
MBE, 21(1): 1356–1393. 

DOI: 10.3934/mbe.2024059 

Received: 16 July 2023 

Revised: 30 October 2023 

Accepted: 23 November 2023 

Published: 27 December 2023 

http://www.aimspress.com/journal/MBE 

 

Research article 

New research for detecting complex associations between variables 

with randomness 

Yuwen Du, Bin Nie*, Jianqiang Du, Xuepeng Zheng, Haike Jin and Yuchao Zhang 

School of Computer, Jiangxi University of Chinese Medicine, Nanchang 330004, China 

* Correspondence: Email: ncunb@163.com. 

Abstract: Many correlation analysis methods can capture a wide range of functional types of variables. 
However, the influence of uncertainty and distribution status in data is not considered, which leads to 
the neglect of the regularity information between variables, so that the correlation of variables that 
contain functional relationship but subject to specific distributions cannot be well identified. Therefore, 
a novel correlation analysis framework for detecting associations between variables with randomness 
(RVCR-CA) is proposed. The new method calculates the normalized RMSE to evaluate the degree of 
functional relationship between variables, calculates entropy difference to measure the degree of 
uncertainty in variables and constructs the copula function to evaluate the degree of dependence on 
random variables with distributions. Then, the weighted sum method is performed to the above three 
indicators to obtain the final correlation coefficient R. In the study, which considers the degree of 
functional relationship between variables, the uncertainty in variables and the degree of dependence 
on the variables containing distributions, cannot only measure the correlation of functional relationship 
variables with specific distributions, but also can better evaluate the correlation of variables without 
clear functional relationships. In experiments on the data with functional relationship between 
variables that contain specific distributions, UCI data and synthetic data, the results show that the 
proposed method has more comprehensive evaluation ability and better evaluation effect than the 
traditional method of correlation analysis. 

Keywords: correlation analysis; information entropy; cubic B-spline; copula function; analytic 
hierarchy process 
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1. Introduction 

Correlation analysis is particularly important in various fields. The important relationships that may 
be implied between different variables can be found by measuring the closeness between variables [1]. 
Correlation analysis is widely used in many fields such as finance, medicine, industry and biology. For 
example, Zhou et al. [2] investigated the correlation between the nutritional status and prognosis of 
COVID-19 patients by using multivariate logistic regression analysis. Xu et al. [3] revealed the 
correlations between the factors and the system status through statistical properties of data, and 
explored the related factors affecting the operating status of power systems. Liu et al. [4] investigated 
the relationship between intestinal flora content and hypertension, the results showed that the content 
of intestinal flora has a significant correlation with hypertension. 

At present, the correlation analysis methods of variables can be roughly divided into three 
categories, namely, the correlation measure methods based on statistics, the correlation measure 
methods based on information theory and the measure methods based on similarity [5]. The correlation 
measure methods based on statistics include Pearson correlation coefficient, Kendell’s coefficient and 
Spearman’s coefficient etc. [6]. The measure methods based on information theory [7] include mutual 
information, maximum information coefficient (MIC) [8] and information gain etc. [9]. The similarity 
measure methods include distance correlation [10], Jaccard correlation and cosine similarity, etc. [11]. 
However, the traditional methods of correlation analysis do not comprehensively consider the impact 
of data uncertainty and distribution [12,13], which leads to the neglect of strong regularity information 
in the variables, so that the correlation coefficient value between variables with strong regularity is too 
small, and it is believed that there is no correlation or weak correlation between variables. Since the 
Pearson coefficient can reflect only the degree of linear correlation between variables, and it requires 
that variables conform to normal distribution. The MIC can capture a variety of functional relationship 
types, but it is not sensitive to the functional relationships containing specific distributions. 

There are many studies on resolving the distribution consistency, uncertainty and randomness in 
data currently. For example, Gabriela et al. [14] use the paraconsistent logic, which can provide a 
compelling quantitative analysis approach in classification algorithms because it deals directly with 
inaccurate, inconsistent and incomplete data. Xin et al. [15] apply the chance theory to deal with the 
analysis of indeterminacy, including both uncertainty and randomness, to study two types of linear 
quadratic (LQ) optimal control models for multistage uncertain random systems. The first model is an 
LQ model with additive noises, while the second model is an LQ model with both multiplicative noises 
and additive noises. Yang et al. [16] provide a flexible framework for characterizing uncertainty in the 
outputs of physical systems due to randomness in their inputs or noise in their observations. Ayensa et 
al. [17] consider that data are never uncertainty-free and a suitable approach is needed to face data 
measurement errors and their intrinsic randomness in problems with well-established physical 
constraints. Additionally, Villiers et al. [18] proposes that if uncertainties in the modeling process are 
not accounted for, fusion processes may provide under- or overconfident results, or in some cases 
incorrect results. The authors establish four abstract processes to verify the situation in which 
uncertainty affects the modeling process. The above literatures all proved that the noise, uncertainty 
and randomness in data have certain influence on data analysis. 

However, for the correlation analysis of data, most of the methods apply some preprocessing 
methods to alleviate the impact of noise and randomness on the correlation evaluation. For example, 
Niven et al. [19] believe that traditional means of calculating correlation coefficients are known to be 
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adversely affected by outlier data, thus a new method for calculating a robust correlation coefficient is 
proposed based on a weighted average correlation calculated from different combinations or subsets 
of the original data, which is more robust than Pearson’s or Spearman’s correlation coefficients, but 
the uncertainty and randomness in the data are not analyzed and measured. Johnson et al. [20] removed 
the outliers in the data first and then calculated the correlation from the remaining data, but the outlier 
data may be reliable data in some case. In addition, the copula function is considered that it contains 
all the dependent relationships between random variables. Moreover, the copula theory believes that it 
is unreasonable to analyze the correlation between variables if they conform to different distribution 
statuses [21]. Therefore, in the copula theory, the variables are transformed into same distribution first, 
and then the correlation between variables is described by constructing the joint distribution of random 
variables. The copula theory has strong practicability, flexibility and robustness in analyzing the 
correlation structure of random variables [22]. Ma et al. [23] study the statistical relationship between 
random variables from data with association measures, and copula entropy is used to measure the 
degree of independence between joint distribution and edge distribution for random variables, so as to 
quantify the dependence of multivariate random variables. 

As mentioned above, there are many studies on data noise, uncertainty and randomness indeed, 
there are few researches that link factors such as data noise, uncertainty and randomness with 
correlation between variables. Most correlation analysis methods solve the problems of noise and 
randomness through some pre-processing methods. Furthermore, we find that most correlation 
analysis methods take the degree that variables conform to certain functional relationship as the only 
size indicator for correlation. Suppose that the closer the distribution of data points for variables is to 
the image distribution of a quadratic function, the larger the correlation coefficient of the variable; 
however, if some data points are added to make the image distribution of data points close to the 
quadratic function gradually wider, the correlation coefficient will gradually decrease, but the 
correlation between the variables is strong, so the problem is that the correlation between variables is 
not weak, but the value of correlation coefficient become smaller. Furthermore, there exist strong 
correlation and regularity between functional relationship variables with specific distributions 
according to the scatter plots, so it is necessary to comprehensively evaluate the correlation between 
variables from multiple perspectives. 

Furthermore, in many traditional methods of correlation analysis, it is considered that there exists 
complete functional relationship between variables when the coefficient value is equal to 1, that is, 
there exist accurate expression between variables. When the coefficient value is between 0 and 1, it is 
indicated that there exists dependent relationship between variables. The variables are independent of 
each other when the correlation value is equal to 0. For correlation relationships, there are no one-to-
one functional mapping between the variables, so the tendency of a scatter plot for data can be observed. 
If there exist regularity between variables, the correlation between variables can be analyzed by 
regression analysis or correlation analysis methods. Additionally, the correlation between variables 
needs to be evaluated from multiple perspectives. 

The rest of the paper is organized as follows. In Section 2, the related theories applied in this 
paper are described. In Section 3, the novel correlation analysis framework proposed in this paper is 
introduced. In Section 4, the proposed correlation analysis framework is applied to various datasets 
and the correlation of variables are evaluated. In Section 5, we discuss the correlation analysis accuracy 
compared traditional correlation analysis methods. we provide a summary of this paper in Section 6. 
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2. Related theories 

2.1. The approximate fitting based on cubic B-spline 

2.1.1. The cubic B-spline 

A spline is a smooth curve through nodes, which is defined by the constraints of control points 
and nodes. The spline fitting can be regarded as a piecewise fitting, that is, the specific data is divided 
into multiple segments, and each segment can be fitted to obtain a polynomial. When the basis function 
of the spline curve is a cubic polynomial, the curve obtained by fitting it is a cubic B-spline [24] curve. 
The definition of the basis function of cubic B-splines is as follows: 

   , 10
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t   represents the node, 0 1 2[ , , ,..., ]mt t t t t  , 3k   , j   represents the number of control points and m  

represents the number of nodes. 
Then, the B-spline curve equation obtained by the basis function of the cubic B-spline is: 

 ,( ) ( )j i kC t P N t    (2) 

where jP  represents the control point, and    represents the point multiplication. The process of 

spline fitting is the process of inversely finding the control points by enumerating the curve equations. 

2.1.2. The approximate based on cubic B-spline 

Spline fitting can divide into interpolation fitting and approximate fitting. The difference between 
the two is whether all data points are passed through by the curve during fitting. The interpolation 
curve may pass through all data points instead of closely following the data polygon. In order to 
overcome this problem, approximation techniques are introduced, which relax the strict requirement 
that the curve must contain all data points. 

In global approximation, the curve need not contain every data point except the first and last ones. 
To measure how well a curve “approximates” to a given data polygon, the concept of error distance is 
used. The error distance is the distance from the data point to the “corresponding” point on the curve. 
Therefore, if the sum of these error distances is minimum, the curve should closely follow the shape 
of the data polygon. Curves obtained in this way are called approximate curves. 

