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Abstract: Amensalism, a rare yet impactful symbiotic relationship in ecological systems, is the focus
of this study. We examine a discrete-time amensalism system by incorporating the fear effect on the
first species. We identify the plausible equilibrium points and analyze their local stability conditions.
The global attractivity of the positive equilibrium, E∗, and the boundary equilibrium, E1, are analyzed
by exploring threshold conditions linked to the level of fear. Additionally, we analyze transcritical bi-
furcations and flip bifurcations exhibited by the boundary equilibrium points analytically. Considering
some biologically feasible parameter values, we conduct extensive numerical simulations. From nu-
merical simulations, it is observed that the level of fear has a stabilizing effect on the system dynamics
when it increases. It eventually accelerates the extinction process for the first species as the level of
fear continues to increase. These findings highlight the complex interplay between external factors and
intrinsic system dynamics, enriching potential mechanisms for driving species changes and extinction
events.
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1. Introduction

Symbiotic relationships play a crucial role in the study of ecological systems and have gained sub-
stantial attention among evolutionary biologists for their frequent involvement in the coevolutionary
dynamics between interacting organisms. In addition to well-known symbiotic relationships like mu-
tualism, competition and predator/prey interactions, there are three other types, i.e., commensalism,
amensalism and synnecrosis, that have received comparatively less attention from researchers. Amen-
salism, receiving less attention than commensalism, involves one species adversely affecting another’s
fitness without gaining any apparent benefit [1] For instance, Xi et al. [2] noted that grassland cater-

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2024035


833

pillars will trigger a death-feigning anti-predator response if grasshoppers suddenly appear. Moreover,
by leaping to seek food, the grasshopper may negatively affect the foraging efficiency of the caterpil-
lars, but the behavior of caterpillars has no effect on the grasshopper. Therefore, the two species form
an amensalism relationship. The interaction of ibex and weevils feeding on the same type of shrub
serves as another illustration of amensalism. Although the presence of the weevil has minimal im-
pact on food availability, the presence of ibex significantly reduces weevil populations. Ibex consume
substantial amounts of plant matter, inadvertently ingesting the weevils along with it [3]. According
to Veiga et al. [4] the relationships witnessed between honey bees (Apis mellifera) and wasps in the
tropical ecosystems of East Africa could be described by amensalism concerning nesting spaces. The
experiment’s results revealed that wasps refrained from using nest boxes that had been inhabited by
bees in the prior breeding season. In contrast, honeybees displayed a tendency to take over these nest
boxes, regardless of whether they were previously occupied by wasps. This behavior showcases a clear
instance of amensalism, as there was no recorded occurrence of wasps occupying a nest box previously
utilized by bees. For a deeper ecological context regarding species amensalism, refer to [3, 5–8] and
the related references within those sources.

Although scientists and researchers have extensively investigated amensalism in ecological systems
in recent decades, the first mathematical model was put forward by Sun in 2003 [9]. In 2008, Zhu et
al. [10] employed the method of vector field analysis to study the following model:

dx
dt
= x (a1 − b1x − c1y) ,

dy
dt
= y (a2 − c2y) ,

(1.1)

where x and y represent the density of the first and second species at time t, respectively, a1 and
b1 stand for the intrinsic growth rates and the intensity of competition of x, a2 and c2 stand for the
intrinsic growth rates and the intensity of competition of y. Additionally, c1 represents the strength of
the interspecific competition, indicating how much impact the second species has on the first species.
By analyzing the equilibrium points in system (1.1), they obtained the following result:
Theorem A (1) If a1

c1
< a2

c2
, then the boundary fixed points B(0, a2

c2
) is globally stable.

(2) If a1
c1
> a2

c2
, then the unique positive fixed point A( a1c2−c1a2

b1c2
, a2

c2
) is globally stable.

The model (1.1) exhibits simple dynamical behavior as the Theorem A indicates that the system
does not generate bifurcation. In recent years, researchers have extensively studied the dynamical be-
haviors of the amensalism model (1.1) in different scenarios. Several mathematical models have been
explored, considering the well-known Allee effect in [11–15]. For instance, Wei et al. [11] proposed
an amensalism model with a weak Allee effect and observed saddle-node bifurcations. Luo et al. [12]
presented the global dynamics of a two-species Holling-II amensalism system with a nonlinear growth
rate by incorporating the Allee effect on the first species. Similarly, some interesting works using non-
monotonic functional responses have been presented in [6, 16, 18]. Amensalism relationships among
different species have also been incorporated into the study of harvesting models [19, 20]. Under the
Michaelis-Menten type harvesting in the first species, Liu et al. [19] investigated the complex dynam-
ics of an amensalism system. Zhao et al. [20] found that incorporating Menten-type harvesting in
the second species within the amensalism system leads to notably richer dynamics. These dynamics
include scenarios where the extinction of the first species persists or where the approach toward the
steady-state occurs at a slower rate. Similar to the above, amensalism models incorporating prey refuge
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have emerged as a prominent area of research [19, 21, 22, 24].
In ecological systems, direct killing in the predation process significantly influences the common

symbiosis relationships, i.e., mutualisms, competition and predator/prey interactions. Besides direct
killing, the psychological fear induced in the prey due to predation risk also indirectly impacts the
breeding rate of the prey. This indirect effect, termed the fear effect, exerts a substantial impact
throughout the prey’s life cycle, amplifying the complexity of their ecological dynamics. In their
experiment involving song sparrows, Zanette et al. [25] observed a 40% reduction in the breeding rate
due to the induced fear of predation risk. In another independent study, Elliott et al. [26] reported that
Drosophila melanogaster exhibits anti-predator behaviors upon exposure to Mantid odor, displaying re-
duced activity across both breeding and non-breeding seasons. Meanwhile, Wang et al. [27] presented
a mathematical model for prey-predator dynamics, incorporating the fear risk. They disclosed that
heightened fear levels might stabilize the ecosystem by preventing the occurrence of periodic oscilla-
tions in the population. For more information about predator-prey models with fear effects, see [28–30]
and references cited therein. The fear effect is not limited to only common symbiosis relationships like
mutualism, competition and predator/prey interactions. It has also been observed in commensalism
and amensalism types of symbiosis. For example, Xi et al. [2] studied the number of cocoons formed
by grassland caterpillars in the presence or absence of grasshoppers and obtained Figure 1. From
Figure 1, it can be clearly observed that the fear of grasshoppers by caterpillars can lead to a decline
in species numbers. Ogada [31] have highlighted that the presence of large herbivorous mammals in
African savanna habitats has resulted in a reduction of the canopy area of trees, as well as a decrease
in grass cover by 8% and forb cover by 33%. However, the canopy serves as a crucial habitat and food
source for birds in this particular East African savanna ecosystem. Thus, the sizable herbivore has
exerted a significant influence on avian behavior and growth, particularly in relation to foraging habits,
rates of maturation, chances of survival, reproductive capacity and dietary resources. As a result, the
overall diversity of bird species has experienced a decline of approximately 30%. This decline may
be interpreted as the fear induced by large herbivores in the East African savanna ecosystem, resulting
in reduced avian birth rates. Consequently, developing models that can effectively explain this phe-
nomenon is imperative. However, no scholarly investigations have taken into account the impact of the
fear effect on the amensalism system.

