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Abstract: Super-resolution (SR) of magnetic resonance imaging (MRI) is gaining increasing attention
for being able to provide detailed anatomical information. However, current SR methods often use the
complex convolutional network for feature extraction, which is difficult to train and not suitable for
limited computation resources in the medical scenario. To tackle these bottlenecks, we propose a multi-
distillation residual network (MDRN) for more differential feature refinement, which has a superior
trade-off between reconstruction accuracy and computation cost. Specifically, a novel feature multi-
distillation residual block with a contrast-aware channel attention module was designed to make the
residual features more focused on low-vision information, which maximizes the power of MDRN.
Comprehensive experiments demonstrate the superiority of our MDRN over state-of-the-art methods
in reconstruction quality and efficiency. Our method outperforms other existing methods in peak
signal-noise ratio by up to 0.44—1.82 dB in 4% scale when GPU memory and runtime are lower than
in other SR methods. The source code will be available at https://github.com/Jennieyy/MDRN.
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1. Introduction

High-resolution (HR) magnetic resonance imaging (MRI) unveils enhanced structural details and
textures, essential for accurate diagnosis and pathological analysis of bodily organs. However, the
resolution of the medical image is often constrained by factors like imaging hardware limitations,
prolonged scanning durations, and lower signal-to-noise ratios (SNR) [1]. Improving spatial resolution
usually involves the sacrifice of decreased SNR and increased scanning time [2].

Recently, super-resolution (SR) has emerged as a post-processing technique for upscaling the
resolution of MRI images [2—4]. Existing SR methods include interpolation-based, regularization-
based, and learning-based methods [5,6]. Interpolation methods usually blur sharp edges and can
hardly recover fine details or handle complex textures [7]. Using deep convolutional neural networks
(CNN) in the SR image has shown notable success in high-quality reconstruction performance [8].
After the pioneering work of SRCNN [9], a multitude of CNN-based SR models have been proposed, such
as EDSR [10], RCAN [11], and SwinIR [12], significantly improving SR performance. The superior
reconstruction performance of CNN-based methods, such as SAN [13] and HAN [14], primarily stems
from their deep architecture, residual learning, and diverse attention mechanisms [7,15]. Deepening
the network’s layers can enlarge receptive fields and facilitate its ability to comprehend the intricate
mapping between the low-resolution (LR) inputs and HR counterparts. The adoption of residual
learning facilitates deeper SR networks, as it effectively mitigates issues associated with gradient
vanishing and explosion. Since CNN-based SR methods develop rapidly, transformer-based SR
methods emerged to further improve SR performance [12,16,17]. As an alternative to CNN,
transformer-based methods make full use of long-range dependency information rather than local
features, greatly improving SR performance. However, the transformer-based SR model usually has
large model parameters and is difficult to train.

Although previous work has made significant progress, the deep SR model is still challenging to
train because of its expensive GPU computation and time costs, leading to decreased performance of
the state-of-the-art methods [18]. Therefore, the SR methods proposed ahead are not suitable for
limited computation resources and limited diagnosis time in medical applications.

To tackle the aforementioned issues and challenges, we propose the multi-distillation residual
network (MDRN), which has a superior trade-off between reconstruction quality and computation
consumption. Specifically, we propose a feature multi-distillation residual block (FMDRB), used in
MDRN, which selectively retains certain features and sends others to the subsequent steps. To
maximize the feature distillation capability, we incorporate a contrast-aware channel attention layer
(CCA) to enhance the aggregation of diverse refined information. Our approach focuses on leveraging
more informative features such as edges, textures, and small vessels for MRI image reconstruction.

In general, our main contributions can be summarized as follows:

1) We propose a multi-distillation residual network (MDRN) applied to efficient and fast super-
resolution MRI that learns extra discriminative feature representations and is lightweight enough for
limited computation costs. Our MDRN is suitable for super-resolution MRI and clinical applications.

