequency domain information enhances the network’s ability to recreate details,
improving visual quality of enhanced low-light images. Experiments demonstrated that our approach
can heighten visibility, contrast and color properties of low-light images while better preserving details
and textures than previous techniques.
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1. Introduction

Computer vision encompasses various pivotal tasks and methods like object detection, image
classification, segmentation, deblurring and facial recognition [1-3]. However, these techniques
presume well-lit input images, whereas real-world data is often dim and degraded. Such low-light
images confound both human and machine perception, undermining subsequent analysis and impeding
real-world computer vision applications. Addressing low-light images is thus imperative for computer
vision. Low-light enhancement techniques aim to elucidate obscured content and avert performance
declines in downstream tasks. Early methods like histogram equalization [4] and Retinex [5] have
limited efficacy and generalizability for low-light enhancement.

In recent years, numerous deep learning-based low-light image enhancement (LLIE) techniques
have emerged. The advantage of deep learning is its ability to learn complex feature representations
from large amounts of data and optimize them through a training process leading to more accurate
image enhancement. These methods fall into two categories: end-to-end framework [6—13] and those
based on Retinex [14-21]. Among them, Jiang et al. [22] proposed an unsupervised generative
adversarial network framework for enhancement of low-light images that does not require paired
images for training. Zhang et al. [23] proposed an unsupervised learning method for enhancement of
low-light images, which utilizes the prior knowledge of histogram equalization to guide the network
in learning the enhancement mappings. Deep learning methods enhance low-light images by
modeling the relationship between low-light and high-quality images, generally outperforming
traditional techniques.

However, many existing methods ignore the position information of the image, which can lead to
a lack of spatial coherence and difficulty in preserving the detailed texture of the image. In addition,
there have been researches proving the importance of position information to the image. Dosovitskiy
et al. [24] achieved state-of-the-art results in large-scale image classification tasks by using sine-based
absolute position coding in Vision Transformer. In 3D target detection, Xu et al. [25] achieved a more
effective aggregation of the two feature types by adding position coding between voxel features and
original point features, thus improving the detection accuracy. All these methods demonstrate the
importance of positional information for image, and similarly, positional information is also
important for LLIE.

Most LLIE techniques only consider spatial domain information, neglecting the usefulness of
frequency domain cues for quality improvement. The frequency domain harbors data regarding an
image's frequency components, offering salient insights into texture, detail, and structure. To better
leverage frequency domain data, some studies have incorporated techniques including wavelet and
cosine transforms into their networks. Wavelet transforms can decompose low-frequency illumination
and high-frequency details, aiding detail and texture restoration. Cosine transforms can concentrate
image information in lower frequencies, enhancing brightness and contrast. For example, Fan et al. [7]
enriched the wavelet domain features by half-wavelet attention blocks, which effectively improved the
quality of the image, and Tiwari et al. [26] proposed a method to control the enhancement degree based
on the cosine transform, which verified the value of the frequency domain information to a certain
extent. However, these methods do not fully utilize the frequency domain information, and there is still
some room for improvement, especially in lighting and detailed texture.

To fully leverage positional and frequency domain image information, inspired by previous
work [27-32], we propose an LLIE network called HPCDNet. HPCDNet more efficiently acquires
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positional information of images by introducing hybrid positional encodings into the self-attention
mechanism. Unlike conventional self-attention mechanisms that solely rely on absolute distances, this
hybrid positional encoding considers both relative positional relationships within the image and global
absolute coordinate information. Specifically, we add a unique sinusoidal encoding for each pixel
position as its absolute coordinates, while also learning the relative offset relationships between each
position and its surrounding pixels. Dual-frequency attention block modules are then utilized to extract
frequency domain features lost under low-light conditions, which are then weighted by dual attention
units (DAU) [33]. Finally, the features are converted back to the spatial domain via inverse transforms.

Overall, the primary contributions of this work can be summarized as follows:

*  We propose a hybrid position coding scheme for self-attention mechanisms to better capture global
structure and local details in images. The hybrid scheme combines both relative and absolute
position encodings to capture such multi-scale information.