Figure 1. The number of cocoons formed by grassland caterpillars in the presence or absence
of grasshoppers.

Recently, discrete-time models have attracted considerable attention due to their rich and complex
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dynamic behaviors and have been explored extensively [18, 30, 32]. However, there needs to be more
emphasis on investigating discrete-time amensalism systems. In 2022, Zhou et al. [21] investigated the
following discrete amensalism systems:xn+1 = xn exp (α − βxn − cyn) ,

yn+1 = yn exp (γ − δyn) .
(1.2)

They studied the stability and attractivity of the equilibrium point of system (1.2) and obtained the
following results:
Theorem B (1) If 0 < α ≤ 2, 0 < c < δα

γ
, 0 < γ < 2 or α > 2, δ(α−2)

γ
< c < δα

γ
, 0 < γ < 2, then the

positive equilibrium point E∗3(x∗3,
γ

δ
) is local stability.

(2) If 0 < γ < 2, 0 < α − cγ
δ
< ln 2 + 1, then the positive equilibrium point E∗3(x∗3,

γ

δ
) is globally

attractive.
Obviously, system (1.2) is the discrete form of model (1.1). In system (1.1), according to Theo-

rem A (2), when a positive equilibrium point exists, it is global stability. This also implied that no
matter what the initial conditions are, the solution will eventually converge to the positive equilibrium
point. While for discrete system (1.2), Theorem B shows that the conclusion of the stability of the
positive equilibrium point can only be obtained under stricter conditions than Theorem A. Addition-
ally, model (1.2) undergoes flip bifurcation at the boundary equilibrium points E1, E2 and the positive
equilibrium point E∗3 [21]. This is a dynamic phenomenon that does not exist in the continuous sys-
tem (1.1), Hence, the investigation of discrete models is highly valuable due to their propensity for
exhibiting intricate dynamic phenomena that surpass those observed in continuous models.

Subsequently, Zhou et al. [32] investigated a discrete amensalism system with the Beddington-
DeAngelies functional response and Allee effect, and they found that the Allee effect causes the system
to take longer trajectories to reach its stable steady-state solution. So far, to the best of our knowledge,
there has been no research conducted on the discrete amensalism system with the fear effect by re-
searchers.

Motivated by prior research, we assume that the birth rate of the first species will be reduced by
the fear of the second species. We multiply the birth rate of the first species by a decreasing function
G(k, y) related to the size of the second species. Based on observations in the biological world, the fear
function G(k, y) proposed by Wang et al. [27] must satisfy the following requirements:

G(0, y) = 1,G(k, 0) = 1, lim
y→∞

G(k, y) = 0,

lim
k→∞

G(k, y) = 0,
∂G(k, y)
∂k

< 0,
∂G(k, y)
∂y

< 0,

where k represents the level of fear and y is the species density. Note that G(k, y) = 1/(1 + ky) meets
the above requirements and 1/(1 + ky) is now widely applied in [33–35].

Accordingly, on the basis of system (1.1), considering the above assumption, we introduce the fear
effect to the first species, resulting in the formulation of the following amensalism model:

dx
dt
= x

(
e1

1 + k1y
− e2 − b1x − c1y

)
,

dy
dt
= y (a2 − c2y) ,

(1.3)
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where e1 and e2 represent the birth and death rates of the first species and 1/(1 + ky) represents the
fear effect function. It is to be noted that without the fear effect (k = 0), the above model (1.3) will
degenerate to the amensalism model (1.1). For the convenience of analysis, with the transformation
x = x̄/b1, y = ȳ/c2, t = t̄, after dropping the bars, system (1.3) becomes

dx
dt
= x

(
e1

1 + ky
− e2 − x − cy

)
,

dy
dt
= y (a2 − y) ,

(1.4)

where k = k1/c2 and c = c1/c2. The numerical simulations in [36] show that when the step size gets
bigger in Euler’s scheme, both period-doubling and Neimark-Sacker bifurcation happen. This means
that the numerical approach for discretization is not accurate. In order to address this shortcoming, the
method of piecewise constant arguments was established. Based on the findings in [37,38], the method
of piecewise constant arguments is indeed a preferable solution for the discretization of continuous
models. Hence, using the method of piecewise constant arguments proposed by Jiang and Rogers [39],
similar to the modeling method in [32], we can obtain the following discrete-time model:xn+1 = xn exp

(
e1

1 + kyn
− e2 − xn − cyn

)
,

yn+1 = yn exp (a2 − yn) .
(1.5)

Obviously, the initial conditions (x0, y0) for (1.5) are in R2
+. In a discrete amensalism ecological

model with the fear effect, what kind of dynamical behavior does it exhibit? Does the stability of
the equilibrium point change compared to a continuous system (1.1)? Does a new bifurcation happen
compared to a discrete system (1.2)? What effects do fear effects have on the system? We will conduct
a detailed investigation to answer these questions.

The layout of the paper is as follows: In Section 2, we analyze the relevant properties of the fixed
points. Section 3 investigates bifurcation phenomena and considers the chaos control method. Then,
in Section 4, we use numerical simulations to validate the feasibility of the obtained results. Finally, a
brief discussion is provided at the end of the paper.

2. Analysis of fixed points

2.1. The existence of equilibria

Note that fixed points are determined by the following system of equations: x = x exp
(

e1
1+ky − e2 − x − cy

)
,

y = y exp (a2 − y) .
(2.1)

Obviously, system (1.5) always has four fixed points: E0(0, 0), E1(0, a2), E2(e1 − e2, 0) and E∗
(
(e1 −

e2 − ke2a2 − ka2
2c − a2c)/(1 + ka2), a2

)
. The fixed points E2 and E∗ are non-negative if e2 < e1 and

e1 > (a2k + 1)(a2c + e2) are satisfied, respectively. There are two fixed points in region A of Figure
2(a): E0 and E1. There are three fixed points in region B: E0, E1 and E2. There are four fixed points in
region C: E0, E1, E2 and E∗.
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2.2. The local stability of equilibria

The Jacobian matrix of system (2.1) is calculated as follows:

J(x, y) =

 (
1 − x

)
M −x

( e1k
(1 + ky)2 + c

)
M

0
(
1 − y

)
N

 , (2.2)

where M = exp
(
e1/(1 + ky) − e2 − x − cy

)
and N = exp

(
a2 − y

)
.

Next, we analyze the local stability of the equilibria according to the above Jacobian matrix.

Theorem 2.1. E0(0, 0) is

1) a source if 0 < e2 < e1;

2) a saddle if 0 < e1 < e2;

3) non-hyperbolic if e1 = e2.