2.2. Information entropy 

Information entropy is the measure of reduction degree in the uncertainty of an event, which can 
be used to measure the uncertainty of information [25,26]. 

According to the information entropy formula proposed by Shannon, for any random variable X , 
suppose the variable X is a discrete variable with n number of values, where the number of unequal 
values is s, then its information entropy is defined as follows: 
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where x X  , ix   represents the i-th unequal values that belongs to variable X, and ( )p x   is the 

probability of something happening, and the unit of entropy is bit. 

2.3. Copula function 

Copula function can connect the joint distribution of multidimensional random variables 

2, ,...,i nx x x  with their respective marginal distributions 1 1 2 2( ), ( ),..., ( )n nF x F x F x  Sklar’s [27] theorem has 
demonstrated that in the general case there exists a multivariate real function 1 2( , ,... )nC u u u , making 

 1 2 1 1 2 2( , ,..., ) ( ( ), ( ),..., ( ))n n nF x x x C F x F x F x   (4) 

This multivariate function C is the copula. 
Copula is considered to contain all dependencies between random variables, which can reflect 

linear relationships and describe nonlinear relationships. Therefore, choosing which copula function 
to construct the correlation structure of variables is an important subject [28]. Copula models can be 
mainly divided into two categories, which include elliptic copula and Archimedes copula. Archimedes 
Copula, including three types of functions: Clayton copula, Gumbel copula and Frank copula, which 
are often used to analyze the correlation structure of binary random variables. We can evaluate the 
effect of each copula model by calculating the errors of empirical copula and theoretical copula, as 
well as Akaike information criterion (AIC) and Bayesian Information Criterion (BIC). The calculation 
formulas of AIC and BIC are shown in Eq (5): 

 
ln 2

ln 2 ln

AIC m MSE k

BIC m MSE k m

 
 

  (5) 

where m  represents the number of samples, k  represents the number of parameters of the model 
and the calculation formula of MSE is as follows: 
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2.4. Spectral clustering 

Spectral clustering [29] is a graph-based machine learning algorithm. The graph-based algorithm 
regards the sample data as the vertices of the graph, constructs edges according to the distances 
between the data points to form a graph with weights and completes the functions required by the 
algorithm through processing the graph. For the clustering problem, it is realized by graph cutting, 
which is to divide the graph into multiple subgraphs. These subgraphs are the clusters. The spectral 
clustering algorithm constructs an adjacency graph (also known as a similarity graph) of the sample 
set and obtains the Laplacian matrix of the graph. Next, the matrix is decomposed into eigenvalues, 
and clusters are constructed by processing the eigenvectors. 
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2.5. Analytic hierarchy process 

Analytic Hierarchy Process (AHP) [30,31] is a systematic and hierarchical analysis method 
combining qualitative and quantitative, which can assign weights to multiple different indicators. In 
this paper, we use the largest eigenvalue method in AHP to determine the weight coefficient. The first 
step is to construct the relative importance matrix of the factors, then to calculate the eigenvector 
corresponding to the maximum eigenvalue of the matrix, and the eigenvector is normalized to obtain 
the final weight matrix; The second step is to perform consistency check on the obtained weight matrix, 
and calculate the consistency index CR. Equation (7) is shown below, 

 

max ,
1

n CI
CI CR

n RI

 
 

  (7) 

where RI represents the average random consistency, which can be acquired by checking out the 
table; CR < 0.1, it can be judged that the matrix has consistency, that is, the matrix meets 
consistency requirements. 

3. The proposed correlation analysis framework 

In order to consider the degree of functional relationship between variables, the uncertainty in 
variables and the degree of dependence on the variables containing distributions, a new correlation 
analysis framework is proposed in this paper. 

The relationships between variables are divided into the functional relationships with exact 
expression and the correlation relationships without explicit function expression, so that we will use 
the proposed analysis framework to analyze the correlation of the two relationship types. The proposed 
correlation analysis framework is shown in Figure 1, and the correlation analysis framework is specific 
to continuous bivariate in this paper. 

As shown in Figure 1, the correlation analysis framework proposed in this paper is divided into 
three modules, namely, the correlation analysis module of functional variables with specific 
distribution, the correlation analysis module of variables without explicit functional relationship, and 
the calculation module for weight coefficients. For each correlation analysis module, which is also 
divided into three stages: 

1) Measure the degree of functional relationship between variables. Calculating the RMSE of 
random distribution to evaluate the degree of functional relationship between variables. 

2) Measure the degree of uncertainty in the distribution of variables. Calculating the uncertainty 
information caused by random distribution between variables first, and then the uncertainty degree of 
random distribution between variables is evaluated according to the information entropy difference 
between the functional relationship variables and the functional relationship variables containing 
specific distribution. 

3) Measure the degree of dependence on the random distribution of the variables. First, the copula 
model for random distribution of variables is constructed to represent the correlation structure of 
variables. Then the optimal copula function is selected according to the error between empirical copula 
and theoretical copula, AIC and BIC. Finally, the relevant parameter corresponding to the optimal 
copula is selected to evaluate the degree of dependence on the random distribution of variables. 
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The stages of calculation module for weight coefficient include construct the factor importance 
matrix, consistency test and maximum eigenvalue method to generate final weighted coefficients. 

 

Figure 1. the proposed correlation analysis framework in this paper. 

3.1. The description of the correlation analysis framework proposed in this paper 

In this section, the correlation analysis framework for the functional relationship variables with 
distribution and the variables without explicit functional relationship will be introduced, respectively, 
and the framework is described by flowchart and construction process in detail. The flowchart of 
correlation analysis framework for functional relationship variables with specific distributions is 
shown in Figure 2, and the flowchart of correlation analysis framework for variables without explicit 
function relationship is shown in Figure 3. 

3.1.1 The correlation analysis framework for functional relationship variables with specific distributions 

The construction process of the correlation analysis framework for functional relationship 
variables with specific distributions is as follows: 

Assuming random variables X  and Y , and there is a clear functional relationship between X  and 
Y . The function is denoted by Y CX   ,   represents the values that satisfy specific distribution. 

Step 1: Standardize and normalize the random variables. The standardized and normalized 
variables 0E , 1E  and 2E  corresponding to X , Y  and 1Y  is obtained. The functional relationship 
between variables 1Y  and X  is denoted by 1Y CX . 

Step 2: Calculate the root mean square error (RMSE) between 1E  and 2E , then the normalized 

RMSE is obtained. 
Step 3: Calculate the normalized information entropy of variables X  and 1Y . First, we use MIC 

to obtain the optimal partition interval for the variables X  and 1Y , and enumerating all the partition 
results. Then, the information entropy of variables X   and 1Y   is calculated after the intervals is 

divided, and the information entropy is normalized. Finally, the normalized information entropy 
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corresponding to the optimal partition interval is obtained. 
Step 4: Construct the copula function. First, the random variables are transformed into the 

probability distribution function which conforms to the normal distribution. Then, the copula function 
is constructed on the transformed data. 

Step 5: Obtain the correlation parameter  . Calculate the error between empirical copula and 
theoretical copula, and obtain the AIC and BIC of the copula model. Then, the correlation parameter 
corresponding to the best copula function is selected. 

Step 6: Obtain the weight w. The factor importance matrix is constructed, and the AHP method 
is applied to obtain the weight matrix w. The consistency test is also used to determine whether the 
factor importance matrix is reasonable. 

 

Figure 2. The flowchart of correlation analysis framework for functional relationship 
variables with specific distributions. 

3.1.2 The correlation analysis framework for variables without explicit functional relationship 

The construction process of the correlation analysis framework for variables without an explicit 
functional relationship is as follows: 

Assuming random variables X  and Y , and there does not exist specific functional relationship 
between X  and Y . The value obtained by the spline fitting is denoted by 1Y . 

Step 1: Standardize and normalize the random variables. The standardized and normalized 
variables 0E , 1E  and 2E  corresponding to X , Y  and 1Y  is obtained. The functional relationship 

between variables 1Y  and X  is denoted by 1 ,1
( )

m

i i p kk
Y P N t


  . 

Step 2: Perform the spectrum cluster. If there doesn’t exist one to one mapping between variables, 
the spectrum cluster is performed to obtain multiple category data. 

Step 3: Perform the approximate fitting based on cubic B-spline. The approximation fitting based 
on cubic B-spline is used to each category data, and the curve expression after fitting is obtained  

Step 4: Calculate the root mean square error (RMSE). The final spline RMSE is the sum of the 
errors of each category. 
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Step 5: Calculate the normalized information entropy of variables X  and 1Y . First, using MIC 
to obtain the optimal partition interval for the variables X  and 1Y , and enumerating all the partition 
results. Then, the information entropy of variables X   and 1Y   is calculated after the intervals is 

divided, and the information entropy is normalized. Finally, the normalized information entropy 
corresponding to the optimal partition interval is obtained. 

Step 6: Construct the copula function. First, the random variables are transformed into the 
probability distribution function which conforms to the normal distribution. Then, the copula function 
is constructed on the transformed data. 

Step 7: Obtain the correlation parameter  . Calculating the error between empirical copula and 
theoretical copula, the AIC and BIC of the copula model. Then, the correlation parameter 
corresponding to the best copula function is selected. 

Step 8: Obtain the weight w. The factor importance matrix is constructed, and the AHP method 
is applied to obtain the weight matrix w. The consistency test is also used to determine whether the 
factor importance matrix is reasonable. 

 

Figure 3. The flowchart of a correlation analysis framework for variables without an 
explicit functional relationship. 