*  We propose an efficient feature extraction building block named dual-frequency attention block
(DFAB), which extracts frequency domain features via discrete cosine transform and discrete
wavelet transform and weighs these features using a DAU. By operating on both spatial and
frequency domains, DFAB improves feature utilization and representation power.

* To consolidate multilevel representations, we design a cross-layer fusion block (CFB) module
based on partial convolutions for adaptive integration of hierarchical features via learned cross-
scale interactions.

*  We propose a generalizable LLIE network called HPCDNet.We evaluate HPCDNet on the LOL
and MIT-Adobe FiveK datasets. Experiments show HPCDNet significantly outperforms prior arts
in low-light enhancement.

2. Related work
2.1. Low-light image enhancement

Traditional methods. Traditional methods for enhancing low-light images primarily includes
histogram equalization-based approaches [4] and methods based on the Retinex theory [5]. One
category of methods seeks to enhance low-light images by remapping brightness levels to expand the
dynamic range, which accentuates darker regions to increase visibility and quality. In contrast, Retinex-
based approaches decompose images into reflectance and illumination layers, using the estimated
reflectance as the final enhanced output. Thus, Retinex methods strongly rely on accurate modeling of
image components and fitting prior knowledge. However, designing prior knowledge that is applicable
to diverse scenarios is a challenging task [19]. To mitigate inherent constraints with conventional
approaches, deep learning has been overwhelmingly embraced as a promising paradigm for low-light
enhancement methodologies.

Deep learning-based methods. In recent years, LLIE methods based on deep learning have
shown good results. Lore et al. [34] proposed a method based on deep autoencoders to adaptively
enhance images by identifying signal features in low-light images. Wei et al. [14] proposed a deep
learning-based Retinex decomposition method, which mainly enhances low-light images by learning
data-driven reflection maps and illumination maps. Zhang et al. [35,36] proposed two improved
methods based on Retinex-Net, called KinD and KinD++, which adjusts image brightness by
introducing global and local gains. Zamir et al. [33] enhanced the details and texture of low-light
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images by learning multi-scale features and combining contextual information at different scales.
Recently, Wu et al. [19] also proposed a Retinex-based network that decomposes low-light images into
reflection maps and illumination maps and effectively suppresses noise in the image by learning to
adaptively fit implicit prior knowledge. In addition, Fan et al. [ 7] also proposed an image enhancement
network that effectively utilized the frequency domain information of the image by using semi-wavelet
attention blocks to enrich wavelet domain features. In the same year, Zhang et al. [37] proposed a new
deep color consistent network termed DCC-Net, which can jointly preserve color information and
enhance the illumination. Wang et al. [30] proposed a low-light enhancement method based on
transformer, and improved image quality through an axis-based multi-head self-attention mechanism
and a cross-layer attention fusion block. However, these methods do not fully utilize the frequency
domain information of the image. In contrast, the network we designed learns the frequency domain
information of images in an end-to-end manner through an innovative dual frequency domain
transformation module. In this way, the network can better perceive the overall pixel distribution of
the image while restoring finer and natural local details.

2.2. Position encoding

In recent years, several positional coding methods have been proposed, and these methods can be
categorized into two groups: Relative positional coding and absolute positional coding.

Relative positional coding. Shaw et al. [29] introduced a relative positional encoding approach
tailored for self-attentional architectures. The input tokens are modeled as directed, fully connected
graphs, and each edge between two arbitrary positions i and j is represented by a learnable vector. Dai
et al. [38] introduced an additional bias term for the query and use a sinusoidal function for relative
position encoding. Recently, Huang et al. [39] proposed a new approach that simultaneously considers
the interaction of query, key and relative positions. While Ramachandran et al. [40] proposed a position
coding method for images, which divides the 2D relative coding into horizontal and vertical directions
so that each direction can be modeled by a 1D coding, Wang et al. [41] introduced a position-sensitive
method by incorporating a gkv-dependent positional bias in the self-attention. Inspired by their
predecessors, Wu et al. [42] proposed a new relative position coding method specifically for images,
called image RPE (iRPE), which takes into account the modeling of relative position distances in a
self-attention mechanism and the interaction between query and relative position embedding.