2) We introduce a CCA block to our FMDRB that can guide the model to focus on recovering
high-frequency information. Based on that, CCA maximizes the power of the MDRN network. Besides,
it is suitable for low-level vision and has better performance than the plain channel attention block.

3) Thanks to the unique design of MDRN, it outperforms previous CNN-based SR models even
under smaller GPU conditions. The proposed method obtains the best trade-off between inference time
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and reconstruction quality, showing the competitive advantage of our MDRN over state-of-the-art
(SOTA) methods, as supported by quantitative and qualitative evidence.

2. Methods

We propose a multi-distillation residual network (MDRN) for efficient and fast super-resolution
MRI, whose architecture is shown in Figure 1. In Section 2.1, we provide an overview of the MDRN
structure. In Section 2.2, we introduce the core module: feature multi-distillation residual block
(FMDRB). Drawing inspiration from the common residual block (RB) [10] and information multi-
distillation block (IMDB) [19], our network comprises a series of stacked FMDRBs forming the main
chain, as demonstrated in Figure 1.

2.1. Network architecture

Given [; as the LR input of MDRN, the network reconstructs the SR output Iz from the LR
input. As in previous works, we adopt a shallow feature extraction, deep feature extraction, and post-
upsample structure. The process of shallow feature F, extracted from the input I, is as follows:

Fo = Dgp (ILR) > (1)

where Hgp(+) demonstrates the function of shallow feature extractor, specifically one convolution
operation.

The subsequent part of MDRN involves the integration of multiple FMDRBs, which are put in a
chain manner with feature distillation connections. This design facilitates the gradual refinement of
the initial extracted features, culminating in the generation of deep features. The deep feature extraction
part can be described as follows:

Fk = DDFk(Fk—l)'k = 1, e, n, (2)

where Dpp, (+) stands for the function of k-th FMDRB, and F,_; and Fj represent the input and

output features of the k-th FMDRB, respectively. After the iterative refinement process by the
FMDRBs, one 1 X 1 convolution layer is put at the end of a feature extraction part to assemble the
fused distilled features. Following the fusion operation, a 3 X 3 convolution layer is put here to
smooth the inductive bias of the aggregated features as follows:

Ffusion = Daggregated(concat(Fl; Y Fn))o (3)
where Concat denotes the fusion operation through channel concatenation of all the distillation

features, Dyggregatea denotes the operation, which is one 3 x 3 convolution following one 1 x 1

convolution, and Ff, ., 1s the fused and aggregated features. Finally, the SR output sy is generated

by the reconstruction module as follows:

Isg = Drpc(Frysion + Fo), 4)
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where Dgppc(+) denotes the function of the upscale reconstruction part. The initial extracted feature
Fy is added to the assembled features Frygi0n, through skip connection, and Isg is the output of the
network. The upsample reconstruction works through a convolution layer, whose output channels are
quadratic in relation to the upscale factor with a 3 X 3 kernel size and a sub-pixel shuffle operation
that is non-parametric.
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Figure 1. The architecture of MDRN.

The shallow extracted features predominantly contain low-frequency information, whereas deep
extracted features focus more on restoring fading high-frequency information. The skip connection
path enables MDRN to directly transmit low frequencies to the reconstruction process, which can help
combine information and achieve more stable training.

2.2. Feature multi-distillation residual block

Inspired by the concept of feature distillation and residual learning, we designed the core module-
-feature multi-distillation residual block (FMDRB), which is more efficient and lightweight than the
traditional residual modules. Different from the common residual block (two convolutions and one
activation with identity connection), FMDRB uses an additional path with convolution for feature
distillation and improved residual blocks stacked in the main chain as refinement layers that process
coarse features gradually. We describe the complete structure as follows:
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F:z’istilledJ =D, (F;'n ), F;-emainJ =R (F;n ),

Eﬁstilledj =D, (Eemamg ), Fremamj =R, (F;emamJ )

F;ﬁsnned_a =D, (F;emain_Z ), E~emam_3 =R, (F:'emain_Z )> ) (5)
Fremamj =R, (F;emamj ),

E)ut = Concat(Fdistilled71 ’ EiistilledﬁZ ’ Fwdistilled73 > ‘eremain74 )

where D denotes the distillation operation, R denotes the layer for remaining features, and the
subscript number represents the number of layers. The output feature F,,; fuses the right-most
features processed in the main chain and distilled features in the distillation paths. As described in the
above equations, the distillation operation works concurrently with the residual learning; this structure
shows more efficiency and flexibility than the original residual block commonly used. As such, this
block is called feature multi-distillation residual block.

