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Abstract: In response to the limited capability of extracting semantic information in knowledge graph 
completion methods, we propose a model that combines spatial transformation and attention 
mechanisms (STAM) for knowledge graph embedding. Firstly, spatial transformation is applied to 
reorganize entity embeddings and relation embeddings, enabling increased interaction between entities 
and relations while preserving shallow information. Next, a two-dimensional convolutional neural 
network is utilized to extract complex latent information among entity relations. Simultaneously, a 
multi-scale channel attention mechanism is constructed to enhance the capture of local detailed 
features and global semantic features. Finally, the surface-level shallow information and latent 
information are fused to obtain feature embeddings with richer semantic expression. The link 
prediction results on the public datasets WN18RR, FB15K237 and Kinship demonstrate that 
STAM achieved improvements of 8.8%, 10.5% and 6.9% in the mean reciprocal rank (MRR) 
evaluation metric compared to ConvE, for the respective datasets. Furthermore, in the link 
prediction experiments on the hydraulic engineering dataset, STAM achieves better experimental 
results in terms of MRR, Hits@1, Hits@3 and Hits@10 evaluation metrics, demonstrating the 
effectiveness of the model in the task of hydraulic engineering knowledge graph completion. 
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1. Introduction  

Water conservancy engineering is a fundamental infrastructure closely related to human 
production and livelihood. In its daily management and continuous operation, it has accumulated a 
wealth of data. Achieving the scientific management of data related to water conservancy engineering 
is of paramount significance for driving the digital transformation of the water conservancy sector. A 
knowledge graph [1,2] is a semantic network that reveals entities, concepts and their relationships 
existing in the real world. It is composed of a large number of triplets (head entity, relation, tail entity). 
The emergence of knowledge graphs has revolutionized traditional knowledge storage methods, 
providing a better means to organize, manage and comprehend massive amounts of information in the 
field of hydraulic engineering. Currently, deep learning models find widespread application in the field 
of engineering [3,4]. With the continuous advancement of water information technology, the 
application of knowledge graph technology in the water conservancy field is gradually expanding and 
deepening. Yan et al. [5] constructed a water affairs knowledge graph, achieving integrated 
management of water-related information. Feng et al. [6] built a knowledge graph for water 
conservancy object data. Wang et al. [7] utilized a knowledge graph of water conservancy engineering 
to implement intelligent emergency plan generation. These domain-specific knowledge graphs 
integrated with the water conservancy industry are essential for consolidating various water resource 
data and promoting the intelligent development of the industry. 

However, due to the multi-source heterogeneity of data in knowledge graphs [8] and the 
complexity of knowledge extraction processes [9–11], knowledge graphs suffer from the issue of 
incomplete information, severely impacting their effectiveness in practical applications [12]. 
Traditionally, rule-based methods have been employed to address data incompleteness in water 
conservancy knowledge graphs [6]. However, these methods rely on a large number of manually 
extracted rules, which come with the drawbacks of high cost and low efficiency. They are unable to 
effectively complete and optimize large-scale knowledge graphs. Among the various knowledge graph 
completion methods, knowledge graph embedding (KGE) models [13,14] have gained widespread 
attention in recent years. KGE models, by learning low-dimensional representations of knowledge 
graphs, make the graph computable, more easily integrable with deep learning models and better 
equipped to support knowledge graph completion tasks [15]. 

In existing research on knowledge graph embeddings, translation models often employ shallow 
structures and model the relationships between entities in a simple and intuitive manner. For example, 
TransE [16], TransH [17] and TransD [18] consider relations as translations between head and tail 
entities. RotatE [19] defines each relation as a rotation in the complex vector space from the head entity 
to the tail entity. These models can effectively learn explicit knowledge in knowledge graphs and 
exhibit high computational efficiency. However, due to the limitations of shallow and linear structures, 
these models struggle to extract latent knowledge between entity relationships and perform poorly in 
handling complex relationships. In recent years, owing to the powerful feature extraction capabilities 
of convolutional neural networks (CNNs), KGE models based on CNNs have gained increasing 
attention from researchers. ConvE [20] was the first model to introduce a 2D convolutional neural 



1396 

Mathematical Biosciences and Engineering  Volume 21, Issue 1, 1394–1412. 

network into knowledge representation tasks. However, ConvE constructs the input matrix for 2D 
convolution in a simple stacking manner (Figure 1(a)), limiting the interaction between entities and 
relationships. As shown in Figure 1(b), interaction information can only be captured when the 
convolutional kernel is positioned at the concatenation of entity and relationship embeddings. 
Subsequently, ConvR [21] reshapes relationship embeddings into convolutional kernels to achieve 
complete interaction between entities and relationships. InteractE [22] proposes a novel reshaping 
method to maximize heterogeneous interaction between entities and relationships. Improving the 
interaction mode enhances the expressive power of the model, so further exploration of more effective 
ways of interaction between entity and relationship embeddings is necessary. Furthermore, due to the 
non-linear operation of multiple layers of convolution, models may lose explicit knowledge during the 
convolution process [23]. And since convolution operates within local neighborhoods, CNNs fail to 
capture global semantic information. Increasing the size of convolutional kernels and the number of 
convolutional layers results in the loss of local detailed features and reduces efficiency. Therefore, 
addressing how to further enhance the capture of both local and global features is a problem that needs 
to be addressed. 