Absolute positional coding. Parmar et al. [43] proposed an image transformer framework, using
transformer in image tasks for the first time, and by using absolute position encoding to introduce
spatial information, they proved its effectiveness in tasks such as image classification and segmentation.
Dosovitskiy et al. [24] used absolute position coding in the ViT model and achieved good results on
image classification tasks, which reflects the importance of absolute position coding in image
classification tasks. In the same year, Carion et al. [44] proposed the first end-to-end transformer target
detection model DETR, which also used absolute position encoding to obtain spatial prior knowledge.
In addition, Xie et al. [45] designed a SegFormer model suitable for image segmentation, which also
used absolute position coding to provide spatial information to the transformer, and achieved optimal
segmentation performance on multiple datasets.

Notwithstanding the achievements of prevailing techniques, the value of positional encoding
remains underestimated. Current methods generally adopt either relative or absolute positional coding
exclusively; thus, they are unable to fully leverage the spatial knowledge encompassed within the
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image. Discerning that the local orientation cues of relative positional coding and global coordinate
information of absolute positional coding are complementary, we consolidate both schemes for LLIE
to empower superior modeling of the spatial structure.
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Figure 1. The overall structure of our proposed HPCDNet. Due to our unique design, it
can better capture the position and frequency domain information of the image.
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3. Proposed method

This section delineates the proposed LLIE network architecture depicted in Figure 1. The
framework incorporates four pivotal constituents: (a) Hybrid position encoding self-attention (HPE-
SA): This module is used to perform nonlinear transformation and combination of input image features
to improve the performance of the model. Attention mechanism plays a crucial role in modeling and
capturing global contextual information in images, and the self-attention mechanism with hybrid
positional encoding can better preserve the image spatial structure. (b) Gated-pconv feed-forward
network (GPFN): Employs partial convolutions alongside nonlinearities to learn representations for
enriching details and enhancing visual quality. (c) DFAB: Leverages frequency domain knowledge to
adaptively aggregate input characteristics via attention-based merging to heighten global detail while
preserving textures. (d) CFB: Aggregates multi-scale representations by weighting crucial
characteristics, thereby upholding holistic structure alongside enriching local cues.
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Figure 2. Main components in attention block, from left to right in order (a) HPE-SA and
(b) GPFN.

3.1. Hybrid position encoding self-attention

For LLIE, positional cues are especially pivotal for modeling spatial correlation amongst pixels.
Specifically, lacking such localization knowledge hinders comprehensive characterization of inter-
region connections required for effective image upgrading. Moreover, in the traditional self-attention
mechanism, the time and memory complexity of the key-query dot-product interaction grows
quadratically with the spatial resolution of input, i.e., O(W>H?) for images of W x H pixels, which

means that when applying the self-attention mechanism in LLIE tasks, you may encounter the problem
of insufficient computing resources.

To alleviate these problems, inspired by [3,27,28,30,32], we propose HPE-SA, a self-attention
mechanism with hybrid position encoding, whose structure is shown in Figure 2(a). The HPE-SA
module greatly reduces the amount of computation by performing self-attention calculation across the
feature dimension instead of the spatial dimension, and by specifically fusing local and global
contextual information before doing so, it applies the attention mechanism to C feature channels
instead of to HW spatial locations. It computes a transposed attention map of size C % C, so the
complexity is (O(C?); C is usually much smaller than HW and the number of feature channels is much
smaller than the number of pixels, so O(C*) can be regarded as a constant level complexity. Even if
the image size increases, C does not change, so the complexity is not affected by H, W. Therefore, it
can be said that there is a linear relationship between the computational complexity of the HPE-SA
module and the spatial size (H, W). This substantially alleviates complexity versus conventional self-
attention models. Additionally, hybrid positional encodings empower the attention mechanism to better
model nuanced inter-pixel relationships, simultaneously refining local details as well as global contexts.

In detail, for an input tensor of size X e R”*"*“, we first obtain a representation with local
context information through a 1 x 1 convolution. Following this, we encode the spatial context using
a 3 x 3 partial convolution, resultingin Q=W2 WX, K=Ww5 WEX and V=W, W, X.Here,
WS, and W) denote 3 x 3 partial convolution and 1 x 1 ordinary convolution, respectively. Thus,

it can be expressed as:
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)2:\A7Softmax((3-/lz), (1)

Subsequently, hybrid positional encodings are formulated to augment queries and keys with both
absolute spatial coordinates alongside relative pixel displacements. Specifically, this hybrid
representation comprises distinct absolute and relative positional encodings, detailed as follows.