3.2. The degree of functional relationship between variables 

There may exist functional relationships between correlated variables but subject to some error 
distributions and randomness. In statistics, regression analysis is often used to explore the relationship 
between variables. Through regression analysis, the regression equation between variables can be 
obtained, which can approximately reflect the closeness of the association and the general regulation 
of changes between variables. Therefore, we can measure the degree of functional relationship between 
variables by calculating the error between the original values and the fitted values after regression. If 
the error is equal to 0, it means that there exists perfect functional relationship between variables; the 
smaller the error, the closer the association between variables, and it indicates that the functional 
relationship between variables is stronger. 
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In this paper, the relationship of variables is divided into two cases, which include the explicit 
functional relationship containing specific distribution and the correlated relationship without explicit 
function. Algorithm 1 shows the pseudo-code for calculating the RMSE of variables with defined 
function or undefined function relationship. In order to remove the dimension of data and make the 
results obtained from the model comparable, so the data are standardized and normalized first, then 
the preprocessed data are between 0 and 1. The formula of standardization and normalization is shown 
in Eq (8). 

For functional relationship variables with specific distributions, the degree of functional 
relationship between variables is evaluated by calculating the root mean square error (RMSE) in the 
distribution of variables. The calculation formula of RMSE is shown in Eq (9). 
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max min
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For the variables without an explicit functional relationship, the function expression between 
variables was obtained by approximate fitting based on cubic B-spline [32,33]. Then, the degree of the 
functional relationship between variables is evaluated by calculating the RMSE between the original 
data and the fitted data. First, we divide data into segments, then the approximate fitting based on cubic 
B-spline is performed on each segment, and the function expression corresponding to each segment is 
obtained; finally, the function expression function based on spline curve is obtained by summing all 
the segmented expressions [34]. Since the interpolation fitting requires the curve to pass each data 
point, and the curve obtained by interpolation fitting is complex and irregular, which cannot reflect the 
shape trend of the original data well. Therefore, the idea of the least square is introduced in an 
approximate technique [35], and the condition of minimizing the error distance between the original 
value and the functional value is added into the constraints of cubic B-spline fitting. The approximate 
fitting does not strictly require the curve to pass all data points, and the curve obtained by the fitting 
follows the shape of the data smoothly and closely, so the method of approximate fitting based on 
cubic B-spline can better reflect the functional correlation of the original variables. The specific 
process is as follows: 
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where 0 1, ,..., hP P P  represent 1h   numbers of unknown control points. Since the spline will pass the 
first and last data points, we have 0 0(0)D C P   and (1)n hD C P  , so there are only 1h   numbers 

of unknown control points. Taking this into consideration, the curve equation becomes the following: 
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Introduce the approximation technique, then the sum of all squared error distances between 
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original value and the spline fitting value is as follows: 
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Our goal is to find those control points 1 2 1, ,..., hP P P   such that the function (.)f  is minimized. 

Algorithm 1: the RMSE of variables with defined function or undefined function relationship 
Input: continue random variables X  and Y   
Y CX    (the   represents the random error with specific distribution) 

1Y CX  

Output: the normalized RMSE 
if there is a clear functional relationship between X  and Y : 
  ( ) lenn X   
  standardize and normalize the random variables X , Y  and 1Y   
  obtain the variables 0E , 1E  and 2E   

for i  in range n do: 

    2
1 2

1

1
_ ( )

n

i

normal RMSE E E
n 

    

Else do: 
  Applying the approximate fitting based on cubic B-spline 
  The function expression is obtained:  
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  Normalized ( )kC t  and obtain 3E   

for i  in range n do: 

    * 2
1 31

1
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n 
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3.3. The degree of uncertainty for the distribution of variables 

The more cluttered the data distribution, the higher the uncertainty of the information. Therefore, 
there exist uncertainty difference between the functional relationship variables after regression fitting 
and the original variables, the uncertainty of variables can adversely affect correlation results, and the 
degree of uncertainty of variables has an important impact on the correlation analysis of variables. The 
information entropy can be applied to measure the uncertainty of information, and the degree of 
uncertainty in the distribution of variables is evaluated by calculating the difference of information 
entropy between the functional relationship variables and the original variables. The information 
entropy is calculated by the Eq (3), and the difference entropy (ED) between functional relationship 
variables and original variables is calculated by 

 0 1ED H H   (13) 

Obviously, the unit of ED is bit, the lower the degree of uncertainty comes the less ED. 
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The correlation analysis framework is specific to continuous bivariate, and the information 
entropy is mainly for discrete data. Therefore, the partition idea of MIC is referenced, the partition way 
corresponding to the maximum mutual information is used as the way of discretization process of the 
original variables, the probability of data points between variables after discretization is expressed as 
p , and the probability of each part is calculated as the number of data points of the corresponding part 

divided by the total number of data points. The calculation formula is given in Eq (14), and Figure 4 
shows an example of dividing data points between variables, the number of red lines represents the 
number of dividing intervals. Then, the information entropy of each division is calculated, and in order 
to facilitate the comparison of the results, the information entropy is normalized so that the value of 
each information entropy is between 0 and 1. Finally, the normalized information entropy 
corresponding to the best division can be obtained. 

 

( )
1 2( , ) part

i
total

m
p x x

m


 (14) 

where partm  represents the number of data points in a partition, and totalm  represents the total number 

of data points in the variable. 

 

Figure 4. The probability of each part corresponding to the best partition between variables.

3.4. The degree of dependence on the random distribution of variables 

The values of variables studied in this paper are affected by random errors and distributions [36], so 
that there exist uncertainty and randomness in variables, but the probability that these values fall into 
a certain range is definite. When studying the correlation of variables that are subject to distributions, 
it is necessary to consider the distribution state of the variables. The copula theory is applied to analyze 
the correlation of variables affected by distributions. 

According to Copula theory, if the distribution status of variables is inconsistent, it is 
unreasonable to analyze the correlation between variables. Therefore, the random variables are first 
transformed into probability distribution functions that conform to the same distribution before 
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constructing the correlation structure of random variables, so that the values of random variables are 
between 0 and 1. Then, the function construction is performed on the transformed data by the copula 
function, which represents the correlation structure of the random variables. Additionally, all the 
dependency relationships are contained after constructing the functional relationship, which is the 
theoretical copula of random variables. The empirical copula is the bridge between the theoretical 
copula and the actual data. The RMSE between the empirical copula and the theoretical copula, AIC 
and BIC are used as indicators to evaluate the copula model. Finally, the correlation parameters 
corresponding to the optimal copula function are selected to measure the dependence on random 
variables with distributions. 

Correlated parameter estimation includes maximum likelihood estimation method and non-
parametric estimation method [37]. In this paper, the parameters of the function are estimated by non-
parametric estimation method, i.e., the parameters are estimated by the relationship between the 
correlated parameters and the Kendell’s coefficients, and the range of parameters corresponding to the 
Archimedean copula is shown in Table 1. 

Table 1. Introduction to the Archimedean copula function. 

Function name Function expressions The range of 
parameters 

The relationship 
between   and   

Clayton copula 1/( , ) ( 1)C u v u v        [ 1, ), 0      
2







 

Gumbel copula 1/ 1/( , ) exp( [( log ) ( log ) ] )C u v u v       (0,1]   1    

Frank copula 
1 ( 1)( 1)

( , ) log 1
1

u ve e
C u v

e

 



 



  
    

( , ), 0     1
0

4 1
1 [

exp( ) 1

t
dt

t


 
   



3.5. The measure of correlation between variables 

The relationship between variables is divided into deterministic relationships and non-
deterministic relationships. Deterministic relationships refer to the existence of clear functional 
relationship between variables, that is, there exists accurate function expression, and the non-
deterministic relationship refers to the correlation relationship without clear functional relationship. 
In many measure methods of correlation, when the correlation value is equal to 1, it is considered 
that there exists complete functional relationship between variables; when the correlation value is 
between 0 and 1, there exist correlated relationship between variables; and when the correlation value 
is equal to 0, the variables are independent. However, many traditional methods do not fully consider 
the impact of data uncertainty and distribution, which leads to ignoring the strong regularity 
information in the variables, so that the correlation coefficient value obtained by the variables with 
strong regularity is too small. Then, it is considered that there exist no correlation or weak correlation 
between the variables. 

Based on the above, in this section, the correlation of the functional relationship variables 
containing specific distributions and the variables without explicit functional relationships will be 
analyzed, respectively. By measuring the degree of functional relationship between variables, the 
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degree of uncertainty in the distribution of variables and the dependence on the random distribution of 
variables, the correlation between the two relationship types is comprehensively analyzed. 
Additionally, the process of correlation analysis and its rationality are described in detail. 

3.5.1. The measure of correlation for the functional relationship variables with specific distributions 

1) The degree of functional relationships between variables 

For the functional relationship variables with specific distribution, there exist functional 
relationships between variables that are subject to some error distributions. The degree of functional 
relationship between variables is evaluated by calculating the RMSE of random distribution of the 
functional relationship variables with specific distribution. The smaller the error, the closer the 
association between variables, and it indicates that the functional relationship between variables is 
stronger. The larger the error, the sparser the degree of functional relationship between the variables. 

2) The degree of uncertainty for the distribution of variables 

Algorithm 2: the entropy difference of the variables X  and Y  
Input: continue random variables X  and Y  
Y CX    (the   represents the random error) 

1Y CX  
Output: the entropy difference ED   
For i  in range (2, len( X )): 
  For j  in range (2, len(Y )): 

If * ( ) **0.6i j len X     : 

  output the number of divided intervals ( , )i j  
  _ ( , )a cal mic i j    
  _ ( , )b cal entropy i j    
  mics.append(a) 
  entropy.append(b) 
  if max( )a mics  : 
    output the optimal divided interval ( , )i j  

normalize the matrix.b .  
output the normalized entropy 0H  corresponding to the optimal divided interval ( , )i j  
similarly, calculate the normalized entropy 1H   corresponding to the optimal divided interval 
between X  and 1Y  0 1| |ED H H    

For the functional relationship variables containing specific distribution, the uncertainty of 
variables is brought by the distribution of variables. The uncertainty of information is measured by 
calculating the information entropy in this paper. First, the best partition corresponding to the MIC is 
calculated for the variables with functional relationships, then enumerating all partition results and 
calculating the information entropy corresponding to each partition. Finally, the information entropy 
is normalized to obtain the normalized information entropy corresponding to the best partition. 
Similarly, the above process was repeated for the functional relationship data containing specific 
distribution, and the difference of information entropy between the functional relationship variables 
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and the functional relationship variables with distributions is obtained. The uncertainty degree of the 
functional relationship variable containing specific distribution is evaluated by the difference of 
normalized information entropy. The greater the difference in the information entropy of the variables, 
the higher the degree of uncertainty of the variables. Algorithm 2 shows the pseudo-code for computing 
the entropy difference of variables. 