 

(a)  (b) 

Figure 1. Partial operations of the ConvE Model. (a) Interaction mechanism between 
embeddings in ConvE; (b) Convolutional operation in ConvE. 

Based on the aforementioned issues, this paper introduces a knowledge graph embedding model 
called STAM, which couples spatial transformation and attention mechanism. STAM achieves deep 
interaction between vectors through projection transformation and element-wise fusion. During this 
interaction, the model refrains from splitting embeddings into other spatial dimensions, thus preserving 
more linear features within the embedding vectors. Furthermore, inspired by the InteractE model, 
STAM reorders the internal elements of vectors before element-wise fusion, further enhancing the 
interaction between entity embeddings and relation embeddings. To learn the deep connections 
between entities and relations, STAM introduces two-dimensional convolution to process interaction 
embeddings. Additionally, a novel multi-scale channel attention mechanism is employed to augment 
the model’s focus on both global information and fine-grained features, ultimately yielding feature 
embeddings with richer information. The contributions of the paper are as follows: 
 Proposing a novel approach for the interaction between entity embedding and relationship 

embedding by element-wise fusion of entities and relationships on two separate hyperplanes to 
achieve comprehensive fusion while preserving the shallow information between entities and 
relationships. 

 Constructing a multi-scale channel attention mechanism to fuse global deep features and local 
low-level features in the feature map enhances the attention of the model to key features. 

 The STAM model is applied to a hydraulic engineering dataset, and experimental results 
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demonstrate that it outperforms representative baseline methods significantly in link prediction tasks. 

2. Related work 

2.1. Translation models 

Inspired by the phenomenon of translation invariance in word embedding space, translation 
models utilize relations to explicitly represent the hidden semantic correlations between entity vectors. 
TransE, the first proposed translation model, has had a profound impact on the research of knowledge 
graph embeddings. The core idea of TransE is to consider relations as translations from the head entity 
to the tail entity, which is a simple and efficient approach. However, it struggles to handle complex 
relationships such as 1-N, N-1 and N-N. To address this problem, TransH defines separate hyperplanes 
for each relation and projects entities onto the hyperplane corresponding to the relation. This allows 
entities to have different representations under different relations, thereby enhancing the ability of the 
model to represent complex relationships. Unlike TransH, TransR [24] embeds entities and relations 
into different spaces and models triplets in the space corresponding to the relation. This enables the 
model to distinguish multi-faceted information contained in entities. Inspired by Euler’s formula, 
RotateE adopts a rotation operation in a low-dimensional space to represent different types of relations 
by rotating the relation vector by a certain angle. This approach better handles symmetric and 
antisymmetric relationships in knowledge graphs. 

2.2. Neural network-based methods 

Translation models have strong interpretability and high computational efficiency. However, they 
struggle to capture deep associations between entity embeddings and relation embeddings, making 
them less suitable for large-scale knowledge graphs with complex structures. In recent years, with the 
rapid development of neural networks, a series of knowledge graph embedding models combined with 
deep learning techniques have been proposed [25]. ConvE utilizes a multi-layer CNN to extract local 
interaction features between head entity embeddings and relation embeddings. Leveraging the 
characteristics of convolutional networks, this convolution-based approach can extract rich semantic 
features and achieve high parameter utilization, significantly improving model performance. CNN-
based knowledge graph embedding methods have become a current research focus. The ConvE model 
treats the head entity and relation as inputs to the CNN, ignoring the global features of triplets. To 
utilize the global features of triplets, ConvKB [26] stacks the embeddings of head entity, relation and 
tail entity into a three-column matrix, which is then fed into the CNN. This captures the global features 
and transitional features between entities and relations, achieving good results in link prediction 
tasks [27,28]. Addressing the limitation of ConvE and ConvKB in only extracting interaction 
information at the concatenation point of entities and relations, InteractE [22] proposes three main 
viewpoints: feature permutation, checkered reshaping and circular convolution. These maximize the 
heterogeneous interaction between entities and relations, enhancing the expressive power of the model 
and achieving more competitive results in knowledge graph completion tasks. Similarly, addressing 
the issue of insufficient interaction between entities and relations, ConvR [21] does not solely use static 
convolution for feature extraction. Instead, it reshapes the relation into a convolutional kernel and 
performs convolution on the reshaped entity as a 2D matrix, ensuring that the resulting feature maps 
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contain rich interaction features, achieving complete interaction between entities and relations. 
HypER [29] further enhances the model’s interpretability by employing relation-specific 
convolutional filters generated by a hypernetwork for head entity convolution. The multi-view feature 
augmented neural network (MFAE) [30] combines multi-view spatial transformations with feature-
enhanced convolutional networks to obtain more feature information corresponding to entities and 
relations, thus improving effectiveness of the model. 