Absolute position coding can provide additional spatial information to help the attention
mechanism better model the dependencies between different positions of an image. We use an absolute
position coding method based on sine and cosine; specifically, a position coding matrix P, can be

constructed, and the formula for P, is as follows:

D ln00),
sinlk—e 2 ), iiseven

_In(1000),

cos(k?e ¢z ), iisodd

P, () k)= . In(1000) ’ @
sin(kTe €27, jiseven

_In(1000) .

cos(k%e ¢ j), j is odd

where P, € R™ denotes the absolute position encoding matrix, i and j denote the row and column

abs

indices in the absolute position encoding matrix, k denotes the index of the third dimension of the P,

matrix, and d denotes the dimension of the model. We then decompose P, into P2 and P to

abs
obtain the absolute position encoding matrices of (A) and K.

While integration of absolute positional encoding imparts global localization, relative spatial
offsets across different areas remain equally vital. Hence, we supplement relative positional encoding
to facilitate improved modeling of inter-pixel spatial correlations. Nevertheless, existing relative offset
encodings condition solely on the query without considering the key. Since key could indicate
attention-worthy regions, we propose a trainable relative encoding mechanism. Specifically, we first
construct a trainable encoding matrix E e R?P™D  where C is the total number of channels of Q and
K, and 2D—1 represents the range of relative positions in the two-dimensional space. Each row vector
of matrix £ encodes the relative displacement between any two positions. Next, we precalculate a

DxD .
“” based on the row and column coordinates, where

relative position index matrix M; eR
M (i,j )Zi— J+D—1. For efficient indexing, we flatten M into a one-dimensional index vector

] e R?", then retrieve the corresponding encoding vector P =E[:,[]e RSP* from the encoding

matrix £ based on the index vector /. Finally, we split the coding tensor P into Q and K in proportion
to the number of channels C, so that we can obtain PE°and PE’ , then we can obtain the positional

bias 6 -PE rQ associated with the query and the positional bias term K- PErK associated with the key

pixel. In this way, combined with the absolute position encoding proposed above, the specific
representation of HPE-SA can be expressed as follows:

i:mQ-LN(SOﬁmax((Q-fG@-PQ+f<-P’<)/a)), (3)
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P¢ =g+ P, )
PR =P, +P,, (5)

where f( represents the output feature map, QERHW*C, ﬁERCXHW and VeR", PEC and
PEX, respectively denote the hybrid position encoding for Q and K, LN stands for layer

normalization [44] and & is a learnable scaling parameter used to regulate the magnitude of the dot
product of 6 and K before it is input into the softmax function.

3.2. Gated-pconv feed-forward network

Conventional feedforward networks are often limited in modeling intrinsic local cues embedded
within images. To address such limitations, we conceive a new feedforward formulation termed GPFN
toward improved characterization of localized features. The structure is illustrated in Figure 2(b), and
this network consists of two parallel branches. The former enacts 3 x 3 partial convolutions with
GELU [46] activation function to extract structural impressions, while the latter aggregates contextual
inter-pixel knowledge via a 3 x 3 partial convolutional layer. Subsequently, we perform element-wise
multiplication between the output feature map of the second branch and the feature map of the first
branch. This operation enhances the representation of crucial features while mitigating the influence
of less important ones. With this innovative network design, the model becomes more adept at learning
and representing local features within the image. Given an input tensor X € R“*"*“ | the formula for
GPFN is as follows:

X =W, Gate(X)+X, ©

Gate (X) = Wpl3x3VV1x1 (X)o ¢(W;3X3W1x1 (X)), (7)
where O represents multiplication, and ¢ signifies the GELU activation function. In summary,
GPFN efficiently manages the flow of information across various hierarchical levels. This enables each
level to focus on specific details and complement one another, ultimately enhancing the model's overall
performance.

PReLU
(NN e e e e e e e
NI

g
[}
» O
<
ﬁ" “@ ﬁmt
H-W=C DWT IWT Hw=C

Figure 3. The architecture of DFAB.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 1917-1937.