Proof. For the equilibrium E0(0, 0), the Jacobian matrix is

J(E0) =
(

exp
(
e1 − e2) 0
0 exp

(
a2)

)
,

with eigenvalues λ1 = exp
(
e1 − e2) > 0 and λ2 = exp

(
a2) > 1. Thus, E0(0, 0) is a source if 0 < e2 < e1,

a saddle if 0 < e1 < e2 and non-hyperbolic if e1 = e2. The proof is completed.

Theorem 2.2. The local stability of E1(0, a2) is described below:

1) a sink if 0 < e1 < (a2k + 1)(a2c + e2) and 0 < a2 < 2;

2) a source if e1 > (a2k + 1)(a2c + e2) and a2 > 2;

3) non-hyperbolic if e1 = (a2k + 1)(a2c + e2) or a2 = 2;

4) a saddle if one of the conditions holds:

(a) 0 < e1 < (a2k + 1)(a2c + e2) and a2 > 2;

(b) e1 > (a2k + 1)(a2c + e2) and 0 < a2 < 2.

Proof. The Jacobian matrix of system (2.1) at E1(0, a2) is given by

J(E1) =
(

exp
( e1

1+ka2
− e2 − ca2) 0
0 1 − a2

)
.

Consequently, two eigenvalues are λ1 = exp
(
e1/(1+ka2)−e2−ca2) > 0 and λ2 = 1−a2 < 1. Hence,

if 0 < e1 < (a2k+1)(a2c+e2) and 0 < a2 < 2, then we have 0 < λ1 < 1 and |λ2| < 1. Therefore, E1(0, a2)
is a sink. The proofs of (2–4) are similar to (1) and are omitted here. The topological classification of
E1 is presented in Figure 2(b).

Mathematical Biosciences and Engineering Volume 21, Issue 1, 832–860.



838

0 0.5 1 1.5 2 2.5 3

e
2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

e
1

C

B

A

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

a
2

2

4

6

8

10

12

14

e
1

saddle

saddle

sink

source

(b)

Figure 2. (a) Classification diagram of the existence of equilibrium points with c = 0.5,
a2 = 1, k = 1, e2 ∈ (0, 3), e1 ∈ (0, 2). (b) topological classification of a2 − e1 plane at E1 with
k = 1, c = 0.5, e2 = 2, a2 ∈ (0, 5), e1 ∈ (0, 14).

Theorem 2.3. E2(e1 − e2, 0) is

1) a source if e1 > e2 + 2;
2) a saddle if 0 < e1 < 2 + e2;
3) non-hyperbolic if e1 − e2 = 2.

Proof. For the equilibrium E2(e1 − e2, 0), the Jacobian matrix is

J(E2) =
(

1 − e1 + e2 e1 − e2(−e1k − c)
0 exp

(
a2)

)
.

Obviously, the two eigenvalues are λ1 = 1 − e1 + e2 = 1 − (e1 − e2) < 1 and λ2 = exp (a2) > 1. If
e1 − e2 > 2, i.e., λ1 < −1, then |λ1| > 1 and |λ2| > 1, implying that E2(e1 − e2, 0) is a source. Therefore,
(1) holds. The proof processes of (2) and (3) are similar, we omit the details here. Thus, E2 is always
unstable. This completes the proof.

For E∗(x∗, a2), the Jacobian matrix is as follow:

J(E∗) =
 1 − x∗ x∗

(
e1k

(1+ka2)2 + c
)

0 1 − a2

 ,
where λ1 = 1 − x∗ = 1 −

(
e1 − (1 + a2k)(e2 + ca2)

)
/(1 + ka2) < 1 and λ2 = 1 − a2 < 1. Note that when

0 < c <
(
e1 − e2(1 + ka2)

)
/(1 + ka2)a2 ≜ c̃ and 0 < e2 < e1/(1 + ka2) − 2 ≜ e∗∗2 . In addition, we can

verify c1 < c̃. Then,

1 −
e1 − (1 + a2k)(e2 + ca2)

1 + ka2


< −1 if 0 < c < c1,
= −1 if c = c1,
∈ (−1, 1) if c1 < c < c̃,

where c1 =
(
e1 − (2 + e2)(1 + ka2)

)
/(1 + ka2)a2. Moreover, if e∗∗2 < e2 < e1/(1 + ka2) and 0 < c < c̃,

then 1 − x∗ ∈ (−1, 1). Therefore, the following result can be obtained immediately.
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Theorem 2.4. Suppose that 0 < c < c̃. Then, the topological classifications of the unique positive fixed
point E∗(x∗, a2) is given by Table 1.

Table 1. Topological types of the fixed point E∗(x∗, a2).
Conditions Case

0 < a2 < 2 sink

e∗∗2 < e2 <
e1

1+ka2
0 < c < c̃ a2 > 2 saddle

a2 = 2 non-hyperbolic
0 < a2 < 2 saddle

0 < c < c1 a2 > 2 source
a2 = 2 non-hyperbolic
0 < a2 < 2 non-hyperbolic

0 < e2 < e∗∗2 c = c1 a2 > 2 non-hyperbolic
a2 = 2 non-hyperbolic
0 < a2 < 2 sink

c1 < c < c̃ a2 > 2 saddle
a2 = 2 non-hyperbolic

2.3. Global attractivity of positive equilibrium point

In this section, we consider the global asymptotic stability of the equilibrium point with the help of
Lemmas 3–5 from [30] and Lemmas 2.1 and 2.2 from [40].

Theorem 2.5. Suppose that 0 < a2 < 2, 0 < k∗∗ < k < k∗ holds and E∗(x∗, a2) is globally attractive,
i.e.,

lim
n→∞

x(n) = x∗, lim
n→∞

y(n) = a2, (2.3)

where k∗ = e1−e2−ca2
(e2+ca2)a2

and k∗∗ = e1−ln 2−1−e2−ca2
(ln 2+1+e2+ca2)a2

.

Proof. According to Lemma 4 in [30], if 0 < a2 < 2 holds, then

lim
n→∞

y(n) = a2.

For sufficiently small ε, there exists an integer N1, such that for all n > N1,

y(n) > a2 − ε. (2.4)

From Lemma 2.1 and 2.2 in [40], we obtain:

lim inf
n→+∞

y(n) ≥ min
{
a2 exp

(
a2 − exp(a2 − 1)

)
, a2

}
:= H1. (2.5)
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Now, we consider the following system:

x1(n + 1) = x1(n) exp
(

e1

1 + ka2
− e2 − x1(n) − ca2

)
. (2.6)

Apparently, x∗1 = x∗ is the positive equilibrium point of the system. Suppose {x1(n)} is any positive
solution of system (1.5). From Lemma 3 in [30], if 0 < e1 − (1 + ka2)(e2 + ca2) < 2, we know that
lim
n→∞

x1(n) = x∗. Thus, we only need to prove that

lim
n→∞

(
x(n) − x1(n)

)
= 0.