Translation models are capable of capturing shallow semantic information between entities and 
relations, but they lack the expressive power of neural network models. CNNs can capture latent 
features between entities and relations, but often overlook shallow information. Therefore, this paper 
proposes the STAM model, which utilizes spatial transformation to achieve deep interactions between 
entity embeddings and relation embeddings while preserving shallow information between entities and 
relations. Additionally, it combines CNNs with a multi-scale channel attention mechanism to fully extract 
latent information between entities and relations, thereby strengthening the model’s expressive power. 

3. Methodology 

3.1. Notations 

Representing the knowledge graph as 𝐺 𝐸, 𝑅, 𝑇 , where 𝐸 𝑒 , 𝑒 , , 𝑒| |  represents the set 
of entities in the knowledge graph, 𝑅 𝑟 , 𝑟 , , 𝑟| |   represents the set of relationships in the 
knowledge graph and 𝑇 𝑒 , 𝑟, 𝑒 𝜖𝐸 𝑅 𝐸  represents the set of triples in the knowledge graph. 
In each triple, the head entity, relationship and tail entity are represented as 𝑒 , 𝑟 and 𝑒 , respectively. 
Additionally, the knowledge graph embedding models always project the triples 𝑒 , 𝑟, 𝑒   onto a 
lower-dimensional space to obtain vector representations for the triples. In this paper, we use 𝑘 , 𝑘 , 𝑘 ∈
ℝ   to represent the vector representations of the head entity, relationship and tail entity in the low-
dimensional space, where 𝑘 denotes the dimensionality of the low-dimensional space. 

To evaluate the performance of the model, we adopt the link prediction task. The link prediction 
task involves predicting the missing entity given the head entity and relationship or predicting the 
missing head entity given the relationship and tail entity. It can be represented as 𝑒 , 𝑟, ?  or ? , 𝑟, 𝑒 . 
We define a scoring function 𝜑 𝑒 , 𝑟 , 𝑒 ∈ ℝ to calculate the score of a triple, where a higher score 
indicates a higher probability of the triple being valid. 

3.2. STAM 

The overall framework of STAM, as shown in Figure 2, consists of three main components: 
spatial transformation, multi-scale channel attention and information fusion. The model comprises two 
feed-forward paths, Path 1 and Path 2. In Path 1, the entities and relations go through projection, 
element rearrangement and element-wise interaction, resulting in a set of interaction vectors 𝑆 . In 
Path 2, the entities and relations are directly subjected to element rearrangement and element-wise 
fusion, generating another set of interaction vectors 𝑆 . The model applies identical operations to both 
paths, including convolution, channel weight adjustment, important feature extraction and feature fusion. 
Finally, the information from both paths is merged to obtain the final feature embedding 𝑉. 
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Figure 2. The architecture of STAM. Conv represents the convolution operation. GMP 
denotes global maximum pooling. GAP represents global average pooling. PW refers to 
pointwise convolution. 

3.2.1. Spatial transformation 

The degree of interaction between entity embeddings and relation embeddings significantly 
influences the potential semantic extraction capability of knowledge graph embedding models. 
Therefore, we achieve deep interactions between entities and relations through projection and element-
wise fusion operations, resulting in two sets of interaction vectors that reside on different hyperplanes 
and provide complementary information. The specific interaction process is illustrated in Figure 3. 
Firstly, the entity embedding 𝑘  is mapped to the hyperplane 𝛼 specific to the relation embedding 𝑘  
(Figure 3(a)), obtaining the projected vector 𝑘  . Then, we fuse the element-rearranged projected 
vector 𝑘   with the relation embedding 𝑘   element-wise (Figure 3(b)), obtaining the interaction 
information 𝜈  that emphasizes relations. By directly element-wise fusing the entity embedding 𝑘  and 
the relation embedding 𝑘   (Figure 3(b)), the direct interaction information 𝑣   between entities and 
relations is obtained.  

 
 
 

(a)  (b) 

Figure 3. The interaction between entities and relations. (a) Spatial projection; (b) 
Element-wise fusion. 

Additionally, to preserve the integrity of entity embeddings and relation embeddings and retain 
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more linear features and shallow information, we do not split the embeddings into other dimensions in 
the space. And to further capture richer interaction information between entities and relations, we 
perform t rounds of rearrangement on the internal elements of the entity embedding 𝑘  , relation 
embedding 𝑘  and the projected vector 𝑘 . The specific operation is illustrated in Figure 4, resulting 
in a new set of entity embeddings 𝐾 , relation embeddings 𝐾  and projected vectors 𝐾 .  

……
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Figure 4. Rearrangement of elements in a vector. 