3) The degree of dependence on the random distribution of variables 

Algorithm 3: measure the correlation of variables X  and Y  with distribution and uncertainty 
Input: continue random variables X  and Y   
Y CX    (the   represents the random error) 

1Y CX  

Output: the correlation parameter    

0. ( )stats normu E , 1. ( )v stats n rm Eo   

calculate the Kendell coefficient    
for i  in range (len(u)): 
  1 / (1 )     

  1/ 1/_ _ exp( [( log ) ( log ) ])gumbel func copula u v         

  Gumbel_copula.append(Gumbel_func_copula) 
for i  in range (len(u)): 
  2 / (1 )      

  1/_ _ ( 1)clayton func copula u v        

  Clayton_copula.append(Clayton_func_copula) 
for i  in range (len(u)): 

  
14 1

1 [ 1]
0 exp( ) 1

t
dt

t


 
  

   

  
1 ( 1)( 1)

_ _ log 1
1

u ve e
frank func copula

e

 



 



  
    

  

  Frank_copula.append(Frank_copula) 
for i  in range (len(u)): 
  for j  in range(len(v )): 

if [ ] [ ]x j x i  and [ ] [ ]y j y i : 

  count=count+1 
  empirical_copula.append(count/len(x)): 
for i  in range (len(theory_copula)): 
  error+=(theory_copula-emirical_copula)**2 
  error=np.sqrt(error/len(theory_copula)) 
error1=error**2 

ln 2

ln 2 ln

AIC m MSE k

BIC m MSE k m

 
 

 

The function type of Archimedean copula and the construction process of copula function are 
introduced in Section 3.4. The correlation parameters corresponding to the optimal copula function are 
used to measure the degree of dependence on variables that subject to distributions. The function 
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expressions of bivariate copulas and the range of parameters corresponding to copula function are 
shown in Table 1. For the Clayton copula, the range of parameter is , the larger the absolute 

value of parameter, the greater the correlation of variables containing distributions. Then, when the 
parameter , the degree of dependence on variables containing distributions is weak. For Gumbel 
copula, the range of the parameter is , and the closer the correlation parameter is to 0, the more 
correlated the variables. For Frank copula, the range of the parameter is , and the larger the 

absolute value of parameter, the greater the correlation of variables containing distributions. Then, 
when the parameter , the degree of dependence on variables containing distributions is weak. 

In order to facilitate the comparison, the reciprocal of the correlation parameters of Clayton copula 
and Frank copula functions is taken, so that the directions of change of parameter value size and the 
strength of the correlation is consistent with the Gumbel copula. In addition, in order to compare the 
correlation values obtained by other methods, and measure the correlation strength of variables more 
intuitively through the correlation value, and if the absolute value of the parameter that is obtained by 
constructing the Clayton copula and Frank copula functions of variables is less than 1, it is considered 
that the correlation between variables is extremely weak. Thus, the inverse of parameter  is the 

value of infinity, so the correlation coefficient value   obtained by   is 

negative. The parameter  corresponding to correlation coefficient values obtained by the new 

method are between 0 and 1. The closer the correlation value is to 1, the stronger the correlation 
between variables. Algorithm 3 shows the pseudo-code for measure the correlation of variables with 
distribution and uncertainty. 

3.5.2. The measure of correlation for the variables without explicit functional relationships 

1) The degree of functional relationship between variables 

Algorithm 4: the approximate fitting based on cubic B-spline 
Input:  data points , degree=3,  

The number of control points   
Output: A B-spline curve of degree 3 
Obtain a set of parameters  and a knot vector   
Let  and ; 

For  to  do: 
  Compute  :   

For  to  do: 
  Compute the following and save it to the  row of matrix   

   

For  to  do: 
  For  to  do: 

Compute  and save to row  and column of  of ; 

Compute ; 
Solving for P from ; 
Row  of  is control point ; 
Control points  knot vector  and degree determines an approximation B-spline curve;

(0, )

| | 1 
(0,1]

( , ) 

| | 1 

| | 1 

R  1 * , ,| |w RMSE ED 

| | 1 

1n  0 1, ,..., nD D D

1h 

0 1, ,..., nt t t U

0 0P D h nP D

1k  1n 

kQ 0, 0 , 0( ) ( )k k p k h p kQ D N t D N T D  

1i  1h 
i th Q

1

,
1

( )
n

i p k k
k

N t Q





1k  1n 
1i  1h 

, ( )i p kN t k i N
TM N N

M P Q
i P iP

0 1, ,..., hP P P U
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In the actual variables, the functional relationship between variables is not clear, and it is 
necessary to apply the regression model to obtain the function expression, which can approximately 
reflect the closeness of the association and the general regulation of changes between variables. The 
error between the original data and the fitted data will be used to measure the degree of functional 
relationship between the original variables. In this paper, the approximation fitting based on cubic B-
spline is applied to obtain functional relationship expressions between the variables, and then the spline 
error between the original data and the fitted data is calculated. Due to the idea of minimizing the error 
distance was adopted by the cubic B-spline. Then, when there exist one-to-many situations in the data 
or many outliers, the spline function obtained by the spline fitting is complex and does not conform to 
the shape distribution of the original data. Therefore, before the spline fitting, the data need to be 
standardized and normalized, and the spectral clustering is performed on the data in the case of one-
to-many or many-to-many first. Then, the spline fitting is performed on each category data. Finally, 
the spline error is the sum of the RMSE after fitting each category data. Algorithm 4 shows the pseudo-
code for approximate fitting based on the cubic B-spline. 

2) The degree of uncertainty for the distribution of variables 

The degree of uncertainty in variables is evaluated by the entropy difference, and the calculated 
method is as follows: First, the functional expression between variables is obtained by the B-spline 
approximate fitting, and the MIC between the variables is calculated to obtain the best partition of the 
data; then the information entropy corresponding to different partitions is calculated, and the 
information entropy is normalized; finally, the normalized information entropy of the variables after 
spline fitting corresponding to the best partition is obtained, and the normalized information entropy 
of the original variables is also derived. The degree of uncertainty for the original data is measured by 
the difference between the normalized information entropy of the fitting variables and the original 
variables. The larger the difference, the higher the degree of uncertainty. Similarly, the smaller the 
difference, the smaller the degree of uncertainty. 

3) The degree of dependence on the random distribution of variables 

Mentioned in Section 3.4, the correlation of variables with distributions and uncertainty is 
evaluated by estimating the correlation parameters of the copula function. First, the function of Clayton 
copula, Gumbel copula and Frank copula in the Archimedes copulas for variables are constructed, and 
the correlation parameters of the three functions are estimated. Then, the optimal copula function is 
selected by calculating the fitting error between the empirical copula and theoretical copula, AIC and 
BIC to represent all dependence structures between variables. Finally, the correlation parameters 
corresponding to the optimal copula are selected as the measure indicator of correlation for variables 
containing distributions. 

3.6. The weighted coefficient 

Section 3.5 described how to measure the correlation of variables by evaluating the degree of 
functional relationship, the degree of uncertainty in variables and the degree of dependence on the 
variables containing distributions. Then, the above three indicators will be integrated into a single 



1373 

Mathematical Biosciences and Engineering  Volume 21, Issue 1, 1356–1393. 

correlation value R   to evaluate the correlation between variables more intuitively. The weight 
coefficients of the three indicators will be determined by the maximum eigenvalue method in the AHP 
method [38], and the relative importance matrices for measure indicators are constructed as shown in 
Table 2. In addition, the constructed importance matrices all pass the consistency test, and the final 
weight matrix is [0.346, 0.200, 0.454]. The smaller the RMSE, entropy difference and correlated 
parameter, the closer the association between variables, and the values of three indictors are between 0 
and 1, so that the weighted results after integration are transformed to  1 * , ,| |R w RMSE ED   , the 

larger the correlation value R , the more correlated the variables. Where w represents the weight 
matrix, the RMSE  is the root mean square error between the original variable and the variable after 
constructing a functional relationship, ED  represents the information entropy of variables, and | |  

represents the absolute values of correlated parameters corresponding to the optimal copula function. 
Algorithm 5 shows the pseudo-code for AHP method. 

Table 2. The relative importance matrix for evaluation indicators. 

𝐴௜ 
𝐴௝ 

𝐴ଵ(RMSE) 𝐴ଶ(Entropy 
difference) 

𝐴ଷ(The correlated 
parameter) 

𝐴ଵ(RMSE) 1 2 1/1.5 

𝐴ଶ((Entropy difference) 1/2 1 1/2 

𝐴ଷ(The correlated parameter) 1.5 2 1 

 

Algorithm 5: AHP method 

Input: the RMSE, the entropy difference ED  , and the correlation parameter    
[0, 0, 0.52, 0.89, 1.12, 1.26, 1.36, 1.41,

 1.46, 1.49, 1.52, 1.54, 1.56, 1.58, 1.59]

RI 
  

Output: the value of the correlation coefficient R 

Construct the importance matrix M  of the indicators 

eig_val, eig_vector = np.linalg.eig(array M) 

max_eig_val = np.max(eig_val) 

max_eig_vector = eig_vector [:, np.argmax(self.eig_val)] 
max_eig_val = max  

max_eig_vector = w  

max ,
1

n CI
CI CR

n RI

 
 


 

If 0.1CI  : the matrix M   pass the conformance test 

Else: the matrix M   failed the consistency test 
 1 * , ,| |R w RMSE ED    
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4. The experiment 

4.1. The data description 

In order to verify the effectiveness of the method, two types of data were selected for experiments. 
The first one is the functional relationship variable that contains a specific distribution. Table 3 lists 12 
function expressions that contain a specific distribution, where represents the random error that 
conform to uniform distribution. The expression types include general expressions and parameter 
expressions. The variable range and distribution data value range are shown in Table 3. The second is 
to use 4 UCI datasets and 4 artificially synthesized datasets with no explicit functional relationship. 
The UCI datasets include Iris Data Set, seeds Data Set, Glass Identification Data Set and Wine Data 
Set. The synthetic datasets include Two_cluster, Twomoons, Five_cluster and Roll. The detailed 
information of datasets is shown in Table 4. 