Assume that
x(n) = x1(n) exp[k1(n)].

Therefore, our main goal is to prove lim
n→∞

k1(n) = 0.
The first equation of (1.5) is equivalent to

k1(n + 1) = ln x(n) + e1
1+ky(n) − e2 − x(n) − cy(n) − ln x1(n + 1)

= k1(n)
(
1 − x1(n) exp[θ1(n)k1(n)]

)
−

(
c + ke1

(1+a2k)(1+ky(n))

)(
y(n) − a2

)
.

(2.7)

Then, x1(n) exp
[
θ1(n)k1(n)

]
is between x1(n) and x(n), and here θ1(n) ∈ [0, 1].

It follows from (2.5) that

ke1

(1 + a2k)(1 + ky(n))
≤

ke1

(1 + a2k)(1 + kH1)
:= W1.

Obviously,

x(n) exp
[ e1

1 + (a2 + ε)k
− e2 − c(a2 + ε) − x1(n)

]
≤ x(n + 1) ≤ x(n) exp

[ e1

1 + a2k
− e2 − ca2 − x1(n)

]
,

holds. Thus, according to Lemma 2.1 and 2.2 in [40], it immediately follows that:

lim sup
n→+∞

x(n) ≤ exp
( e1

1 + a2k
− e2 − ca2 − 1

)
:= Q1,

lim inf
n→+∞

x(n) ≥ min
{( e1

1 + (a2 + ε)k
− e2 − c(a2 + ε)

)
exp

[
− e2

+
e1

1 + (a2 + ε)k
− c(a2 + ε) − Q1

]
,

e1

1 + (a2 + ε)k

− e2 − c(a2 + ε)
}

:= M1.

Setting ε→ 0 in the above inequalities leads to

lim sup
n→+∞

x1(n) ≤ exp
( e1

1 + a2k
− e2 − ca2 − 1

)
= Q1,
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lim inf
n→+∞

x1(n) ≥ min
{( e1

1 + a2k
− e2 − ca2

)
exp

[ e1

1 + a2k

− e2 − ca2 − Q1
]
,

e1

1 + a2k
− e2 − ca2

}
≥ M1.

Hence, taking an integer N2 > N1, for ξ > 0 small enough, when n ≥ N2, the following inequality
holds:

M1 − ξ ≤ x(n), x1(n) ≤ Q1 + ξ, n ≥ N2. (2.8)

Assume
λ1 = max

{
|1 − M1|, |1 − Q1|

}
.

Now, let
λε1 = max

{
|1 − (M1 − ξ)|, |1 − (Q1 + ξ)|

}
. (2.9)

Therefore,

|k1(n + 1)| ≤ max
{
|1 − (M1 − ξ)|, |1 − (Q1 + ξ)|

}
|k1(n)| + (c +W1)ε

= λε1 + (c +W1)ε, n ≥ N2.

The following equation can be obtained:

|k1(n)| ≤ λn−N2
ε1 |k1(N2)| +

1 − λn−N2
ε1

1 − λε1
(c +W1)ε, n ≥ N2. (2.10)

Considering λε1 < 1, then limn→+∞ k1(n) = 0, i.e., limn→+∞
[
x(n)−x1(n)

]
= 0 is established if λ1 < 1.

Since
1 − Q1 < 1 − M1 < 1,

λ1 < 1 is equivalent to 1 − Q1 > −1, i.e.,

e1

1 + a2k
− e2 − ca2 < 1 + ln 2.

Hence, Theorem 3.1 is proved.

2.4. Global attractivity of boundary equilibrium

Now, we discuss the global attractivity of E1 with the help of Lemma 6 and 7 from [30].

Theorem 2.6. Assuming that k > k∗, 0 < a2 < 2 holds, and E1(0, a2) is globally attractive, i.e.,

lim
n→∞

x(n) = 0, lim
n→∞

y(n) = a2.

Proof. The proof of lim
n→∞

y(n) = a2 follows the same process as the one in Theorem 2.5 above, so it is
omitted here. Next, we prove that limn→∞ x(n) = 0.

Consider the auxiliary equation:

x2(n + 1) = x2(n) exp
(

e1

1 + ka2
− e2 − x2(n) − cy(n)

)
,
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combined with the second equation of system (1.5), for all i ∈ N, we have

ln
x2(i + 1)

x2(i)
=

e1

1 + ka2
− e2 − x2(i) − cy(i)

ln
y(i + 1)

y(i)
= a2 − y(i). (2.11)

According to the Theorem 2.6, we have
e1

1+ka2
−e2

a2
< c, i.e.,

e1

1 + ka2
− e2 − ca2 < 0. (2.12)

Therefore, the following inequality holds:

e1
1+ka2

− e2

a2
<

s
h
< c,

where s and h are positive numbers. Then,

hc − s > 0 (2.13)

and there exist δ > 0 such that

h
( e1

1 + ka2
− e2

)
− sa2 < −δ < 0. (2.14)

From (2.11)–(2.14), we have

h ln
x2(i + 1)

x2(i)
− s ln

y(i + 1)
y(i)

≤
[
h(

e1

1 + ka2
− e2) − sa2

]
−

[
hx2(i) + (hc − s)y(i)

]
≤ h(

e1

1 + ka2
− e2) − sa2 < −δ < 0.

Summing up the above formulas, we can get:

n∑
i=1

(
h ln

x2(i + 1)
x2(i)

− s ln
y(i + 1)

y(i)

)
= h ln

x2(n)
x2(0)

− s ln
y(n)
y(0)
< −δn.

Then,

x2(n) < x2(0)
(y(n)
y(0)

) s
h

exp
(
−
δ

h
n
)
. (2.15)

According to Lemma 2.1 in [40] and y(n + 1) ≤ y(n) exp(a2 − y(n)), it holds that:

lim sup
n→+∞

y(n) ≤ exp(a2 − 1).
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Therefore, taking an integer N2 > N1, for ε > 0, when n ≥ N2, y(n) ≤ exp (a2 − 1) + ε := M is
established. So, the inequality (2.15) is equivalent to

x2(n) < x2(0)
( M
y(0)

) s
h

exp
(
−
δ

h
n
)
,∀n ≥ N2.

Thus,
lim
n→∞

x2(n) = 0. (2.16)

Therefore, if we want to prove limn→∞ x(n) = 0, we only need to prove

lim
n→∞

(
x(n) − x2(n)

)
= 0,

Assume that
x(n) = x2(n) exp[k2(n)].

Therefore, we can convert what we need to prove into the proof lim
n→∞

k2(n) = 0.
By a similar process of proof as in Theorem 2.5, we have that when

e1

1 + ka2
− e2 − ca2 < ln 2 + 1, (2.17)

lim
n→∞

k2(n) = 0 holds. Combining condition (2.11) and condition (2.16), we have that limn→∞ x(n) = 0
holds when e1/(1 + ka2) − e2 − ca2 < 0. Hence, Theorem 2.6 is proved.