1925

3.3. Dual-frequency attention block

Figure 3 illustrates the structure of the proposed DFAB, which comprises two branches
corresponding to discrete wavelet transform (DWT) and discrete cosine transform (DCT). Each
branch incorporates an attention mechanism block known as DAU [33,47], which includes channel
attention [48] and spatial attention [49,50] to weigh the transformed feature maps. The outputs from
these two branches are then fused to obtain the final feature representation. The design concept behind
DFAB is to enhance the feature representation by leveraging DWT [51] and DCT [26,52]. By encoding
multi-scale, multi-frequency cues, these transformations prove effective for representing structural and
textural content. Within each branch, channel attention weighs the relevance of different feature
channels to enable better feature selection and prioritization. Similarly, spatial attention assesses the
importance of different spatial positions, allowing greater emphasis on salient areas.

The input feature f,, € R”"* is partitioned along the input channel direction into three parts:
fi. fo and Sfieniy , where f; e RT7H 0 £ e R "and flyensy € R™” . The main purpose
of dividing the input features is to reduce computational complexity and retain contextual information.
Among them, feniy is used to preserve the normal domain features, f, performs discrete cosine
transform, while f, undergoes DWT to obtain wavelet domain features fj . Through DWT, the

input feature is decomposed into multiple subbands, where each subband represents a different
frequency range. Since these subbands contain information about different aspects of the original
feature, spatial and frequency information can be better captured. These subbands are combined into a
wavelet domain feature map f;, € R"*"">,

The wavelet domain feature map f;, will be obtained by the DAU module with weighted
wavelet domain features fw eR"*">€  Finally, we perform an inverse wavelet transform on the
weighted wavelet domain feature fAW and reshape it to the same shape as f; and become the
weighted normal domain feature j}l e R,

The other branch f, is obtained by DCT to get the feature f, € R”*"*“ and similarly, we

input f, into the DAU module to obtain the weighted low-frequency feature j}c e R In this

way, we can better utilize the low-frequency information of the input image and fuse it with the features
in other domains to improve the performance of the model. We then perform an inverse cosine

transform on the weighted feature f, and reshape it to the same shape as />, which becomes the

weighted normal domain feature £, eR" " These three features ( fi~ f, and Sideniry ) are then

stitched together and passed into a 3 x 3 convolutional and PReLU layer to obtain the residual features.
Finally, we add the input features to the residual features to get the output features f,, € R,
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Figure 4. The architecture of CFB. This technique utilizes features extracted from multiple
convolutional streams and then aggregates them using self-attention.

3.4. Cross-layer fusion block

Recently, Zamir and Wang et al. [32,53] adopted feature joins or jump joins to aggregate
representations across layers in Transformer networks. However, these operations do not fully utilize
the dependencies between different layers. The low-light image contains many black zero-valued pixels,
and partial convolution can effectively avoid the contamination of the results by zero-valued pixels in
the convolution operation. The partial convolution only updates the valid non-zero pixels, which avoids
the invalid spatial information from interfering with the results, so we designed a CFB module built
upon partial convolutions, with the architecture illustrated in Figure 4. Same as self-attention in HPE-
SA, we use 1 x 1 convolution to aggregate context information, and then use 3 x 3 partial convolution
to generate Q, K and V and flatten them into a matrix of 3 x HWC. Next, we compute an attention
matrix of size 3 x 3 and compute the attention weights based on the matrix and add the features of the
upper V. Finally, we get the fused features and the process can be represented as:

F, = W3X3{780ﬁmax((3-12/ a)+\A7, ®)
F,. =W, ,LN(F,)+F,, )

where F,,, represents the output features of layers within the network that contains substantial

information. We strategically incorporate CFB modules at the start and end of our pipeline. This
bidirectional design enables consolidation of multilevel representations, yielding more holistic and
descriptive feature embeddings.