The specific process is as follows: 

𝐾 𝑘 , 𝑘 , ⋯ , 𝑘 𝜙 𝑘   𝐾 𝑘 , 𝑘 , ⋯ , 𝑘 𝜙 𝑘 ,  (1)

𝑘 𝑘 𝑊 𝑘 𝑊   𝐾 𝑘 , 𝑘 , ⋯ , 𝑘 𝜙 𝑘 ,  (2)

𝑆 𝑣 , 𝑣 , ⋯ , 𝑣 𝐾 ∘ 𝐾 ,  (3)

𝑆 𝑣 , 𝑣 , ⋯ , 𝑣 𝐾 ∘ 𝐾 ,  (4)

where 𝜙  represents 𝑡 random element permutations applied to the vectors. 𝑘 , 𝑘 , 𝑘 𝜖ℝ  denotes 
the entity embeddings, relation embeddings and projection vectors after internal element 
rearrangements. 𝐾 𝜖ℝ  represents a new set of entity embeddings. 𝐾 𝜖ℝ  represents a new set of 
relation embeddings. 𝐾 𝜖ℝ  represents a new set of projection vectors. ∘ denotes the Hadamard 
product. 𝑊  𝜖ℝ   is a trainable parameter denoting the normalized normal vector of hyperplane 𝛼 
corresponding to relation 𝑘 . In our model, each relation corresponds to a unique hyperplane, and the 
normal vector of the hyperplane is initialized by the model and adjusted and optimized during the 
training process. 

The 𝑣  and 𝑣  in 𝑆  and 𝑆  are reshaped into two-dimensional data resembling images, denoted 
as 𝑟𝑒 𝑆  and 𝑟𝑒 𝑆 , respectively. Then, a two-dimensional convolution operation is performed on 
each of them to obtain feature maps. The process is as follows: 

𝑆 ∈ ℝ → 𝑟𝑒 𝑆 ∈ ℝ   𝑆 ∈ ℝ → 𝑟𝑒 𝑆 ∈ ℝ , (5)

𝑀 𝑟𝑒 𝑆 ∗ 𝜔 , (6)

𝑀 𝑟𝑒 𝑆 ∗ 𝜔 , (7)

where 𝑘 𝑘 𝑘, ∗ denotes the convolution operation, 𝜔 ,𝜔 𝜖ℝ  are the convolution kernels, 
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𝑐  represents the number of filters, 𝑝  and 𝑞  denote the height and width of the filters and 𝑀  , 

𝑀 𝜖ℝ  are the feature maps. 

3.2.2. Multi-scale channel attention 

The paper introduces a multi-scale channel attention mechanism, which computes attention 
weights for each channel of feature maps at multiple scales. This mechanism enables the model to 
capture richer contextual information, fine-grained features and multi-scale information, thereby 
enhancing the representation ability of the model for entities and relations. The overall framework of 
the multi-scale channel attention mechanism is shown in Figure 5.  

 

Figure 5. The overall framework of the multi-scale channel attention mechanism. 

Firstly, global max pooling and global average pooling are used to aggregate global information, 
resulting in the global channel context, 𝐺  and 𝐺 , for the two pathways. The specific operations are 
as follows: 

𝐺 𝐺𝑀𝑃 𝑀 ∗ 𝜔 ∗ 𝜔 ,  (8)

𝐺 𝐺𝐴𝑃 𝑀 ∗ 𝜔 ∗ 𝜔 , (9)

𝐺 𝐺 𝐺 , (10)

𝐺 𝐺𝑀𝑃 𝑀 ∗ 𝜔 ∗ 𝜔 , (11)

𝐺 𝐺𝐴𝑃 𝑀 ∗ 𝜔 ∗ 𝜔 , (12)

𝐺 𝐺 𝐺 , (13)

where 𝐺𝑀𝑃   represents global max pooling. 𝐺𝐴𝑃   represents global average pooling. 𝜔 ∈
ℝ  is the convolution kernel for the first convolution, with 𝑐  indicating the number of filters 

Feature map

GlobalAvgPoolin
g

Point-wise Conv Point-wise Conv Point-wise Conv

Point-wise ConvPoint-wise Conv 2D Conv

Refine feature map

11c 11c

111 c )1-()1-( 22 1
 qkpkc

)1-()1-( 21
 qkpkc

111 c

Sigmoid

11c 11c )1-()1-( 21
 qkpkc

)1-()1-( 21
 qkpkc

GlobalAvgPooling

Point-wise Conv

Point-wise ConvPoint-wise Conv

GlobalMaxPooling 



1402 

Mathematical Biosciences and Engineering  Volume 21, Issue 1, 1394–1412. 

and 1 1 indicating the height and width of the filters. 𝜔 ∈ ℝ  is the convolution kernel for the 
second convolution, with 𝑐 indicating the number of filters and 1 1 indicating the height and width 
of the filters, where 𝑐 𝑐 . 

Next, we employ pointwise convolution and regular convolution to aggregate local information, 
obtaining local channel contexts 𝐿  and 𝐿  on the two paths. 