4.1.1. Experimental data types that possess specific distribution and functional relationship 
variables simultaneously 

Table 3. The functional relationship expression that implies specific distribution. 

Function expressions Range of independent 
variables

Range of values for random 
distribution 

| |y x    (-1,1) (-1,1) 
2 24( 0.5)y x     (-1,1) (-1,1) 

22y x    (-1,1) (-1,1) 
3 42( )y x    (-1,1) (-1,1) 

5y x  (-1,1) (-1,1) 
2( )y x     (-1,1) (0,0.5) 

sin

cos

x t

y t

 
 

 
  

 
(-1,1) (0,1/8) 

2sin sin 2

2 cos cos 2

x t t

y t t




  
   

 
(-5,5) (0,0.5) 

sin( )

cos( )

x t t

y t t

 
 

 
  

  
(-5,5) (0,0.5) 

2sin(5 )cos

2sin(5 )sin

x t t

y t t




 
  

  
(-5,5) (0,0.5) 

3

3

2(cos(360 ))

2(sin(360 ))

x t

y t





  


 
  

(-5,5) (0,0.5) 

9sin(2 ) 5sin(3 )

9cos(2 ) 5cos(3 )

x t t

y t t




   
   

  
(0,2 ) (0,2) 
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4.1.2. Datasets with no explicit functional relationship variables 

Table 4. Information description of UCI datasets and synthetic datasets. 

Index Datasets Number of attributes Number of samples 
1 iris 4 150 
2 seeds 7 210 
3 glass 10 214 
4 wine 13 178 
5 Two_cluster 3 400 
6 Twomoons 3 1502 
7 Five_cluster 3 2000 
8 Roll 3 2000 

4.2. Correlation analysis 

4.2.1. Correlation analysis of functional relationship variables containing specific distribution 

The first step to carry out the correlation analysis of variables is to draw the scatter plots of the 
variables to observe the trend of the variable data. Then, the degree of functional relationship between 
variables is evaluated by the random distribution error of the variables, the entropy difference of the 
variables with random distribution is calculated to measure the degree of uncertainty of the variables 
and the copula function models are constructed to measure the degree of dependence on the variables 
containing distributions. Finally, the strength of correlation of the variables is evaluated integrally. 

1) The scatter plots of the variables 

For the functional relationship variables containing specific distributions, the scatter plots of the 
variables are shown in Figure 5, in which the MIC and Pearson coefficient values between the variables 
are also displayed. It can be seen that all scatter plots have strong regularity from the figure, but the 
MIC value is relatively small and the Pearson coefficient value is almost equal to 0, which indicates that 
MIC can measure only the correlation with a specific type of functional relationship but cannot identify 
the type of variable with distribution, and the Pearson coefficient can evaluate only the type of linear 
function relationship between variables but the rest of the relationship types cannot be well measured. 

2) The degree of functional relationships of the variables 

For variables with explicit functional relationship involving specific distributions, the degree of 
functional relationships that is evaluated by the error brought by the specific distribution. Their 
distribution errors are expressed by the root mean square error (RMSE) of random distribution of the 
functional relationship variables with specific distribution. The smaller the error, the higher the degree 
of functional relationship of the variables. The larger the error, the smaller the degree of functional 
relationship of the variables. The specific results are shown in the second column of Table 5. Owing 
to there exists different degree of random distribution between variables, the scatter plots and the results 
of normalized RMSE for variables are also different, and the greater the degree of random distribution 
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between variables, the larger the value of normalized RMSE for variables, which indicates that the random 
distribution between variables will affect the degree of functional relationships between variables. 

 
| |y x    

( [ 1,1]x  , [ 1,1]   ) 

2 24( 0.5)y x     

( [ 1,1]x  , [ 1,1]   ) 

22y x    

( [ 1,1]x  , [ 1,1]   ) 

 
3 42( )y x    

( [ 1,1]x  , [ 1,1]   ) 

5y x  

( [ 1,1]x  , [ 1,1]   ) 

2( )y x     

( [ 1,1]x  , [0,0.5]  ) 

 
sin

cos

x t

y t

 
 

 
  

 

( [ 1,1]t  , [0,1/ 8]  ) 

2sin sin 2

2cos cos 2

x t t

y t t




  
   

 

( [ 5,5]t  , [0,0.5]  ) 

sin( )

cos( )

x t t

y t t

 
 

 
  

 

( [ 5,5]t  , [0,0.5]  ) 

 
2sin(5 )cos

2sin(5 )sin

x t t

y t t




 
  

 

[ 5,5]t  , [0,0.5]   ) 

3

3

2(cos(360 ))

2(sin(360 ))

x t

y t





  


 
 

( [ 5,5]t  , [0,0.5]  ) 

9sin(2 ) 5sin(3 )

9cos(2 ) 5cos(3 )

x t t

y t t




   
   

 

( [0,2 ]t  , [0,2]  ) 

Figure 5. The scatter plots of functional relationship variables that contain specific distribution. 
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Table 5. The experimental results of the normal RMSE, normal entropy difference (ED), 
absolute value of correlated parameters, unweighted correlation coefficient R and 
weighted correlation coefficient R for variables with specific distribution and explicit 
functional relationship. 

Function expressions Normal_RMSE Normal 
ED 

Absolute value 
of correlated 
parameters

Unweighted 
R   

Weighted 
R   

| |y x    0.272 0.255 0.967 0.502 0.417 
2 24( 0.5)y x     0.306 0.201 0.944 0.516 0.425 

22y x    0.227 0.137 0.980 0.552 0.449 
3 42( )y x    0.177 0.044 1.008 0.590 0.454 

5y x  0.197 0.020 0.997 0.595 0.481 
2( )y x     0.306 0.139 1.006 0.506 0.397 

sin

cos

x t

y t

 
 

 
  

 0.232 0.050 0.484 0.745 0.690 

2sin sin 2

2cos cos 2

x t t

y t t




  
   

 0.042 0.015 1.038 0.635 0.389 

sin( )

cos( )

x t t

y t t

 
 

 
  

 0.019 0.018 1.026 0.646 0.524 

2sin(5 )cos

2sin(5 )sin

x t t

y t t




 
  

 0.045 0.041 1.067 0.616 0.492 

3

3

2(cos(360 ))

2(sin(360 ))

x t

y t





  


 
 

0.044 0.025 1.043 0.629 0.506 

9sin(2 ) 5sin(3 )

9cos(2 ) 5cos(3 )

x t t

y t t




   
   

0.260 0.011 1.007 0.574 0.440 

3) Uncertainty measures for distributions between variables 

The uncertainty of functional relationship variables containing specific distributions is measured 
by comparing the information entropy difference brought by variable distribution. First, calculate the 
MIC value of the specific functional relationship type between the variables, then exhaustively list all 
the divisions and calculate the information entropy under each division and normalize it. Finally, the 
normalized information entropy corresponding to the best division is acquired. Furthermore, 
calculating the normalized information entropy of the optimal division of variables with specific 
distribution and the difference between the two information entropies is obtained. The experimental 
results are shown in Table 6, where Normal ED represents the difference of information entropy 
between functional relationship variables and the variables with specific distributions, Normal Ent 
represent the normal information entropy of variables. The results show that the distribution of the data 
will bring a certain degree of information entropy difference. 
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Table 6. The experimental results of the optimal partition for the data points of variables 
(Optimal partition), the normal entropy of variables without distribution, the normal 
entropy (Normal Ent) and the normal entropy difference (Normal ED) between variables 
with specific distribution and explicit functional relationship. 

Function expressions Optimal 
partition 

Normal Ent of 
variables 
without distribution

Normal Ent Normal ED

| |y x    (24,2) 0.700 0.955 0.255
2 24( 0.5)y x     (26,2) 0.785 0.986 0.201 

22y x    (21,2) 0.720 0.852 0.137 
3 42( )y x    (3,18) 0.413 0.457 0.044 

5y x  (19,2) 0.844 0.864 0.020 
2( )y x     (14,3) 0.623 0.762 0.139 

sin

cos

x t

y t

 
 

 
  

 (10,5) 0.680 0.730 0.050 

2sin sin 2

2cos cos 2

x t t

y t t




  
   

 (12,4) 0.750 0.765 0.015 

sin( )

cos( )

x t t

y t t

 
 

 
  

 (17,3) 0.835 0.853 0.018 

2sin(5 )cos

2sin(5 )sin

x t t

y t t




 
  

 (12,4) 0.728 0.769 0.041 

3

3

2(cos(360 ))

2(sin(360 ))

x t

y t





  


 
 

(3,16) 0.671 0.696 0.025 

9sin(2 ) 5sin(3 )

9cos(2 ) 5cos(3 )

x t t

y t t




   
   

 (16,3) 0.808 0.819 0.011 

4) Dependency measures for random distribution of variables 

In the experiment of measuring the dependency degree of random distribution of variables, the 
optimal copula function is selected to construct the correlation structure of variables, and the relevant 
parameters of the optimal copula are used as the correlation evaluation index of random distribution. 
The binary copula functions include Clayton copula, Gumbel copula and Frank copula. The fitting 
errors, AIC and BIC of empirical and theoretical copulas obtained after constructing the function, are 
used as the index for selecting the optimal copula function. Appendix to Table A1 shows the results of 
the best copula function, and the best results are shown in bold. 