As shown in Figure 1 below, the feature distillation path in each level is performed by one 1 X 1
convolution layer that effectively compresses feature channels at a fixed ratio; for example, we use input
channels divided by 2. Although most convolutions in the SR model use 3 X 3 kernel size, we note
that employing the 1 X 1 convolution for channel reduction, as done in numerous other CNN models,
is more efficient. As we replace the convolution in the distillation path, the parameter amount is
significantly reduced. The convolutions located in the main body of MDRN still use a 3 X 3 kernel
size, which better refines the features in the main path and more effectively utilizes spatial information
in context.

As shown in Figure 1, despite the improvements mentioned above, we also introduce the base
unit of FMDRB, named BSRB [20], which allows more flexible residual learning than a common
residual block. Specifically, it uses a 3 X 3 Blueprint Separable Convolution (BSConv) [21], an
identity connection, and the ReLU activation layer. BSConv is a 1 X 1 pointwise convolution
followed by a 3 X 3 depthwise convolution, which differs from the standard convolution.

2.3. Contrast-aware channel attention

The initial concept of channel attention, widely recognized as the squeeze-and-excitation (SE)
module, has been extensively used in image processing tasks. The significance of a feature map is
predominantly determined by the activation of high-value regions, as these areas are critical for
classification or detection. Consequently, global average and maximum pooling are commonly utilized
to capture global information in these high- or mid-level visions. While average pooling can indeed
enhance the PSNR value, it lacks the capability to retain structural, textural, and edge information,
which are crucial for improving image detail (as related to SSIM) [19]. As illustrated in Figure 1, the
contrast-aware channel attention module is specific to low-level vision. Specifically, we replace global
average pooling with the summation of standard deviation and mean (evaluating the contrast degree
of a feature map). Let us denote X = [xy, X5, ..., X, ..., Xc] as the input, which has C feature maps
with spatial size of H X W. Therefore, the contrast information value can be calculated by
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Zc = HGC(xc)

_ b 1§ L i’
\/HWUZ (. HWUZ ) HW(,%E:XXC

SJ)EX, L J)EX:

(6)

where z. is the c-th element of output. H;. indicates the global contrast information evaluation
function. With the assistance of the CCA module, our network can steadily improve the accuracy of
super-resolution.

3. Experiments and results
3.1. Dataset and preprocessing

We used the public clinical dataset from The Cancer Imaging Archive [22], which is available at
https://www.cancerimagingarchive.net/collection/vestibular-schwannoma-seg/, named MRI-brain
below. The dataset contains labeled MRI images obtained from 242 patients who received Gamma
Knife radiation treatment and have been diagnosed with vestibular schwannoma. The images were
acquired on a 32-channel Siemens Avanto 1.5T scanner. We used 5000 slices in the MRI-brain
dataset for the training set. For testing the performance of our method, we used the remaining 1000
slices as the testing set. The dataset is enough for training and testing since one patient has
approximately 140-160 slices.

In data preprocessing, first, we converted the DICOM raw files to NumPy files with voxels. Then,
the image pixel data was clipped to range below 2000 and normalized to range [0, 1]. Third, we used
bicubic interpolation as the degradation function of the original HR image to the LR image. The
preprocessing workflow is shown in Figure 2.