𝐿 𝑀 ∗ 𝜔 ∗ 𝜔 ,  (14)

𝐿 𝑀 ∗ 𝜔 ∗ 𝜔 , (15)

where 𝜔 ∈ ℝ  is the kernel of the first convolution with 𝑐  representing the number of filters 
and 1 1 representing the height and width of the filters. 𝜔 ∈ ℝ  is the kernel of the second 
convolution, where 𝑐 represents the number of filters, 3 3 represents the height and width of the 
filters and 𝑐 𝑐 . It is worth noting that in both convolution operations, zero-padding is used to ensure 
that 𝐿 ,𝐿  𝜖ℝ , and the input features have the same shape, preserving fine-grained 
information in the shallow features. 

Finally, the refined features 𝑀 , 𝑀  𝜖ℝ  , which incorporate both local and 
global contextual information, are obtained by adding 𝐿   and 𝐿   to the global contexts 𝐺   and 𝐺  
within the attention module: 

𝑀 𝑀 ∘ 𝜎 𝐿 ⊕ 𝐺 ,  (16)

𝑀 𝑀 ∘ 𝜎 𝐿 ⊕ 𝐺 , (17)

where 𝜎  represents the sigmoid activation function and ⊕ denotes the broadcasting addition. 

3.2.3. Information fusion 

As mentioned earlier, 2D convolution can extract complex latent information between entity 
relationships, but deep-level operations ignore surface explicit knowledge. To obtain richer semantic 
information, we combine the refined features 𝑀  and 𝑀  with the surface explicit features 𝑀  and 𝑀 . 
Then, we flatten and project the resulting features into a k-dimensional space, obtaining 𝑉  and 𝑉 . 

𝑉 𝑓 𝑣𝑒𝑐 𝑀 𝑀 𝑊 𝑏 ,  (18)

𝑉 𝑓 𝑣𝑒𝑐 𝑀 𝑀 𝑊 𝑏 , (19)

where 𝑉 , 𝑉 ∈ ℝ  . 𝑣𝑒𝑐   denotes the vectorization operation. 𝑓   represents the ReLU activation 
function. 𝑊 ∈ ℝ𝒌  and 𝑏 ∈ ℝ𝒌 are parameters of the fully connected layer, with 𝑛 𝑐 𝑘 𝑝
1 𝑘 𝑞 1 . 

The final feature embedding 𝑉 is obtained by element-wise addition of the results 𝑉  and 𝑉  from 
the two pathways. 

𝑉 𝑉 𝑉 , (20)

where 𝑉 ∈ ℝ . 
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3.2.4. Scoring function 

By taking the inner product between the feature embedding 𝑉 and the tail entity vector 𝑘 , we 
calculate the score of the input triplet 𝑒 , 𝑟, 𝑒 . The scoring function of STAM is defined as follows: 

𝜑 𝑒 , 𝑟, 𝑒 𝜎 𝑉 𝑘𝑡 𝑏 ∈ 0,1 , (21)

where 𝜎  represents the sigmoid function.  denotes matrix multiplication. 𝑏 ∈ ℝ represents the bias 
term. During training, the standard binary cross-entropy is used to compute the loss. 

4. Experiments 

4.1. Datasets 

In this study, we validate the effectiveness of the model using WN18RR [20], FB15K-237 [31], 
Kinship [32] and a hydraulic engineering dataset. WN18RR and FB15K-237 are the most widely used 
general-domain datasets in recent years for knowledge graph completion tasks. WN18RR is derived 
from the WN18 [33] dataset, while FB15K-237 is derived from the FB15K [16] dataset. Due to the 
presence of numerous inverse relations in the WN18 and FB15K datasets, models can achieve very 
advanced results through simple reverse rule application, making it difficult to effectively distinguish 
the superiority of different models. To ensure the accuracy of experimental results, Dettmers et al. [20] 
removed triplets with inverse relations from the WN18 and FB15K datasets, resulting in the WN18RR 
and FB15K-237 datasets. We also utilized two domain-specific datasets, namely the Kinship dataset 
from the social domain and a hydraulic engineering dataset, to investigate the model’s generalization 
ability on specific domain datasets. 

WN18RR consists of 11 relations and 40,943 entities. FB15K-237 has 237 relations and 14,541 
entities. Kinship is a small dataset describing kinship relationships, consisting of 25 relations and 104 
entities. The hydraulic engineering dataset (HEDS) includes hydraulic engineering cases, 
fundamental knowledge of hydraulic engineering, hydraulic geographical information, totaling 6088 
entities and 509 relations. To conduct model training, evaluation and tuning, the article divides the 
hydraulic engineering dataset into a training set (70%), a test set (20%) and a validation set (10%). The 
statistical information of the datasets is presented in Table 1. 

Table 1. The statistical information of the datasets. 