The final results of correlation analysis are shown in Table 5. The correlation of variables is 
comprehensively evaluated through the degree of functional relationship, degree of uncertainty and 
degree of random distribution dependence of the variables. Then, the weight coefficients of the three 
indicators are calculated and summed up. Since the smaller the three indicators, the stronger the 
correlation, and the value range is between [0, 1], so the weighted sum is subtracted from 1. Finally, 
the weighted correlation coefficient value is obtained. The larger the value, the stronger the correlation. 
Likewise, unweighted correlation results can be drawn. 
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4.2.2. Correlation analysis of variables without explicit functional relationship 

 
Iris (x1, x2) Iris (x2, x3) Iris (x3, x4) 

 
Seeds (x1, x3) Seeds (x3, x4) Seeds (x1, x6) 

 
Glass (x1, x2) Glass (x2, x3) Glass (x1, x4) 

 
Wine (x2, x3) Wine (x3, x8) Wine (x4, x5) 

 
Two_cluster Twomoons Five_cluster 

Figure 6. Scatter plot of variables in UCI datasets and synthetic datasets. 
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To carry out the correlation analysis of variables, the first step is to draw the scatter plots of the 
variables to observe the approximate distribution and regularity of the data. Then, the degree of 
functional relationships between variables is evaluated by the spline error, the entropy difference of 
the variables is calculated to measure the degree of uncertainty of the data, the copula function model 
is constructed to measure the degree of dependence of the random distribution of the variables, and 
the correlation size of the variables is evaluated integrally. 

1) The scatter plots of the variables 

The scatter plots of variables without explicit functional relationships in the UCI datasets and the 
artificially synthetic datasets are shown in Figure 6, which also shows the MIC and Pearson coefficient 
values between partial variables in each dataset. Combining the scatter plots of variables, MIC and 
Pearson coefficient values, it can be analyzed that Pearson coefficient can well evaluate their linear 
correlation when there is an obvious monotonic linear correlation shown in the scatter plots, and MIC 
can do better when the scatter plots show a perfect function image of specific function. However, for 
the functional relationship variables containing specific distributions, neither can perform well, and 
the obtained MIC and Pearson coefficient values are small. 

2) The degree of functional relationship of the variables 

Table 7. The results of the optimal partition for the data points of variables (Optimal 
partition), the normalized RMSE of variable after approximate fitting based on cubic B-
spline (Normal_RMSE of spline fitting) and the normalized entropy of variables after 
approximate fitting based on cubic B-spline (Normal Ent of spline functional variables) 
for variables with no explicit functional relationship. 

Datasets Optimal partition Normal_RMSE of 
spline fitting 

Normal Ent of spline 
functional variables 

Iris(x1,x2) (9,2) 0.120 0.775 
Iris(x2,x3) (8,2) 0.385 1.000 
Iris(x3,x4) (3,4) 0.255 0.427 
Seeds(x1,x3) (8,2) 0.175 0.707 
Seeds(x3,x4) (10,2) 0.245 0.719 
Seeds(x1,x6) (10,2) 0.187 0.712 
Glass(x1,x2) (7,2) 0.135 0.517 
Glass(x2,x3) (8,2) 0.159 0.571 
Glass(x1,x4) (2,10) 0.221 0.684 
Wine(x2,x3) (7,2) 0.218 0.509 
Wine(x3,x8) (9,2) 0.190 0.619 
Wine(x4,x5) (3,7) 0.176 0.267 
Two_cluster (2,18) 0.203 0.854 
Twomoons (20,4) 0.085 0.805 
Five_cluster (2,44) 0.369 0.689 
Roll (32,3) 0.275 0.707 
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Iris(x1,x2) Iris(x2,x3) Iris(x3,x4) 

 
seeds(x1,x3) seeds(x3,x4) seeds(x1,x6) 

 
Glass(x1,x2) Glass(x2,x3) Glass(x1,x4) 

 
Wine(x2,x3) Wine(x3,x8) Wine(x4,x5) 

 
two_cluster Twomoons Five_cluster 

Figure 7. The results of the approximate fitting based on cubic B-spline and spectral clustering. 
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For variables without a clear functional relationship, the degree of functional relationship between 
the variables was evaluated by the error between the true value and the spline fitting value. The cubic 
B-spline approximate fitting was performed on the value corresponding to each category. The number 
of cubic B-spline control points used in this experiment was 4 and the number of nodes was 3. The 
mean squared errors of the true and fitted values in each category were calculated and summed up. 
The spline fitting results are shown in Figure 7, and the error are shown in Table 7. Combining the 
figures and the results in the table, it indicates that the approximate fitting based on cubic B-spline can 
follow the trend of data points well, and for variables with stronger distribution regularity of data points, 
the better the fitting effect. 

3) The degree of uncertainty for the distribution of variables 

For the measurement of uncertainty in variables without explicit functional relationships, the MIC 
values among variables with spline functional relationships are calculated first, then all divisions are 
enumerated to derive the best division of variables, the information entropy under each division is 
calculated and normalized, and finally the normalized information entropy corresponding to the best 
division is obtained. Furthermore, the normalized information entropy of the original variables 
corresponding to the best division is also calculated. The degree of uncertainty of the variables without 
explicit functional relationships was measured by comparing the difference in information entropy 
between the original data and the spline fitted data, and the results are shown in Table 8. According to 
the results in the table, the stronger the randomness of distribution for data points of the variables in the 
datasets, the greater the information entropy obtained and the larger the entropy difference calculated. 

Table 8. The results of maximum information coefficient (MIC), normal entropy 
(Normal Ent) and normal entropy difference (Normal ED) for variables without explicit 
functional relationships. 

Datasets MIC Normal Ent Normal ED 
Iris(x1,x2) 0.277 0.901 0.126 
Iris(x2,x3) 0.442 0.869 0.131 
Iris(x3,x4) 0.918 0.523 0.096 
Seeds(x1,x3) 0.433 0.758 0.051 
Seeds(x3,x4) 0.411 0.876 0.157 
Seeds(x1,x6) 0.301 0.894 0.182 
Glass(x1,x2) 0.457 0.697 0.180 
Glass(x2,x3) 0.300 0.800 0.229 
Glass(x1,x4) 0.734 0.549 0.135 
Wine(x2,x3) 0.311 0.730 0.221 
Wine(x3,x8) 0.464 0.850 0.231 
Wine(x4,x5) 0.239 0.737 0.470 
Two_cluster 0.985 0.971 0.117 
Twomoons 0.510 0.840 0.035 
Five_cluster 0.470 0.969 0.280 
Roll 0.396 0.829 0.122 
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4) The degree of dependence on the random distribution of variables 

For variables without explicit functional relationships, the correlated parameter corresponding to 
the optimal copula function is selected to evaluate the correlation degree between variables subject to 
random distributions. The bivariate copula functions include Clayton copula, Gumbel copula and 
Frank copula, and the fitting errors of empirical copula and theoretical copula, AIC and BIC are derived 
after constructing the copula models of variables, and the three indicators are used as evaluation index 
for selecting the optimal copula function, and the correlation parameter corresponding to the optimal 
copula is used as an evaluation method for correlation evaluation of random variables. Appendix to 
Table A2 shows the results of the selection of optimal copula function, and the best results are shown 
in bold. 

Table 9. The experimental results of the normal RMSE of variables after approximate 
fitting based on cubic B-spline (Normal_RMSE of spline fitting), normal entropy 
difference (ED), absolute value of correlated parameters, unweighted correlation 
coefficient R and weighted correlation coefficient R for variables without explicit 
functional relationship. 

Datasets Normal_ 
RMSE of spline 
fitting 

Normal 
ED 

Absolute value 
of correlated 
parameters 

Unweight-ed 
R   

Weighted
R  

Iris(x1,x2) 0.120 0.126 0.932 0.607 0.510 
Iris(x2,x3) 0.385 0.131 0.593 0.631 0.572 
Iris(x3,x4) 0.255 0.096 0.123 0.842 0.837 
Seeds(x1,x3) 0.175 0.051 0.610 0.722 0.652 
Seeds(x3,x4) 0.245 0.157 1.531 0.356 0.189 
Seeds(x1,x6) 0.187 0.182 0.846 0.595 0.515 
Glass(x1,x2) 0.135 0.180 0.949 0.579 0.487 
Glass(x2,x3) 0.159 0.229 1.033 0.526 0.431 
Glass(x1,x4) 0.221 0.135 0.223 0.807 0.796 
Wine(x2,x3) 0.218 0.221 1.103 0.487 0.374 
Wine(x3,x8) 0.190 0.231 0.505 0.692 0.659 
Wine(x4,x5) 0.176 0.470 0.406 0.650 0.322 
Two_cluster 0.203 0.117 0.136 0.849 0.845 
Twomoons 0.085 0.035 0.419 0.821 0.774 
Five_cluster 0.369 0.280 0.436 0.639 0.619 
Roll 0.275 0.122 1.071 0.536 0.409 

The correlation analysis results for the functional relationship variables without clear function are 
shown in Table 9. The correlation of variables without clear functional relationships is evaluated by 
the degree of functional relationship between variables, the degree of uncertainty of variables and the 
degree of dependence on the variables containing distributions. Then, the weight coefficient of the 
three indicators is calculated, and the weighted sum of the three indicators is performed. Owing to the 
smaller the three indicators, the stronger the correlation, and the value range is between 0 and 1, so the 
weighted correlation value is obtained by subtracting the value after weighted summation from 1. The 
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higher the value, the stronger the correlation. Similarly, the unweighted correlation results can be 
derived. According to the results, the stronger the regularity of the variable, the greater the value of the 
correlation coefficient. 