L =, =B

Data_range Img_size Data_range

Data_range
Img_size [0,2000] Img_size [0,1] (256,256) [0,1]
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Figure 2. Preprocessing workflow of our data.
3.2. Implementation details

We trained our model with 5 X 10™* learning rate updated by StepLR scheduler and minimizing
the L1 loss function. For the purpose of reducing the training burden, we got patches 192 X 192 from
whole HR images as the input to the network. We used the ADAM optimizer with ; = 0.9, B, = 0.99.
The entire MDRN procedure took approximately 48 h (20,000 iterations per epoch, 200 epochs) for
training and evaluation on the MRI dataset on a single GeForce RTX 3090 GPU with 24 GB of memory.

Following previous works, peak signal-to-noise ratio (PSNR) and structural similarity index
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measure (SSIM) were used to assess the model’s performance. The calculation of these evaluation
metrics is written below:

MAX? 1 - - .. ..
PSNR = 10logyo (Max), MSE = S5 SI23(1.G ) — L (L )T, 7)
SSIM = Quxpy+cy)(oxy+ca) (8)

(u+u3+ci)(af+a5+c)
3.3. Ablation study

We verified the effectiveness of each proposed component in our MDRN introduced before in
detail on the same dataset under the same experiment setting. As shown in Table 1, we itemized the
performance of specific methods.

The Base refers to the model EDSR, which is a common residual block stacked in one path with
one long skip connection, keeping the basic style of the mostly used SR SOTA model. The result of
R; shows the effectiveness of the distillation path outside the FMDRB. The result of R, verifies the
effectiveness of the basic unit (BSRB); as we can see, the block used alone enhances the performance,
overtaking the model constructed from common residual blocks. The result of R; shows the role of
CCA in this proposed method. Results from R, to R; with/without the feature distillation operation
outside/inside the proposed FMDRB, BSRB, and CCA obtain different SR results and outperform the
before model, which further verifies the effectiveness of each proposed method. When the basic
residual units (FMDRBs) are stacked in a chain manner, which is the common structure in the popular
SR models, the model gets lower performance. However, when adding the feature distillation
connections to the main chain of the residual blocks, which is the so-called FMDRB, the enhanced
distillation block gets better performance.

The distillation structure is useful not only inside the enhanced distillation block but also outside
the basic block. The result Ry is without/with the CCA layer; the result using CCA outperforms the
result not using CCA, which verifies that the CCA layer maximizes the performance of FDRB.

Table 1. Ablation study of the different components. The best PSNR values on the 4x
dataset are listed below.

Base Ry R, R, R, Rs Rg R, Ours

Multi-distillation (inside block) V \ \/ V V
BSRB \ \ V \ V
Using CCA \ \ \ \ V
Multi-distillation (outside block) \ \ \ \
PSNR 31.07 31.08 3126 31.54 31.89 31.89 31.97 31.53 32.46

We put the contrast-aware channel attention block in the tail position of the proposed FMDRB,
which maximizes the capability of the proposed module. To prove the effectiveness of the attention
module, we used other attention blocks for comparison, such as CA and ITA. As shown in Table 2, the
results of the ablation study aiming at attention block show that the CCA is effective and has the best
ability for immediate features.
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Table 2. Effects of different attention blocks.

Attention block w/0 CA ITA CCA
PSNR 31.97 31.98 32.12 32.46
SSIM 0.8767 0.8771 0.8778 0.8761

3.4. Comparison with other methods
3.4.1. Quantitative results

The proposed MDRN has inherited the advantages of the residual network and combines the
advantages of the feature distillation network. To prove the excellent performance of MDRN, we
compared our model with popular state-of-the-art SR models, including NTIRE2017 winner EDSR [10],
RCAN [11], large-scale SAN [13], HAN [14], novel IGAN [15], RFDN [23], and the recent DINet [24].
Since most SR SOTA models are tested on DIV2K, which are 3-channel natural images, the
performance comparison between different methods cannot be directly done from cited papers; they
were re-tested on the MRI-brain dataset, composed of single-channel clinical images.