3.5. Loss function

We used a loss function in our experiments consisting of three parts, each of which is specified
below:
Smooth L1 Loss. To encourage accurate regression for low-light enhancement and to suppress

noise interference, we used the smooth L1 loss function £, ,, between the predicted enhanced
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image /, and the ground truth 7,,:

0.5(1,-1,) if |I,—1,I<1

L th— Ie’lt = ’ 10
mooth—11C g ) {| I _[gt |-0.5, otherwise 1o

SSIM Loss. Considering that the degradation of low-light images is caused by a variety of factors,
in order to comprehensively evaluate the differences between images in terms of luminance, contrast,
and structure, we adopt the structural similarity (SSIM) index as the loss function. Specifically, the
SSIM loss L, 1is defined as:

L, =1-SSIM(I,,1,), (11)

where SSIM(-) calculates the structural similarity between two images based on statistical measures.
By minimizing £ , it allows the model to generate enhancement results with better perceptual

consistency with the high quality reference image in terms of luminance, gradient and structural
patterns.

Perceptual Loss. In order to utilize the semantic information to improve the visual quality of
enhanced images, we adopt the perceptual loss L as the perceptual metric. Specifically, it is the

Euclidean distance between the feature representations extracted from the pretrained convolutional
neural network. Given the enhanced image /, and the ground truth /,,, the mathematical definition

of the perceptual loss L, is as follows:

1 2
L, _WH ¢(,)—gU I, (12)

where W, H and C denote the three dimensions of the image, respectively, and ¢(-) denotes the pre-

trained VGG network [54].
Total Loss. By combining £

‘smooth—

us L, and L, we can get the total loss function L:

L=L

‘smooth—

utLli+L,, (13)

4. Experimental section

In this section, we present the implementation details of our experiments. We offer
visualizations to showcase the comparison between the images generated by our model and those
produced by other algorithms. We then evaluate and compare the results generated by our model
with those of previous methods. First, we conduct a quantitative evaluation using a range of
commonly employed image quality assessment metrics, including PSNR, SSIM and LPIPS. These
metrics help measure the similarity between the images generated by our model and the ground truth.
Second, these visual comparisons provide insights into the qualitative performance of our approach
in enhancing low-light images.

4.1. Experimental details

The experiments in this paper were conducted using an NVIDIA GTX TITAN Xp GPU and
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PyTorch 2.0.0. The network was trained exclusively on images with dimensions of 128 x 128,
utilizing a batch size of four for a total of 1200 iterations. The Adam optimizer was employed, with
an initial learning rate set to 1 x 10~*. The learning rate was then reduced to 1 x 10~° following the
cosine decay strategy. Finally, the model was tested on the LOL dataset and images from the MIT-
Adobe FiveK dataset.

4.2. Experiments and result

LLFormer MIRNet HWMNet LLDiffusion GlobalDiff HPCDNet(Ours) Ground-truth

Figure 5. Visual comparison on the LoL dataset [14]. We performed a visual comparison
of low-light enhancement methods. Our method outperforms other methods in enhancing
images with complex colors and textures.

= Hiae th

Inpul RUAS URetmex Net ELGAN

LLFormer MIRNet HWMNet LLDiffusion GlobalDiff HPCDNet(Ours) Ground-truth

Figure 6. Visual comparison on the LoL dataset [14]. We performed a visual comparison
of low-light enhancement methods.

Figures 5 and 6 present qualitative comparisons on the LOL dataset against several state of the
art methods. Specifically, we compare against leading existing techniques. It can be observed that
KinD, LLFormer and MIRNet introduce noticable noise, especially for images with vibrant colors and
intricate textures. In contrast, our proposed approach demonstrates slight improvements over
LLDiffusion in reconstructing such challenging cases. Additionally, our technique showcases strengths
in preserving textural details while heightening contrast. Notably, our method restores more naturalistic
color patterns resembling real-world scenarios.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 1917-1937.



1929

Table 1. Comparison of low-light enhancement methods performed on the LoL dataset
[14]; 1 (]) denotes that larger (smaller) values lead to better performance; the times in the
table represent the total time taken by the model to reason about the 15 images on the test

set.