Dataset Entities Relations 
Triplets 

Train Valid Test 
WN18RR 40,943 11 86,835 3034 3134

FB15K-237 14,541 237 272,115 17,535 20,446 

Kinship 104 25 8544 1068 1074 

HEDS 6088 509 15,662 4475 2237 

4.2. Evaluation metrics 

In the experiments, the performance of the model is evaluated using mean reciprocal rank (MRR) 
and Hits@n metrics. For a given test triplet 𝑒 , 𝑟, 𝑒 , candidate triplets are generated by replacing the 
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tail entity 𝑒   with all other entities 𝑒 ∈ 𝐸  in the knowledge graph. The test triplet 𝑒 , 𝑟, 𝑒   and 
candidate triplets are then scored together, and the scores are ranked in descending order. Hits@n 
represents the proportion of test triplets whose score ranks are less than or equal to n. The calculation 
formulas are as follows: 

𝐻𝑖𝑡𝑠@𝑛
1

|𝑀|
𝐼 𝑟𝑎𝑛𝑘 𝑛

| |

, (22)

where 𝑀 represents the test set. |𝑀| represents the number of triplets in the test set. 𝑟𝑎𝑛𝑘  represents 
the ranking of the i-th test triplet in the link prediction task. 𝐼  denotes the indicator function, which 
takes the value of 1 when the condition is true and 0 otherwise. 

MRR represents the average reciprocal rank of all test triplets. The calculation formula is as follows: 

𝑀𝑅𝑅
1

|𝑀|
1

𝑟𝑎𝑛𝑘

| |

, (23)

The symbols have the same meanings as Hits@n. When a knowledge graph embedding model achieves 
high Hits@n and MRR values, it indicates better performance. It is worth noting that MRR not only 
considers whether the correct triplets appear in the top-k rankings but also takes into account their 
positions in the ranking list, providing a more comprehensive evaluation of the performance of 
knowledge graph embedding models. Therefore, this paper focuses more on the MRR metric. 

4.3. Experimental settings 

In this paper, grid search was used for hyperparameter tuning. The Adam optimizer was employed 
for training, with 1000 iterations on the public datasets FB15K-237, WN18RR and Kinship, and 500 
iterations on the hydraulic engineering dataset. The hyperparameter ranges for grid search were as 
follows: learning rates were {0.0005, 0.001, 0.0008}, dropout rates for the input layer, feature maps 
and hidden layers were {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, the number of convolutional kernels 
were {32, 64, 96, 128, 256} and the kernel sizes were {3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11}. 

The entity embedding dimension and relation embedding dimension were set to 400 for all 
datasets. The hyperparameter settings for STAM on FB15K-237, WN18RR, Kinship and the hydraulic 
engineering dataset are presented in Table 2. 

Table 2. The hyperparameter settings on different datasets. 

Dataset 
Learning 
rate 

Batch 
size 

Dropout 
Kernel 
size 

Embedding 
size 

Kernel 
number Input 

Feature 
map 

Hidden 
layer 

FB15K-237 0.001 128 0.3 0.6 0.3 9 × 9 400 96 

WN18RR 0.001 128 0.2 0.6 0.2 9 × 9 400 96 

Kinship 0.0005 128 0.7 0.1 0.8 9 × 9 400 96 

HEDS 0.001 128 0.1 0.2 0.4 7 × 7 400 32 
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4.4. Results and discussion 

The paper first evaluates the link prediction capability of STAM on WN18RR and FB15k-237 
datasets, comparing it against several baseline models: translation models (TransE, TransR, RotatE), 
neural network-based models (ConvE, HypER, ConvR, interactE, MFAE).  

The final experimental results are presented in Table 3, where the best results are shown in bold 
and the second-best results are underlined. It can be observed that on the FB15k-237 dataset, STAM 
outperforms all other baseline models on the four evaluation metrics. Compared to ConvE, STAM 
achieves notable improvements of 10.5% in MRR and 12.2% in Hits@1. In comparison with InteractE 
and MFAE, STAM exhibits stronger competitiveness on the four evaluation metrics, indicating its 
ability to capture more diverse and effective information. On the WN18RR dataset, STAM outperforms 
the best-performing neural network-based baseline model MFAE on all metrics except Hits@1. This 
indicates that introducing spatial transformation and attention mechanisms in CNNs can effectively 
capture the complex relationships between entities, leading to significant improvements in link 
prediction experiments.  

Overall, neural network-based models demonstrate better ability to capture the semantic 
relationships between entities and relations, making them more advantageous in handling large-scale 
knowledge graphs compared to translation models. However, on the WN18RR dataset, RotatE 
outperforms neural network-based models in terms of MRR, Hits@10 and Hits@3. We attribute this 
to the relatively sparse relations in WN18RR, which align well with RotatE’s proposed complex space 
rotation operation. On the other hand, due to the more complex relations in FB15K-237, RotatE 
performs poorly on this dataset, with substantially lower scores than STAM on the four evaluation 
metrics. In conclusion, STAM achieves favorable performance on both WN18RR and FB15k-237 
datasets, demonstrating its strong generalization capability and its ability to effectively model 
complex relationships. 