Table 3 demonstrates the comparison of quantitative results for 2x, 4x, and 8x SR. Our MDRN
outperforms existing methods on MR-brain test datasets of all scales. Without using tricks like self-
ensemble, the proposed MDRN network still achieves significant improvements compared to recent
advanced methods. It is notably worth noticing that our model is much better than the EDSR, which
shares a similar basic architecture with MDRN and shows some superiority over RFDN, which also
uses the feature distillation strategy as MDRN. MDRN outperforms methods such as SAN and IGAN,
which have more computationally intensive attention modules. Specifically, MDRN obtains superior
results by 1.82 dB improvement in PSNR compared to the base EDSR in 4x scale, and its SSIM wins
over previous methods. MDRN gains better results by up to 0.44 dB in terms of PSNR than DIPNet.

The efficiency of a SR model can be assessed through various metrics, such as the number of
parameters, runtime, computational complexity (FLOPs), and GPU memory consumption. These
metrics play pivotal roles in the deployment of models in different aspects. Among these evaluation
metrics, the runtime is the most direct indicator of a network’s efficiency and is used as the primary
evaluation metric. Memory consumption is also an important metric because it determines whether the
model can be deployed to the edge device. In a clinical setting, the SR MRI model will be put into
a small GPU, and models needing large-memory GPU will not work as intended. Our MDRN
model gets the best PSNR, which is over 32 dB, only using 325.21 M GPU memory and 27.88 ms
valid runtime, as shown in Table 3, showing a competitive advantage over other methods. To test the
validation of experiment results, we analyzed the statistical significance of the results. As shown in
Table 3, we calculated the P value of the results using the data of every epoch as a collection of
random variables.
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Table 3. Comparison of quantitative results with state-of-the-art SR methods on Brain
Vestibular-Schwannoma datasets in 2%, 4%, and 8x scale. The best and second-best
performances are in red and blue colors, respectively.

Memory Time Scale 2 Scale 4 Scale 8

[M] (ms) PSNR/SSIM PSNR/SSIM PSNR/SSIM
Bicubic -- - 33.66/0.9299 28.44/0.8159 24.40/0.6580
EDSR [10] 2192.74 72.36 34.98%/0.9025%* 30.64*/0.8697* 26.17*%/0.7513*
RCAN [11] 2355.20 498.26 38.27*%/0.9614* 31.65%*%/0.9019*  26.21*/0.7778*
SAN [13] 5017.60 805.23 34.85%/0.9318* 31.09%/0.8432%* 25.39%/0.7359*
IGAN [15] 2099.20 335.77 33.91%/0.9173* 31.73%/0.8744%* 26.32%/0.7804*
HAN [14] 5038.98 719.07 34.97%/0.9576* 31.03%/0.8424* 25.66%/0.7612*
RFDN [23] 813.06 49.51 ** *  31.98%/0.8795* 26.28%/0.7794*
DIPNet [24] 38.27*%*/0.9614* **/0.8712% */ *
Ours 325.21 27.88 39.19/0.9686 32.46/ 26.47/0.8696

#p<0.05, **p<0.001

Table 4. Comparison of quantitative results on other datasets.

BraTS-Gli BraTS-Meni

PSNR/SSIM PSNR/SSIM
Bicubic 32.94/0.9099 30.25/0.8689
EDSR [10] 36.35%/0.9610%* 33.33*/0.9196*
RCAN [11] 36.94*%/0.9513* 33.86*/0.9160*
SAN [13] 37.06%/0.9514* 34.02*/0.9191*
IGAN [15] 37.09*/0.9620* 34.13*/0.9217*
HAN [14] 37.33*/0.9521* 33.83*/0.9197*
RFDN [23] 38.17**/0.9600** 34.08**/0.9214*
DIPNet [24] 38.38*%/0.9623* 34.17*%/0.9218*
Ours 38.92/0.9635 34.25/0.9225