3. Bifurcation analysis

Based on the above proofs, it becomes evident that the system (1.5) exhibits several bifurcation
types at its fixed points. In the subsequent discussion, we will examine these potential bifurcations by
employing the center manifold [41] and bifurcation theory [42, 43].

3.1. Flip bifurcation at E1(0, a2), E2(e1 − e2, 0)

Theorem 2.2 states that if a2 = 2 and e1 , (1 + a2k)(ca2 + e2) holds, then one of the eigenvalues
of E1(0, a2) is -1 and another one is neither 1 nor –1. These requirements suggest that all parameters
belong to the set TA:

TA :=
{
(e1, e2, k, c, a2) : a2 = 2, e1 , (1 + a2k)(ca2 + e2), e1, e2, c > 0, k ≥ 0

}
.

At this point, the central manifold of system (1.5) at E1(0, a2) is x = 0. Therefore, the restricted
system of (1.5) to it is:

yn+1 = f (yn) = yn exp
(
a2 − yn

)
.

f ′(a2) = −1 is obvious, so it can be seen that a flip bifurcation occurs at E1(0, a2). Figure 3(a) depicts
the bifurcation diagram about E1.

Based on conclusion (4) of Theorem 2.3, we obtain that all parameters belong to the set TB:

TB :=
{
(e1, e2, k, c, a2) : e1 = e2 + 2, a2, e2, c > 0, k ≥ 0

}
.
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We can easily know that the central manifold of system (1.5) at E2(e1 − e2, 0) is y = 0. So the
restricted system of (1.5) to it is:

xn+1 = g(xn) = xn exp
(
e1 − e2 − xn

)
.

Thus, we have g′(e1 − e2) = −1. Figure 3(b) depicts the bifurcation diagram about E2. Moreover, as
illustrated in Figure 3, the maximum Lyapunov exponents (MLE) for(a),(b) are depicted in (c) and (d),
respectively.

(a) The bifurcation diagram (b) The bifurcation diagram

(c) The MLE (d) The MLE

Figure 3. (a) represent flip bifurcation diagrams of E1(0, a2) with e1 = 4, k = 0.3, e2 =

0.3, c = 0.2; (b) represent flip bifurcation diagrams of E2(e1 − e2, 0) with k = 0.12, e2 =

0.3, c = 0.2, a2 = 0.1.

3.2. Flip bifurcation at E∗(x∗, a2)

According to Theorem 2.4, if e∗1 = (1 + ka2)(2 + e2 + a2c), then at E∗(x∗, a2), one eigenvalue is -1
and another one is neither 1 nor -1, These conditions imply that all parameters belong to the set Fc:

Fc :=
{(

e∗1, e2, k, c, a2
)

: e∗1 = (1 + ka2)(2 + e2 + a2c), a2 , 2, e2, c, a2 > 0, k ≥ 0
}
.

If the condition of (e∗1, e2, k, c, a2) ∈ Fc is satisfied, flip bifurcation may occur. Thus, suppose δ is
a bifurcation parameter satisfying ∥δ∥ ≪ 1. Then, system (1.5) can be expressed as follows: x

y

→
 x exp

( e∗1 + δ
1 + ky

− e2 − x − cy
)

y exp
(
a2 − y

)
 . (3.1)
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First, we transform E∗ to the origin by using the transformation u = x − x∗, v = y − a2 and then
utilize Taylor expansion, turning the mapping (3.1) into u

v

→
 −1 a010

0 1 − a2


 u

v

 +
 f3(u, v, δ)

g3(u, v, δ)

 , (3.2)

where

f3(u, v, δ) = z101uv + s110uδ + z011v2 + s220vδ + z022u2δ + s330u3 + z033uv2

+ s440uvδ + s550v3 + z055v2δ + s660vδ2 + O
(
(|u| + |v| + |δ|)4),

g3(u, v, δ) =
(a2 − 2)v2

2
−

(a3 − 3)v3

6
+ O

(
(|u| + |v| + |δ|)4)

and

a010 = −2z101, z101 =
2a2ck + e2k + c + 2k

a2k + 1
, s110 = −

1
a2k + 1

,

z011 = z2
101 +

2k2(a2c + e2 + 2)
a2k + 1

, s220 = −
z011

a2k + 1
−

2k
(a2k + 1)2 ,

s330 =
1
6
, z022 =

1
2(a2k + 1)

, z033 =
z011

2
, s440 =

z011

a2k + 1
+

k
(a2k + 1)2 ,

s550 = −
z011z101

3
−

z2
101(4a2ck2 + 6e2k2 + 11k2

3(1 + a2k)
−

k2(−2e2k − 2e2c + 11e2k − 3c + 6k)
3(1 + a2k)3 ,

z055 =
z011

2(a2k + 1)
+

2ck
(1 + a2k)2 −

2k(a2c + e2 + 3)
(1 + a2k)3 , s660 = −

k
(a2k + 1)2 .

Next, we use the invertible transformation: u

v

 =
 a010 a010

0 2 − a2


 X

Y

 .
Equation (3.2) can be rewritten as X

Y

→
 −1 0

0 1 − a2


 X

Y

 +
 f4(u, v, δ)

g4(u, v, δ)

 , (3.3)

where

u = a010(X + Y), v = (2 − a2)Y,
f4(u, v, δ) = b101uv + a110uδ + b011v2 + a220vδ + a330u3 + b033uv2 + a440uvδ

+ a550v3 + b550v2δ + a660vδ2 + b066u2δ + O
(
(|u| + |v| + |δ|)4),
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g4(u, v, δ) = −
1
2

v2 −
a3 − 3

6(a2 − 2)
v3 + O

(
(|u| + |v| + |δ|)4)

and

b110 =
z101

a010
, a110 =

s110

a010
, b011 =

z011

a010
+

1
2
, a220 =

s220

a010
,

a330 =
s330

a010
, b033 =

z033

a010
, a440 =

s440

a010
, a550 =

s550

a010
−

a2 − 3
6(a2 − 2)

,

b550 =
z055

a010
, a660 =

s660

a010
, b066 =

z022

a010

According to the central manifold theorem, there exists a central limit Wc
1(0, 0, 0), which can be

expressed as

Wc
1(0, 0, 0) =

{(
X,Y, δ

)
: Y = h(X, δ), h(0, 0) = 0,Dh(0, 0) = 0

}
,

where

h(X, δ) = t1X2 + t2Xδ + t3δ
2 + O

(
(|X| + |δ|)3. (3.4)

Based on (3.3), Y = h(X, δ) must satisfy:

h(−X + f4(X, h(X, δ), δ), δ) = (1 − a2)h(X, δ) + g4(X, h(X, δ), δ).