Table 3. Link prediction results of models on WN18RR and FB15k-237. 

Models 
WN18RR FB15K-237 

MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1 

TransE 0.192 0.435 0.367 0.21 0.288 0.478 0.325 0.192 

TransR 0.401 0.465 0.389 0.345 0.263 0.428 0.267 0.168 

RotatE 0.474 0.571 0.490 0.425 0.318 0.525 0.358 0.216 

ConvE 0.430 0.520 0.440 0.400 0.325 0.501 0.356 0.237 

HypER 0.465 0.522 0.477 0.436 0.341 0.520 0.376 0.252 

ConvR 0.467 0.524 0.480 0.437 0.350 0.528 0.385 0.261 

interactE 0.463 0.528 0.481 0.430 0.354 0.535 0.390 0.263 

MFAE 0.467 0.530 0.482 0.437 0.355 0.540 0.390 0.263 

STAM 0.468 0.535 0.484 0.435 0.359 0.541 0.394 0.266 

The evaluation of STAM on the small-scale Kinship dataset was also conducted, comparing it 
with baseline models TransE, RotatE, ConvE, ConvR, InteractE and MFAE. The experimental results 
are presented in Table 4. It can be observed that STAM outperforms all baseline models on the four 
evaluation metrics. Additionally, due to the limited number of relations in the Kinship dataset (only 25 
relations), RotatE performs well and achieves results second only to STAM in terms of MRR and 
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Hits@1. Notably, the previously successful models, interactE and MFAE, which exhibited excellent 
performance on the WN18RR and FB15K-237 datasets, show poor performance on the Kinship dataset, 
scoring even lower than the proposed ConvE model based on 2D convolutional neural networks. STAM 
outperformed InteractE and MFAE in MRR by 14.2% and 24.6%, respectively, and exceeded the best-
performing convolutional model, ConvR, by 6.6% in terms of MRR. These results demonstrate that 
STAM’s performance on the Kinship dataset is superior to the currently advanced convolutional neural 
network models. It can extract meaningful features from limited information and achieve effective 
modeling of specific domain datasets, showcasing strong generalization capability. 

Table 4. Link prediction results of models on Kinship. 

Models 
Kinship 

MRR Hits@10 Hits@3 Hits@1 

TransE 0.309 0.841 0.643 0.090 

RotatE 0.843 0.978 0.919 0.760 

ConvE 0.830 0.980 0.920 0.740 

ConvR 0.832 0.964 0.912 0.750 

interactE 0.777 0.959 0.870 0.664 

MFAE 0.712 0.893 0.797 0.606 

STAM 0.887 0.986 0.949 0.821 

To further validate the effectiveness of the STAM model in completing the knowledge graph in 
hydraulic engineering, this paper evaluated the STAM model on a hydraulic engineering dataset. The 
experimental results are shown in Table 5. It can be observed that convolutional neural network-based 
models achieve better results compared to traditional translation-based models, indicating that CNNs 
can effectively capture rich nonlinear features between entities and relations, leading to better fitting 
performance on complex datasets with a large number of entity and relation objects. Moreover, in the 
link prediction task on the water conservancy engineering knowledge graph, the proposed STAM 
model outperforms the baseline models in all evaluation metrics. Compared to the best-performing 
convolutional models, InteractE and MFAE, STAM achieves a 3.1% and 2% improvement in MRR, 
respectively. This demonstrates that our model captures more effective explicit features and latent 
information between entities and relations during feature extraction, making it suitable for completing 
tasks on water conservancy engineering knowledge graphs with complex relationships. 

Table 5. Link prediction results of the model on the hydraulic engineering dataset. 

Models 
Hydraulic engineering dataset 

MRR Hits@10 Hits@3 Hits@1 

TransE 0.085 0.179 0.091 0.040 

RotatE 0.091 0.177 0.098 0.040 

ConvE 0.349 0.661 0.406 0.207 

ConvR 0.336 0.640 0.394 0.197 

interactE 0.354 0.666 0.416 0.210 

MFAE 0.358 0.672 0.421 0.214 

STAM 0.365 0.680 0.429 0.220 



1407 

Mathematical Biosciences and Engineering  Volume 21, Issue 1, 1394–1412. 

4.5. Ablation study 

To validate the effectiveness of each module in the STAM model, ablative experiments were 
conducted on a hydraulic engineering dataset. The experimental results are presented in Table 6, with 
the best results highlighted in bold. STAM-Att denotes the removal of the multi-scale channel attention 
module from the model. STAM-ST indicates the exclusion of the spatial transformation module from 
the model. STAM-Sp represents the removal of the interaction vector 𝑆   from the spatial 
transformation module. STAM-Sr represents the removal of the interaction vector 𝑆  from the spatial 
transformation module. 