Method PSNRt SSIMt LPIP| Params  Times Method PSNRT SSIMt LPIP| Params Times
RUAS [17] 1641 050 027  0.003M 0.02s LLFormer[30]  23.65 082  0.17 245M 034s
Uretinex [19] 1677 056 047 67M  037s  MIRNet[33] 2414 083 013  31.8M 0.16s
ELGAN [22] 1748 0.65 032 70M 018 HWMNet[7] 2424 085 012  36M  047s
HEP [23] 2023 079 019 29Mm  006s  LLDiffusion [S5] 2465 085 008 — —

KinD [36] 2087 080 017 8swM  002s  GlobaDiff [S6] 5783 087 009 174M 093s
Diff-Retinex [S7] 2198 086 005  — - HPCDNet(Ours) 5483 087 011 38M  0.02s

As can be seen from Table 1, compared with the optimal model GlobalDiff, it seems that
GlobalDiff is more competitive in the field of LLIE. The PSNR index of GlobalDiff is better than our
model, but in terms of SSIM index, our model performs the same and it is competitive. More
importantly, the number of parameters of our model is much less than that of GlobalDiff. The number
of parameters is only 21.8% of GlobalDiff and outperforms GlobalDiff in terms of reasoning time.
This shows the competitiveness of our model.

Input ELGAN RUAS KinD LLFormer LIME

HWMNet DSLR MIRNet Retinexformer HPCDNet(Ours) Ground-truth

Figure 7. In the context of LLIE on the MIT-Adobe FiveK dataset [38], our method
demonstrates superior visual results, particularly in the domains of color correction and
contrast adjustment.

The intuitive comparison using the MIT-Adobe FiveK dataset is illustrated in Figures 7 and 8.
Our method was compared to the current state of the art approach, with results presented in Table 2.
Compared to other methods, our approach demonstrates accurate adjustment of image color and
contrast, while also showing superior text enhancement. Additionally, our method achieves top-three
performance in PSNR and SSIM metrics, surpassed only by MIRNet and Retinexformer, while
maintaining outstanding LPIPS results.
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Figure 8. In comparison to the current state of the art methods on the MIT-Adobe FiveK
dataset [38], our approach demonstrates superior performance. It excels in precisely
adjusting the image's color and contrast while also outperforming other methods in terms
of text enhancement.

Table 2. Comparison of low-light enhancement methods performed on the MIT-Adobe
FiveK dataset, 1 (|) denotes that, larger (smaller) values lead to better performance.

Method PSNR{ SSIM? LPIP| Method PSNR? SSIM{ LPIP|
ELGAN [22] 15.91 0.82 0.15 HWMNet [7] 19.81 0.87 0.09
RUAS [17] 16.99 0.87 0.13 DSLR [58] 20.24 0.83 0.15
KinD [36] 17.07 0.78 0.19 MIRNet [33] 23.73 0.93 0.06
LLFormer [30] 18.75 0.84 0.15 Retinexformer [59] 24.94 0.91 0.06
LIME [60] 18.91 0.75 0.11 HPCDNet(Ours) 21.97 0.90 0.05

Uretinex-Net Zero-DCE HPCDNet(Ours)

Figure 9. Visual comparison on the DICM dataset [47].

We further exhibit the visual enhancement results on the DICM dataset in Figure 9. From the
enhancement effect of image illumination, our algorithm is better than other comparative algorithms,
which can more naturally brighten the low-light area and show richer details. Meanwhile, the bright
area will not show obvious overexposure phenomenon, and the overall color and contrast are balanced
to improve and maintain natural tonal consistency with the input image. Other algorithms still have
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some deficiencies in the brightening effect, such as the HWMNet, RUAS, and MIRNet algorithms are
not enough to brighten the dark areas of the processed image, as well as KinD, Uretinex-Net algorithms
that have more noise points, which weaken the visual effect.

4.3. Ablation studies

Ablation studies were performed to assess the impact of four key architectural components on
model performance: (1) hybrid position encoding, (2) absolute position encoding, (3) relative position
encoding, (4) connection with weights, (5) CFB, and (6) DFAB. The model was trained on 128 x 128
images from the LOL dataset for 600 epochs, with performance evaluated using PSNR. Figure 10
illustrates the visual impacts of ablating each individual component from the model. Quantitative
results are tabulated in Table 3. Our ablation study enables several key conclusions:

(1) By introducing hybrid position encoding, the PSNR of the model is improved by 1.05 dB,
proving the effectiveness of this module. The improvement of PSNR index without increasing model
parameters proves the efficiency of our proposed encoding method. However, due to the extra
computation, the training time was extended by 4.01 hours.