In addition, in order to compare the performance of correlation analysis methods for the two types 
of functional relationship variables with specific distribution and the variables without explicit 
functional relationships, the experimental designs are conducted as follows: First, the correlation 
analysis performance of the two methods is compared under the same functional expression with 
specific distribution; second, the performance of the two correlation analysis methods is compared for 
the same manifold dataset without functional relationships. Combined with the above experiments, the 
results are analyzed in detail and the reasonable conclusions are drawn below. 

Table 10. The comparison results of correlation analysis methods for the variables with 
specific distributions and variables without explicit functional relationships. 

Datasets The methods for variables with 
specific distributions

The methods for variables without 
explicit functional relationships

 Unweighted R   Weighted R Unweighted R   Weighted R
2 24( 0.5)y x      0.516 0.425 0.548 0.422 

sin( )

cos( )

x t t

y t t

 
 

 
  

 
0.646 0.524 0.575 0.467 

two_cluster  0.766 0.794 0.849 0.845 
Roll 0.511 0.394 0.536 0.409 

According to the experimental results, the performance of the two correlation analysis methods 
is similar in the case of the same functional relationship expression with specific distribution, and the 
correlation analysis method aiming at the functional relation variable with specific distribution is 
slightly better. For manifold datasets without explicit functional relationships, the correlation analysis 
method without functional relation variables has better performance. However, it is also valid for 
functional relation variables with specific distributions. According to the experimental results, the 
performance of the two correlation analysis methods is similar in the case of the same functional 
relation expression with specific distribution, and the correlation analysis method aiming at the 
functional relation variable with specific distribution is slightly better. For manifold data sets without 
explicit functional relations, the correlation analysis method without functional relation variables has 
better performance. However, it is also valid for functional relation variables with a specific 
distribution. Moreover, for variables without clear functional relationships, it considers that the 
correlation analysis method for such variables will fit the function expression between variables first, 
and then conduct comprehensive analysis to the variables. Therefore, the relationship between the two 
correlation analysis methods is only for different variable types, and the evaluation methods are 
actually consistent. When the function expression between variables is wrong, the evaluation method 
for variables without clear functional relationships can be used to fit the function relationship between 
variables to get the correct function expression, and then correlation analysis will carry out to get the 
final correlation coefficient. 
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5. Discussion 

Table 11. The comparison results of a new method with the maximum information 
coefficient (MIC), Pearson coefficient and mutual information (MI). 

Datasets Unweighted R  Weighted R   MIC Pearson MI 
| |y x    0.502 0.417* 0.204 -0.051 0.203

2 24( 0.5)y x     0.516 0.425* 0.221 0.000 0.219 
22y x    0.552 0.449* 0.433 -0.045 0.356 

3 42( )y x    0.590 0.454* 0.156 -0.021 0.081 
5y x  0.595 0.481 0.523* 0.007 0.517 

2( )y x     0.506 0.397 0.455* -0.009 0.549 

sin

cos

x t

y t

 
 

 
  

 
0.745 0.690* 0.571 -0.032 0.792 

2sin sin 2

2cos cos2

x t t

y t t




  
   

 
0.635* 0.389 0.487 0.035 0.807 

sin( )

cos( )

x t t

y t t

 
 

 
  

 
0.646 0.524* 0.248 0.014 0.298 

2sin(5 )cos

2sin(5 )sin

x t t

y t t




 
  

 
0.616* 0.492 0.358 0.060 0.643 

3

3

2(cos(360 ))

2(sin(360 ))

x t

y t





  


 
 

0.629* 0.506 0.540 0.008 0.871 

9sin(2 ) 5sin(3 )

9cos(2 ) 5cos(3 )

x t t

y t t




   
   

 
0.574 0.440 0.486 -0.002 0.522*

Iris(x1,x2) 0.607 0.510* 0.277 -0.109 0.265 
Iris(x2,x3) 0.631 0.572* 0.442 -0.421 0.328 
Iris(x3,x4) 0.842 0.837 0.918* 0.963 0.855 
Seeds(x1,x3) 0.722 0.652* 0.443 0.608 0.348 
Seeds(x3,x4) 0.356 0.189 0.411 0.368* 0.213 
Seeds(x1,x6) 0.595 0.515* 0.301 0.230 0.170 
Glass(x1,x2) 0.579 0.487* 0.457 -0.072 0.232 
Glass(x2,x3) 0.526 0.431* 0.300 -0.192 0.208 
Glass(x1,x4) 0.807 0.796* 0.734 0.650 0.535 
Wine(x2,x3) 0.487 0.374* 0.311 0.094 0.115 
Wine(x3,x8) 0.692 0.659* 0.464 -0.561 0.331 
Wine(x4,x5) 0.650 0.322 0.239 0.443* 0.215 
Two_cluster 0.849 0.845 0.985 0.871 0.876*

Twomoons 0.821 0.774* 0.510 -0.415 0.771 
Five_cluster 0.639 0.619* 0.470 -0.474 0.396 
Roll 0.536 0.409 0.386 0.122 7.601 

Note: the best results are shown in bold. 
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According to the algorithm theory in this paper, the value range of the correlation value calculated 
by the method in this paper is between 0 and 1, and the larger the value, the stronger the correlation. 
In order to verify the effectiveness of the proposed method, the weighted and unweighted correlation 
coefficients R obtained by the new method are compared with MIC, Pearson coefficient and Mutual 
Information (MI). The results of the comparison are shown in Table 11, with the best results are shown 
in bold, and the suboptimal results are marked with the * sign. In addition, for the new method, MIC 
and Pearson coefficients, the correlation coefficient values of them is equal to 0 when the variables are 
uncorrelated, while the correlation coefficient value is equal to 1 when the variables containing 
functional relationship with each other. For MI, the value of MI is close to 0 when the variables are 
uncorrelated with each other, while the value of MI is close to positive infinity when the variables with 
functional relationship. 

1) According to the results in Table 10, in general, most of the correlation coefficients obtained by 
the new method are better than MIC and Pearson coefficients, and all are better than mutual information. 
For the functional relationship variables containing distributions, the MI value is close to 0, and the 
Pearson coefficient value is almost equal to 0, but there are clear regularities in the scatter plot of the 
variables, and the correlation coefficient value obtained by the new method and MIC is not equal to 0, 
which indicates that there exists correlation between the functional relationship variables containing 
specific distributions, but the MI and Pearson coefficient cannot measure their correlation. Therefore, 
according to the experimental results, Pearson coefficient can well evaluate the correlation of variables 
with linear relationship, MIC can better measure the correlation between variables with specific 
function types, and the new method can measure the functional relationship variables well. In addition, 
for variables without explicit functional relationship, the values obtained by the MIC and Pearson 
coefficient are small. However, there exist strong linear or nonlinear correlations between variables in 
the iris datasets, seeds datasets and the three synthetic datasets according the scatter plots which are 
shown in Figure 6. This indicates that MIC and the Pearson coefficient cannot evaluate the correlation 
of variables that subject to distributions and randomness well, but the new method can measure their 
correlations well 

2) For the functional relationship variables containing specific distributions, according to the 
analysis results of the functional relationship variables that contain specific distribution, the new 
method has better evaluation ability for variables with obvious regularity in the scatter plots. According 
to the scatter plots shown in Figure 5, influenced by random error and distribution, the values of 
variables are non-deterministic, and there exist uncertainty and randomness in variables, but the 
probability that these values fall into a certain range is definite, and there exist strong regularity 
between variables. As shown in Table 11, there are 12 numbers of functional relationship variables that 
contain specific distributions in total, the unweighted results obtained by the new method are all better 
than MIC and Pearson coefficients, and the weighted correlation coefficient results are better than 
Pearson coefficients, with 8 numbers of weighted results that are better than MIC, indicating that the 
correlation analysis framework proposed in this paper can better evaluate the correlation of functional 
relationship variables that contain distributions. 

3) For the experimental results of the variables without explicit functional relationships, there are 16 
numbers of variable groups of datasets in total, there are 13 numbers of unweighted results obtained by 
the new method are better than MIC and Pearson coefficient, and for the weighted results, there are 13 
numbers of results are better than MIC and 12 numbers of results are better than Pearson coefficient, 
respectively. Furthermore, there exist strong linear or nonlinear correlations between variables in the 
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iris dataset, seeds dataset, wine dataset and three synthetic datasets according to the scatter plots, which 
are shown in Figure 6. For the variables of the iris dataset, seeds dataset, wine dataset, Two_cluster, 
Twomoons and Five_cluster, the correlation coefficient values of variables obtained in the proposed 
method are almost larger than MIC, Pearson coefficient and MI, which indicates that the new 
correlation analysis framework can evaluate not only correlations of variables subject to distributions 
and randomness, but also can evaluate linear and nonlinear correlations between variables without 
explicit functional relationships well. 

4) The comprehensive analysis shows that MIC can measure only the correlation with specific 
types of functional relationships but cannot identify the type of variable with distribution, and the 
Pearson coefficient can evaluate only the type of linear functional relationship between variables but 
the rest of the relationship types cannot be well measured. However, the proposed correlation analysis 
framework in this paper cannot only measure the linear or nonlinear correlation of variables containing 
any functional relationship types, but can also evaluate the relationship of variables with functional 
relationships involving specific distributions. In addition, the correlation of variables with obvious 
regularity in the scatter plot and the correlation of variables without clear functional relationship can 
also be evaluated well. The proposed method comprehensively considers the degree of functional 
relationship between variables, the degree uncertainty of variables and the degree of dependence on 
the variables containing distributions, which has a more comprehensive evaluation ability and better 
evaluation effect. 