By calculation, we obtain t1 = t2 = t3 = 0. Thus, the map (3.3) can be written as :

G∗ : X → −X + c110δ + c011Xδ + c220δ
2 + c330X3 + c033Xδ2 + c440δ

3 + O
(
(|X| + |δ|)3),

where

c110 =
2

a010(ka2 + 1)
δ, c011 = −

1
ka2 + 1

, c220 =
1

(ka2 + 1)2a010
,

c330 =
a2

010

6
, c033 = −

1
2(ka2 + 1)2 , c440 =

1
3(ka2 + 1)3 .

Then, we have:

ϖ1 =
(
G∗Xδ +

1
2

G∗δG
∗
XX

)
|(X,δ)=(0,0) = −

1
ka2 + 1

, 0,

ϖ2 =
(1
6

G∗XXX + (
1
2

G∗XX)2)|(X,δ)=(0,0) =
a2

010

6
, 0.

Consequently, the following conclusions can be drawn.

Theorem 3.1. If (e∗1, e2, k, c, a2) ∈ Fc, then the system (1.5) undergoes flip bifurcation at E∗(x∗, a2).
(see Figure 7)
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3.3. Transcritical bifurcation at E0(0, 0)

According to Theorem 2.1, if e1 = e2, then at E0(0, 0), one eigenvalue is 1 and another one is neither
1 nor -1. These conditions mean that all of the parameters are in the set Fd:

Fd :=
{(

e1, e2, k, c, a2
)
: e1 = e2, e1, e2, c, a2 > 0, k ≥ 0

}
.

Taking e1 as the bifurcation parameter and setting η as the disturbance parameter, the map is as
follows: (

x
y

)
→

 x exp
( e∗1 + η
1 + ky

− e2 − x − cy
)

y exp
(
a2 − y

)
 . (3.5)

Next, a Taylor expansion is performed at the origin. Then, (3.5) becomes(
x
y

)
→

(
1 0
0 λ2

) (
x
y

)
+

(
f (x, y, η)
g(x, y, η)

)
, (3.6)

where

f (x, y, η) = −x2 + xη − (e2k + c)yx +
x3

2
− x2η + (e2k + e1)yx2 +

xη2

2
(e2

2k2 + 2ce2k + 2e2k2 + c2)y2x
2

− (e2k + c + k)yxη + O
(
(|x| + |y| + |η|)4),

g(x, y, η) = −λ2y2 +
λ2

2
y3 + O

(
(|x| + |y| + |η|)4),

Setting the approximate central mainfold Wc
2(0, 0, 0) of (3.6) as

Wc
2(0, 0, 0) =

{(
x, y, η

)
: y = h1x2 + h2xη + h3η

2 + O
(
(|x| + |η|)3)},

for x and η sufficiently small. By a simple coefficient comparison, we can obtain h1 = h2 = h3 = 0.
Therefore, the map on the center manifold is:

K : x→ x − x2 + xη +
1
2

x3 − x2η +
1
2
η2x + O

(
(|x| + |η|)4).

By simple compulation, we have:
L1

∆
=

(
∂2K
∂x2

)
(0,0)
= −2 , 0,

L2
∆
=

(
∂2K
∂x∂η

)
(0,0)
= 1 , 0.

Hence, we draw the following conclusion about transcritical bifurcation.

Theorem 3.2. If (e1, e2, k, c, a2) ∈ Fd, then system (1.5) experiences transcritical bifurcation at
E0(0, 0).
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Figure 4. Transcritical bifurcation diagram in e1 − x plane with e2 = 2, a2 = 1, c = 0.2, k =
0.3.

3.4. Chaos control

Considering that the flip bifurcation may lead to chaos, in this section, we focus on controlling the
generation of chaos. Combined with the method of hybrid control, the related control system (1.5) is
expressed as follows:  xn+1 = ρxn exp

( e1

1 + ky
− e2 − x − cyn

)
+ (1 − ρ)xn,

yn+1 = ρyn exp
(
a2 − yn

)
+ (1 − ρ)yn,

(3.7)

where ρ ∈ (0, 1). The Jacobian matrix of E∗(x∗, a2) in the control system (3.7) is as follows:

J(E∗) =

 1 −
ρ
(
e1 − (1 + a2k)(ca2 + e2)

)
1 + ka2

− ρx∗
( e1k
(1 + ka2)2

)
0 1 − ρa2

 . (3.8)

Its eigenvalues are λ1 = 1 − ρ
(
e1 − (1 + a2k)(ca2 + e2)

)
/(1 + ka2) < 1 and λ2 = 1 − ρa2 < 1,

respectively. Hence, we have the following outcome:

Theorem 3.3. The controlled system (1.5) is locally asymptotically stable at E∗(x∗, a2) when

0 < ρ < min
{

2
a2
,

2(1 + ka2)
e1 − (1 + a2k)(ca2 + e2)

, 1
}
.

4. Numerical examples and discussions

In this section, we will illustrate the accuracy of relevant conclusions and explore the influence of
the fear effect on the system through numerical simulations.

Example 1. (the effect of fear effect on E1)
1) Given the values (e1, a2, e2, c, k) = (1, 1.7, 0.4, 0.3, 0.1), it can be observed that (a2k + 1)(a2c +

e2) = 1.06, which is larger than e1. Additionally, it is known that 0 < a2 < 2. Consider the three sets of
initial values: (0.3, 0.8), (0.6, 0.2) and (1.2, 0.7). As depicted in Figure 5(a), it can be observed that E1
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exhibits local asymptotic stability. The correctness of the result of Theorem 3 is affirmed. Furthermore,
to investigate the impact of the fear effect on the local stability of E1, we varied the parameter k from
0.1 to 5. The findings are depicted in Figure 5(b). It can be observed that the presence of fear induces
an increase in the local stability of E1, thereby expediting the process of extinction for the first species.

(a) (b)

Figure 5. (a) Local stability of E1 with e1 = 1, a2 = 1.7, e2 = 0.4, c = 0.3, k = 0.1. (b) The
fear effect on E1 with k = 0.1, k = 5.

2) Given the values (e1, e2, c, k) = (4, 0.5, 1, 2) and the condition a2 > 2, we observe that
e1 = 4 < (a2k + 1)(a2c + e2). satisfying condition (3) of Theorem 2.2 and indicating that E1 is
unstable at this particular moment. Next, we select a2 as the bifurcation parameter to investigate the
impact of a2 on the system. As depicted in Figure 6, when the value of a2 grows, the first species will
undergo extinction, whereas the second species will experience a state of chaos. Furthermore, the
aforementioned conditions fail to meet the requirements stated in Theorem 2.6, namely the conditions
for achieving global stability of E1. Therefore, this example also provides additional evidence about
the plausibility of the conditions outlined in Theorem 2.6.

(a) (b)

Figure 6. (a) The population density of x with bifurcating parameter a2 and (b) the population
density of y with bifurcating parameter a2.