The results demonstrate that the STAM model achieves optimal performance across all metrics. 
When the multi-scale channel attention is removed, the overall performance of the model declines, 
indicating that attention mechanisms effectively integrate local detailed features and global semantic 
features, thereby enhancing the model’s expressive power. In ablative experiments on the spatial 
transformation module, direct element-wise addition is used to fuse entity vectors and relation vectors. 
However, as evident from Table 6, the model fails to achieve the best performance, validating the 
proposition that the spatial transformation module proposed in this study more effectively integrates 
entity embeddings and relation embeddings. Comparing STAM with STAM-Sp and STAM-Sr, it is 
observed that removing the interaction vectors 𝑆  and 𝑆  from the module leads to a decrease in model 
performance. This further confirms the effectiveness of the spatial transformation module and verifies 
the necessity of the two sets of interaction vectors in the spatial transformation module. 

Table 6. Results of ablation study. 

Models 
Hydraulic engineering dataset 

MRR Hits@10 Hits@3 Hits@1 

STAM-Sr 0.359 0.673 0.42 0.215 

STAM-Sp 0.358 0.672 0.42 0.214 

STAM-Att 0.362 0.678 0.426 0.217 

STAM-ST 0.333 0.643 0.388 0.194 

STAM 0.365 0.680 0.429 0.220 

4.6. Parameter sensitivity analysis 

Dropout rate settings: To analyze the impact of dropout rates on the performance of STAM, 
we set the dropout rate range for feature maps and hidden layers as [0.0, 0.5] and conducts 
experiments on the hydraulic engineering dataset. Figure 6 shows the performance of STAM in 
terms of MRR and Hits@3 under different dropout rates. The results indicate that when the model 
applies dropout operations to both the hidden layers and feature maps, it achieves better 
performance, suggesting that setting appropriate dropout rates for feature maps and hidden layers 
can effectively enhance the model’s expressive power. It is worth noting that the model achieves 
the best results on the hydraulic engineering dataset when the dropout rates for feature maps and 
hidden layers are set to 0.2 and 0.4, respectively. 
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(a)  (b) 

Figure 6. The impact of dropout rates on the experimental results. (a) Performance of MRR; 
(b) Performance of Hits@3. 

Number of convolutional kernel settings: To analyze the impact of the number of convolutional 
kernels on the performance of the STAM model, we conducted experiments on the hydraulic 
engineering dataset with different numbers of convolutional kernels: 16, 32, 64, 96 and 128, while 
keeping other parameters unchanged. Figure 7 illustrates the performance of STAM in terms of MRR, 
Hits@10, Hits@3 and Hits@1 under different numbers of convolutional kernels. From the Figure 7, it 
can be observed that the number of convolutional kernels has a certain impact on the model’s 
performance. When the number of kernels is too small, such as setting it to 16, the limited feature 
combinations restrict the model’s expressive power. On the other hand, when the number of kernels is 
too large, such as setting it to 128, the model may overfit and fail to achieve optimal performance. 
According to the experimental results, the model achieves the best performance when the number of 
convolutional kernels is set to 32, reaching the optimal values in all metrics except Hits@1. 

 

Figure 7. The influence of the number of convolutional kernels on the experimental results. 

Convolutional kernel size settings: To analyze the impact of convolutional kernel size on the 
performance of the STAM model, we conducted experiments with different convolutional kernel sizes 
of 3 × 3, 5 × 5, 7 × 7, 9 × 9 and 11 × 11 on the hydraulic engineering dataset. Figure 8 illustrates 
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the performance of STAM in terms of MRR, Hits@10, Hits@3 and Hits@1 under different 
convolutional kernel sizes. The results indicate that the model achieves optimal performance when the 
convolutional kernel size is 7 × 7. Using smaller convolutional kernel sizes, such as 3 × 3 and 5 × 5, 
limits the number of interactions. On the other hand, larger convolutional kernel sizes, such as 9 ×9 
and 11 × 11, lead to overfitting and fail to achieve the model’s best performance. 

 

Figure 8. The influence of convolutional kernel sizes on experimental results. 

5. Conclusions 

This paper proposes a novel knowledge graph embedding model called STAM, which is based 
on spatial transformation and attention mechanism. STAM leverages spatial transformation for 
interactive fusion of entity relations, effectively preserving the explicit surface features between entity 
relations. Additionally, it incorporates a multi-scale channel attention mechanism, allowing the model 
to simultaneously focus on local details and global features, capturing complex relationships among 
entities in the knowledge graph to a great extent. We conducted experiments comparing STAM with 
classical knowledge graph embedding models on public datasets such as WN18RR, FB15K-237 and 
Kinship, and achieved promising results. Furthermore, STAM outperformed other models on the 
hydraulic engineering dataset, demonstrating its strong generalization ability. In this study, the model 
emphasizes the extraction of entity relation features within triplets. In future work, we plan to 
incorporate more external knowledge into the model, such as descriptive information and attribute 
information of hydraulic engineering objects, to further enhance the performance of the model in the 
task of hydraulic engineering knowledge graph completion. 
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