(2) Through an independent analysis of absolute position encoding, we performed an ablation
study and noted the following key observations: Removing only the absolute position encoding results
in a minor 0.69 dB decrease in PSNR, while still improving PSNR by 0.36 dB compared to not using
position encoding. Despite no change in model parameters, a slight 0.5 hour increase in training time
per 600 epochs was observed relative to the absence of position encoding. This minimal additional
computational cost demonstrates the feasibility of incorporating absolute position encoding.

Baseline w/o Dual-Frequency Attention Block w/o Hybird Position Encoding w/o Absolute Position Encoding

w/o Relative Position Encoding w/o Connection With Weights w/o Cross-layer Fusion Block Ground-truth

Figure 10. Visual comparison of the impact of individual module omissions on our
model’s performance, highlighting the contributions of key techniques used in our study.
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Table 3. Ablation experiments were conducted to analyze the contribution of four critical
components of the proposed HPCDNet architecture.

Hybrid position encoding \/ N N N N N
Absolute position encoding v ~ N N N N
Relative position encoding \/ N N N \ N
Connection with weights \ N N N N N
Cross-layer fusion block v \ v \ N N
Dual-frequency attention block v ~ ~ N N N
Params(M) 3.8 3.8 3.8 3.6 35 3.8 3.8
Training time(H) 13.73 14.23 15.28 13.94 14.11 16.22 17.74
PSNR 22.18 22.64 2231 22.94 22.94 2236 23.23

(3) Furthermore, an ablation study was conducted on solely removing the relative position
encoding. This resulted in a 0.92 dB decrease in PSNR compared to the full model. Meanwhile, the
training time reduced by 2.46 hours relative to the baseline. Though compared to ablating just the
absolute position encoding, training time increased by 1.05 hours.

(4) The introduction of connection with weights only achieved a small PSNR improvement of
0.29 dB. At the same time, it increases the parameter size by 0.2 M and introduces additional
computational overhead. The performance improvement is small, indicating that the benefit of this
module is limited.

(5) Using CFB results in an increase of 0.3 M parameters, and a moderate increase in
computational complexity. However, this module plays a key role in representing layered features,
improving PSNR by 0.49 dB.

(6) DFAB brings a significant PSNR improvement of 0.87 dB, with minimal computational
overhead and no additional parameters, proving that combining the spatial domain and frequency
domain is effective.

These discussed module parameters have very little overhead. While individually they may not
significantly enhance the network, the additional training time required is negligible. This means we
can optimize these factors to improve the model without requiring extensive computing resources.
Compared to other algorithms that rely on large models and a large number of parameters, our method
requires only few parameters to run. Compared with HWMNet (PSNR: 24.24 dB, Params: 3.6 M), the
PSNR of our network is 0.59 dB higher, although the number of parameters is 0.2 M more than
HWMNet. Similarly, compared with LLFormer (PSNR: 23.65 dB, Params: 24.5 M), our PSNR is not
only 1.18 dB higher than LLFormer, but also reduces the number of parameters by 85%, which greatly
reduces the number of parameters of the model. This benefits from the hybrid position encoding, dual
frequency domain transformation module and other efficient components we designed, and our model
can be embedded into external devices.

5. Conclusions

This work proposed an LLIE network. Thanks to the hybrid positional encoding module, the
network was able to model both local pixel-level interactions and global dependencies in larger image
areas. By applying attention analysis and weighting frequency domain information in the frequency
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domain through a dual frequency domain transformation module, the global structure and local details
of low-light images were efficiently enhanced. Through the cross-layer fusion module, the features of
the previous layer were fused to form high-order features that represent global information, thereby
enhancing the expressive ability of the network. Experimental results showed that our network
achieves good results on both the LOL dataset and the MIT-Adobe dataset, especially in restoring
image details and improving contrast. However, the improvement of this hybrid position encoding for
LLIE is limited. In the future, we will continue to explore more efficient position encoding methods to
further improve the model's modeling ability of global and local features, thereby achieving greater
success. levels and performance improvements. At the same time, we will also study other modules
that contribute to image enhancement to enrich the expressive capabilities of the network so that it can
generate more natural and clear results.
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