6. Conclusions 

Most correlation analysis methods do not comprehensively consider the impact of uncertainty 
and distribution in variables when analyzing the correlation between variables, which leads to the 
neglect of regularity information in the variables, especially the strong regularity information in 
variables, so that the correlation coefficient values between variables with regularity calculated by 
traditional methods are too small, particularly the correlation coefficient values between variables with 
strong regularity. Moreover, it is believed that there is no correlation or weak correlation between 
variables. Based on the above problems, a novel correlation analysis framework of variables (RVCR-
CA) is proposed in this paper, which considers the degree of functional relationship, the degree of 
uncertainty for the distribution of variables and the degree of dependence on the variables containing 
distributions. The correlation analysis framework cannot only evaluates the correlation of variables 
with obvious regularity in the scatter plots, but can also measure the correlation of variables without 
regularity in the scatter plots. In addition, for the variables without explicit functional relationships, 
the framework can analyze the correlation between different variables more comprehensively. In this 
paper, the experimental design is carried out from the perspective of the functional relationship 
variables containing specific distribution and the variables without clear functional relationships. 
Comparing the evaluation methods of correlation, such as MIC, Pearson coefficient and MI, the 
proposed framework cannot only measure the correlation of variables with any specific functional 
relationship, but can also evaluate the functional relationship variables containing specific distribution 
at the same time. For the variables without clear functional relationships, the new method can also 
better measure the correlation of variables. The proposed correlation analysis framework has a more 
comprehensive evaluation ability and better evaluation effect. 
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Appendix 

Table A1. The results of Copula function selection for functional relationship variables 
with a specific distribution. 

Function expressions Indicator Clayton copula Gumbel copula Frank copula
| |y x    theta -0.065 0.968 -0.301

Kendell’s coefficient -0.033 -0.033 -0.033
AIC -7648.202 -8069.438 -7660.186
BIC -7636.832 -8058.069 -7648.817
fitting error 0.008 0.006 0.008

2 24( 0.5)y x     theta -0.111 0.944 -0.533
Kendell’s coefficient -0.059 -0.059 -0.059
AIC -6548.274 -6900.723 -6558.867
BIC -6536.905 -6889.353 -6547.498
fitting error 0.017 0.013 0.017

22y x    theta -0.040 0.980 -0.183
Kendell’s coefficient -0.020 -0.020 -0.020
AIC -7597.857 -8427.888 -7603.843
BIC -7586.488 -8416.518 -7592.474
fitting error 0.009 0.005 0.009

3 42( )y x    theta 0.017 1.008 0.074
Kendell’s coefficient 0.008 0.008 0.008
AIC -9005.123 -9105.323 -9086.352
BIC -8993.754 -9093.953 -9074.983
fitting error 0.004 0.003 0.003 

Continued on next page
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Function expressions Indicator Clayton copula Gumbel copula Frank copula
5y x  theta -0.005 0.998 -0.022

Kendell’s coefficient -0.002 -0.002 -0.002
AIC -6770.312 -6770.915 -6767.358
BIC -6758.943 -6759.545 -6755.989
fitting error 0.015 0.015 0.015 

2( )y x     theta 0.028 1.006 -0.749
Kendell’s coefficient 0.061 0.061 0.061
AIC -6216.165 -6918.485 -6903.422
BIC -6204.796 -6907.116 -6892.053
fitting error 0.020 0.013 0.013 

sin

cos

x t

y t

 
 

 
  

 theta 0.566 1.283 2.067 
Kendell’s coefficient 0.221 0.221 0.221
AIC -6694.823 -6975.023 -7390.698 
BIC -6683.454 -6963.654 -7379.3298 
fitting error 0.015 0.013 0.010 

2sin sin 2

2cos cos 2

x t t

y t t




  
   

 theta 0.076 1.038 0.331 
Kendell’s coefficient 0.037 0.037 0.037
AIC -6164.096 -6191.257 -6158.928
BIC -6152.727 -6179.888 -6147.559
fitting error 0.021 0.021 0.021 

sin( )

cos( )

x t t

y t t

 
 

 
  

 theta 0.053 1.026 0.230
Kendell’s coefficient 0.026 0.026 0.026
AIC -6205.095 -6223.546 -6201.534
BIC -6193.726 -6212.176 -6190.165
fitting error 0.021 0.020 0.021

2sin(5 )cos

2sin(5 )sin

x t t

y t t




 
  

 theta 0.136 1.067 0.575
Kendell’s coefficient 0.064 0.064 0.064
AIC -6118.383 -6164.713 -6109.877
BIC -6107.013 -6153.343 -6098.508
fitting error 0.022 0.021 0.022

3

3

2(cos(360 ))

2(sin(360 ))

x t

y t





  


 
 

theta 0.085 1.043 0.368
Kendell’s coefficient 0.041 0.041 0.041
AIC -6172.419 --6203.614 -6166.508
BIC -6161.050 -6192.245 -6155.139
fitting error 0.021 0.021 0.021 

9sin(2 ) 5sin(3 )

9cos(2 ) 5cos(3 )

x t t

y t t




   
   

theta 0.014 1.007 0.062
Kendell’s coefficient 0.007 0.007 0.007
AIC -6696.385 -6702.803 -6695.131
BIC -6685.015 -6691.434 -6683.761
fitting error 0.015 0.015 0.015

Note: the best results are shown in bold. 
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Table A2. The results of the selection of the optimal copula function for variables. 

Datasets Indicator Clayton copula Gumbel copula Frank copula

Iris(x1,x2) 

theta -0.135 0.933 -0.652 
Kendell’s coefficient -0.072 -0.072 -0.072 
AIC -1029.535 -1037.073 -1032.074
BIC -1021.514 -1029.052 -1024.053
fitting error 0.032 0.031 0.032 

Iris(x2,x3) 

theta -0.309 0.846 -1.687 
Kendell’s coefficient -0.182 -0.182 -0.182 
AIC -1176.229 -1304.415 -1309.328
BIC -1168.208 -1296.393 -1301.307
fitting error 0.020 0.013 0.013 

Iris(x3,x4) 

theta 8.153 5.077 18.501 
Kendell’s coefficient 0.803 0.803 0.803 
AIC -1418.980 -1374.472 -1395.611
BIC -1410.959 -1366.450 -1387.590
fitting error 0.009 0.010 0.009 

Seeds(x1,x3) 

theta 1.638 1.819 4.899 
Kendell’s coefficient 0.450 0.450 0.450 
AIC -1407.815 -1375.620 -1391.465
BIC -1399.121 -1366.926 -1382.771
fitting error 0.035 0.038 0.036 

Seeds(x3,x4) 

theta 0.654 1.327 2.333 
Kendell’s coefficient 0.246 0.246 0.246 
AIC -1534.568 -1516.419 -1522.695
BIC -1525.874 -1507.725 -1514.001
fitting error 0.026 0.027 0.027 

Seeds(x1,x6) 

theta -0.307 0.847 -1.675 
Kendell’s coefficient -0.181 -0.181 -0.181 
AIC -1464.723 -1489.371 1472.437
BIC -1456.029 -1480.677 -1463.742
fitting error 0.030 0.029 0.030 

Glass(x1,x2) 

theta -0.100 0.950 -0.475 
Kendell’s coefficient -0.053 -0.053 -0.053 
AIC -1850.694 -1861.513 -1856.081
BIC -1841.962 -1852.781 -1847.349
fitting error 0.013 0.013 0.013 

Glass(x2,x3) 

theta 0.066 1.033 0.288 
Kendell’s coefficient 0.032 0.032 0.032 
AIC -1749.192 -1765.237 -1746.311
BIC -1740.460 -1756.505 -1737.579
fitting error 0.017 0.016 0.017 

Continued on next page
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Datasets Indicator Clayton copula Gumbel copula Frank copula

Glass(x1,x4) 

theta -0.595 0.703 -4.487 
Kendell’s coefficient -0.423 -0.423 -0.423 
AIC -1786.484 -1260.540 -1825.382
BIC -1777.752 -1252.177 -1816.650
fitting error 0.015 0.029 0.014 

Wine(x2,x3) 

theta 0.207 1.104 0.851 
Kendell’s coefficient 0.094 0.094 0.094 
AIC -1286.481 -1294.058 -1290.871
BIC -1278.117 -1285.694 -1282.508
fitting error 0.027 0.026 0.026 

Wine(x3,x8) 

theta -0.350 0.825 -1.980 
Kendell’s coefficient -0.212 -0.212 -0.212 
AIC -1190.365 1155.657 -1198.454
BIC -1182.001 -1147.294 -1190.090
fitting error 0.035 0.039 0.034 

Wine(x4,x5) 

theta 0.697 1.348 2.460 
Kendell’s coefficient 0.258 0.258 0.258 
AIC -1405.072 -1332.711 -1415.150
BIC -1396.709 -1324.347 -1406.787
fitting error 0.019 0.024 0.019 

Two_cluster 

theta 2.739 2.369 7.369 
Kendell’s coefficient 0.578 0.578 0.578 
AIC -3717.193 -3550.687 -3622.591
BIC -3707.210 -3540.704 -3612.608
fitting error 0.010 0.012 0.006 

Twomoons 

theta -0.402 0.799 -2.385 
Kendell’s coefficient -0.251 -0.251 -0.251 
AIC -17,417.483 -17,881.203 -18,373.622
BIC -17,404.854 -17,868.574 -18,360.993
fitting error 0.003 0.002 0.002 

Five_cluster 

theta -0.390 0.805 -2.291 
Kendell’s coefficient -0.242 -0.242 -0.242 
AIC -17,246.295 -18,408.549 -19,268.310
BIC -17,233.093 -18,395.347 -19,255.108
fitting error 0.013 0.010 0.008 

Roll 

theta 0.200 1.071 0.647 
Kendell’s coefficient 0.067 0.067 0.067 
AIC -21,451.205 -23,255.264 -21,448.762
BIC -21,438.003 -23,242.062 -21,435.560
fitting error 0.005 0.003 0.005 

Note: the best results are shown in bold. 
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