Example 2. (the fear effects on the first species)
Case 1: Assuming that the second species is global stability, i.e., 0 < a2 < 2
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When the value of k is set to 0.3, Figure 7(a) illustrates periodic-2, 4 and 8 orbits. To provide a
more intuitive observation of periodic orbits and chaotic sets, we present the phase diagrams corre-
sponding to each stage of Figure 7(a) for six different values of e1: 2, 3.25, 3.6, 4.1, 4.2, 4.3. (as shown
in Figure 8). The first species exhibits stability when e1 falls between 0 and 3.25, becoming unstable
when e1 exceeds 3.25. It is observed that with an increase in the birth rate, the initial species exhibits
instability or even chaotic behavior. In this study, our goal is to investigate the impact of the fear effect
on the first species under conditions of chaos. We set the parameter e1 to a value of 4.3 and utilize
the bifurcation parameter k. The stability of E∗(x∗, a2) is observed to be dependent on the value of k.
Specifically, E∗(x∗, a2) is unstable for 0 < k < 0.65 and stable for k > 0.65. The analysis of Figure 7(b)
reveals that the fear effect significantly contributes to preserving stability in the first species, especially
when the second species achieves global stability.

(a) e1 is the bifurcation parameter (b) k is the bifurcation parameter

Figure 7. System (1.5) has a flip bifurcation diagram at point E∗(2.57, 1) with a2 = 1, c =
0.2, e2 = 0.3.

(a) e1 = 2 (b) e1 = 3.25 (c) e1 = 3.6

(d) e1 = 4.1 (e) e1 = 4.12 (f) e1 = 4.3

Figure 8. Phase portraits for various values of e1 corresponding to Figure 7(a).
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Case 2: Assuming that the second species is chaos, i.e., a2 > 2.
When a2 > 2, the second species exhibits chaotic behavior, leading to the following scenarios.

In this chaotic state, it is observed that the fear effect no longer has the effect of stabilizing the first
species. Moreover, with the increase of the parameter k, the density of the first species decreases,
eventually leading to its extinction when k > k∗.

(a) 0 < e1 − e2 − cy < 2 (b) e1 − e2 − cy > 2

(c) 0 < e1 − e2 < 2 (d) e1 − e2 < 0

Figure 9. The bifurcation plot of x corresponding to the bifurcating parameter k. (a)
(a2, c, e1, e2) = (4, 0.2, 3, 0.5); (b) (a2, c, e1, e2) = (2.1, 0.2, 3, 0.5); (c) (a2, c, e1, e2) =
(4, 0.2, 2, 1); (d) (a2, c, e1, e2) = (4, 0.2, 1, 1.1).

Figure 10 depicts the effect of the parameters e1 and k, as well as the parameters a2 and k, on the
bifurcation.

(a) (b)

Figure 10. Bifurcation diagrams of system (1.5) in (a) (k, e1, x)− space, (b) (k, a2, x)− space.
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Furthermore, when the parameter k is set to zero, a comparison between system (1.1) and sys-
tem (1.5) reveals that the variable a1 in system (1.1) corresponds to the difference between e1 and
e2 in system (1.5). Additionally, both b1 and c2 in system (1.1) assume a value of 1 in system (1.5).
Consequently, when the parameter values of system (1.5) are set to (a2, c, e2, e1) = (3, 0.2, 0.3, 2.3), it
corresponds to the parameter values of system (1.1) being (a2, c1, a1, c2, b1) = (3, 0.2, 2, 1, 1). At this
time, it is observed that a1/c1 > a2/c2. According to the findings of Theorem A, it can be deduced
that the positive equilibrium point in system (1.1) is globally stable. However, the positive equilibrium
point in system (1.5) is unstable, and there exists a potential for flip bifurcation. Consequently, the
discrete model exhibits more intricate dynamical behavior in comparison to the continuous model.

(a) (b)

Figure 11. (a) Stability of positive equilibrium points of system (1.5) and (b) stability of
positive equilibrium points of system (1.1) with the initial value is set to (0.4, 0.6), (0.3, 0.7),
(0.8, 0.9).

Example 3. (the effect of fear effect on E∗)

We examine the stability of the positive equilibrium point E∗(x∗, a2). The parameters are assigned
values of (a2, e2, c, e1) = (0.5, 1, 0.2, 3), and the initial values (x0, y0) are set to (0.4, 0.3), (0.5, 0.8) and
(1.1, 0.6) accordingly. Based on the conditions stated in Theorem 2.5, it can be concluded that when
k ∈ (0.07, 3.4545), the positive equilibrium point E∗(x∗, a2) is globally stable. To verify the feasibility
of Theorem 2.5, we select k = 2, as depicted in Figure 12(a). It can be observed that at this value of
k, the equilibrium point E∗ remains globally stable. Furthermore, in order to investigate the effect of
the fear effect on the global stability of E∗, we chose k = 4. The results show that the fear effect affects
the global stability of the positive equilibrium point and reduces the density of the first species. This
reduction in density eventually leads to the extinction of the first species.

The values assigned to (a2, e2, c, e1) are (1, 0.5, 0.3, 4). For this set of parameters, the values of
k∗∗ and k∗ are 0.60 and 4, respectively. We will use k as the bifurcation parameter to investigate
the influence of k on the stability of E∗. At this time, the second species is stable. Combined with
Figure 13(a), we can see that when k∗∗ < k < k∗, E∗ is stable; when k > k∗, the first species becomes
extinct. Therefore, we can conclude that an appropriate value of k promotes the convergence of the
first species from a chaotic state to stability.
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(a) k = 2 (b) k = 4

Figure 12. Global stability of positive equilibrium points E∗ with a2 = 0.5, e2=1, c = 0.2,
e1 = 3.

(a)

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x
n

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

y n

k=0

k=1

(b) k = 0, k = 1

Figure 13. (a) Bifurcation graph with k as bifurcation parameter; (b) density trajectory plots
of two species with different fear effect coefficients.

Additionally, examining the two trajectories shown in Figure 13(b) with k = 0 and k = 1 makes it
clear that, as k increases, the solution approaches a stable state within shorter trajectories. This ob-
servation underscores the notion that an appropriate level of fear might confer advantages to species,
enabling them to acclimate more effectively to changes in the surrounding environment.

Example 4. (Effect of fear effect on the stability of the system)
We proceed to investigate the influence of the fear effect on the system through numerical simu-

lations. The chosen parameter values for this analysis are (e1, a2, e2, c) = (2, 1, 0.3, 0.2). The density
distribution of the first species, denoted as x, and the second species, denoted as y, for varying values of
k is illustrated in Figure 14. In this analysis, we examine two scenarios: one where the system exhibits
a fear effect (k , 0) and another where there is no fear effect (k = 0). Furthermore, we categorize
the presence of the fear effect into several levels, specifically k = 0.3, k = 0.5, k = 1, k = 3, k = 5.
It was observed that an increase in the fear effect parameter k reduced the density of the first species
and had no effect on the second species. However, it enhances the local stability of the first species
and diminishes the frequency of oscillations. As the intensity of fear increases, the local stability of the
first species will diminish, resulting in the prolonged period required to attain equilibrium. Moreover,
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a higher value of k leads to the extinction of the first species.