#p<0.05, **p<0.001

3.4.2. Visual results

For a more intuitive demonstration of the gap between these methods, we show the comparison
of zoomed results of various methods. As shown in Figure 3, we randomly select some results from
the test set for evaluation. Taking “img 050112 as an example, most SR methods can reconstruct the
general composition, but only IGAN and MDRN recover the more detailed textures and sharper edges.
In zoomed details of “img 05011, we can see that IGAN, SAN, and RFDN do not clearly restore the
small vessels, while our MDRN obviously does (shown in red arrows). Additionally, as seen in
“img_05024”, MDRN is closer to the ground truth, recovering the cerebrospinal fluid and not
generating blurring artifacts (shown in yellow arrows). Our MDRN can output more high-frequency
information, like enhanced contrast edges, than other methods. Through the observations of visual
results, it is verified that MDRN has superiority in complex feature representations and recovery ability
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over previous works.
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Figure 3. Visual comparison of SR methods in 4x scale on the MRI-brain dataset. Zoomed
details for observation. Colored visualization below for better comparison.
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4. Discussion
4.1. Cost and performance analysis

Deep learning-based methods have been proven to work effectively in the domain of medical
image processing, including SR reconstruction for MR images. Based on the bottleneck of the SR task,
we propose a novel lightweight and fast SR model named MDRN using multi-distillation residual learning.

Figure 4 provides an overview of the comparison of the performance and computation efficiency
of the proposed method and other methods. It is evident that MDRN achieves the best execution time.
Except for SAN and HAN using transformer structure, the computation complexity of SAN and HAN
is 0(n?) and of other models is O(n). The quadratic computation complexity O(n) in relation to
the query/key/value sequence length n leads to high computation costs when using self-attention with
a global receptive field. For a precise assessment of the computation complexity of our method, we
compare it using quantitative metrics with several representative open-source models, as shown in
Table 3. Quantitative results show that our MDRN consumes lower computation resources while
maintaining 32+ PSNR. MDRN has a better trade-off between performance and cost.

Memory
3254  Ours 4600
3200
DIPNet IGAN

_.32.07 RCAN 1800
% RFDN ‘
r 31.54 400
zZ
%)
a

31.0 EDSR SAN

HAN
30.5

0 200 400 600 800 1000
Inference Time (ms)

Figure 4. Comparison of computation efficiency and performance between our method
and other methods.

4.2. Generalization analysis

We conducted generalization experiments by applying the super-resolution model trained on head
and neck magnetic resonance imaging (MRI) images to pelvic CT images, aiming to validate the
model’s generalization performance on different datasets (Table 5). The results demonstrate that our
model achieves a PSNR of 31.4 dB on the pelvic dataset at a 4x magnification factor. This outcome
indicates that our MDRN exhibits favorable generalization performance and is capable of completing
super-resolution tasks on new datasets. Visual quality is shown in Figure 5.
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Table 5. Generalization analysis on pelvic CT images.

Scale 2x 4x 8%
PSNR 36.55 32.35 27.79
SSIM 0.8882 0.8938 0.8928

img_097

P
,P

Scale ><8
PSNR: 27.79

Ground Truth Scale x2 Scale x4
_ PSNR: 36.55

PSNR: 32.35

- .
Scale x 2 Scale x4 Scale x§
Ground Truth PSNR: 36.55 PSNR: 32.35 PSNR: 27.79

Figure 5. Visual quality of SR results on pelvic CT images for generalization study.
5. Conclusions

In this paper, we propose the MDRN, a lightweight CNN model, for efficient and fast super-
resolution MRI tasks using the innovative multi-distillation strategy. Our findings show remarkable
superiority of MDRN over current SR methods, supported by both quantitative metrics and visual
evidence. Notably, MDRN excels at learning discriminative features and striking a better balance
between computational efficiency and reconstruction performance by integrating the feature
distillation mechanism into the network architecture. Extensive evaluations conducted on an MRI-
brain dataset underline the favorable performance of MDRN over existing methods in both
computational cost and accuracy for medical scenarios.
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