(a) x species densities. (b) y species densities.

Figure 14. The fear effect on the impact of the system (1.5) with e1 = 2, a2 = 1, e2 = 0.3,
c = 0.2.

Example 5. The bifurcation parameter for the chaotic region is denoted as k, while the remaining
parameter values are established as follows: the values of the variables (e1, a2, e2, c) are as follows:
e1 = 4.3, a2 = 1, e2 = 0.3, c = 0.2, the given system, denoted as Eq (3.7), can be expressed as:

xn+1 = ρxn exp
( 4
1 + kyn

− 0.3xn − 0.2yn
)
+ (1 − ρ)xn,

yn+1 = ρyn exp
(
1 − yn

)
+ (1 − ρ)yn.

(4.1)

Based on the observation of Figure 7, it is evident that for values of k within the range of 0 <
k < 0.5, the first species undergoes a chaotic state. Therefore, we select certain values of k such as
k = 0.20, 0.25, 0.30, 0.35, 0.40, 0.45. By utilizing Theorem 3.3, in conjunction with Table 2, we can
determine the range of values for ρ when 0.2 ≤ k ≤ 0.5.

Figure 15(a),(b) show that chaos control is effective.

Table 2. In the control system, the range of ρ corresponds to different k values.

Values of bifurcation parameter Stability interval ρ
k from the chaotic region
0.20 0 < ρ < 0.648648648648
0.25 0 < ρ < 0.680272108843
0.30 0 < ρ < 0.712328767123
0.35 0 < ρ < 0.744827586206
0.40 0 < ρ < 0.777777777777
0.45 0 < ρ < 0.811188811188
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(a) The bifurcation plot of x when ρ = 0.51. (b) The bifurcation plot of x when ρ = 0.91.

Figure 15. Bifurcation diagrams for controlled system (4.1) with e1 = 4.3, a2 = 1, e2 = 0.3,
c = 0.2.

5. Summary and discussion

Through numerical simulations, we find that when the fear effect k changes, the dynamic behaviors
of the system will also change accordingly. We summarize the impact of the fear effect k on the system
in Table 3:

Table 3. The impact of fear effect k on system dynamics behavior.

Conditions Case

k > k∗ The first species became extinct.

0 < a2 < 2 As k increases, the density of the first species de-
creases.

k∗∗ < k < k∗ When the first species is in chaos, k has a stabi-
lizing effect.

k > k∗ The first species became extinct.

a2 > 2 0 < k < k∗ Decrease in the density of the first species.

Additionally, through numerical simulations, we have observed some intuitively understandable
phenomena:

1) Compared with the model (1.1) studied by Sun [9], considering the discrete amensalism
model (1.5) with fear effect on the first species, the stability of the positive equilibrium point
in model (1.5) changes, and the dynamic behavior will become more complicated. For example,
transcritical bifurcation and flip bifurcation appear.

2) Compared to system (1.2), the trajectory of system (1.5) reaches its stable steady-state solution
more rapidly as the fear effect increases. However, the first species will go extinct more quickly
with an increasing fear effect.

3) The dynamic behavior of system (1.5) is different from that of system (1.2). For example, there is
a flip bifurcation at the boundary equilibrium point and the positive equilibrium point, but there
is also a transcritical bifurcation at E0(0, 0), which is not seen in system (1.2). The presence of a
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transcritical bifurcation indicates that system (1.5) has some plasticity and adaptability to change
from one stable state to another in the face of external changes or stresses. This adaptability helps
species adapt more quickly to changes in their environment.

4) Zhou [21] did not study the global attractivity of the boundary equilibrium point of system (1.2).
However, we notice that the boundary equilibria of system (1.5) is also globally attractive and its
attractivity depends on the fear effect k, which means that the second species is stable and the
extinction of the first species depends on the fear effect.

5) By observing Figure 1, Xi et al. [2] can only conclude that the fear effect will reduce the density
of species. However, they have not conducted in-depth research on how the fear effect will be
affected if it gradually increases. Through numerical simulation, it is not difficult to find if the
fear effect is large enough to cause the extinction of the first species.

Finally, we must point out that an appropriate model usually takes functional responses into account,
and the recent paper [18] explored the dynamical behavior of amensalism system with Beddington-
DeAngelies functional response. However, no scholars have yet explored the influence of the fear effect
on the dynamical behavior of amensalism system with Beddington-DeAngelies functional response,
which will be further investigated in our subsequent work.
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Appendix

Lemma 3 Let f (u) = u exp(α − βu), where α and β are positive constants, then f (u) is nondecreasing
for u ∈ (0, 1

β
].

Lemma 4 Assume that sequence {un} satisfy un+1 = un exp(α− βun), n ∈ N, where α and β are positive
constants and u(0) > 0. Then

(i) if α < 2, then limn→+∞ u(n) = α
β
.

(ii) if α ≤ 1, then u(n) ≤ 1
β
, n = 2, 3, ....

Lemma 5 Suppose that function f , g : Z+ × [0,+∞) → [0,+∞) satisfy f (n, x) ≤ g(n, x)
(
f (n, x) ≥

g(n, x)
)

for n ∈ Z+ and x ∈ [0,+∞) and g(n, x) is nondecreasing with respect to x. If {x(n)} and {u(n)}
are the solutions of the following difference equations

x(n + 1) = f
(
n, x(n)

)
, u(n + 1) = g

(
n, u(n)

)
,

respectively, and x(0) ≤ u(0)
(
x(0) ≥ u(0)

)
, then

x(n) ≤ u(n)
(
x(n) ≥ u(n)

)
, ∀n ≥ 0.
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Lemma 2.1 Assume that {x(k)} satisfies x(k) > 0 and

x(k + 1) ≤ x(k) exp
[
a(k) − b(k)x(k)

]
, k ∈ N,

where a(k) and b(k) are non-negative sequences bounded above and below by positive constants. Then

lim sup
k→+∞

x(k) ≤
exp(au − 1)

bl ,

where au = supn∈N{a(n)}, bl = in fn∈N{b(n)}.

Lemma 2.2 Assume that {x(k)} satisfies

x(k + 1) ≥ x(k) exp
[
a(k) − b(k)x(k)

]
, k ≥ N0,

lim sup
k→+∞

x(n) ≤ x∗, and x(N0) > 0, where a(k) and b(k) are non-negative sequences bounded above and

below by positive constants and N0 ∈ N. Then

lim inf
n→+∞

x(n) ≥ min
{ al

bu exp (al − bux∗),
al

bu

}
,

where al = in fn∈N{a(n)}, bu = supn∈N{b(n)}.
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