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Abstract: Within the framework of a food web, the foraging behavior of meso-carnivorous species
is influenced by fear responses elicited by higher trophic level species, consequently diminishing the
fecundity of these species. In this study, we investigate a three-species food chain model comprising of
prey, an intermediate predator, and a top predator. We assume that both the birth rate and intraspecies
competition of prey are impacted by fear induced by the intermediate predator. Additionally, the for-
aging behavior of the intermediate predator is constrained due to the presence of the top predator. It
is essential to note that the top predators exhibit a generalist feeding behavior, encompassing food
sources beyond the intermediate predators. The study systematically determines all feasible equilibria
of the proposed model and conducts a comprehensive stability analysis of these equilibria. The in-
vestigation reveals that the system undergoes Hopf bifurcation concerning various model parameters.
Notably, when other food sources significantly contribute to the growth of the top predators, the sys-
tem exhibits stable behavior around the interior equilibrium. Our findings indicate that the dynamic
influence of fear plays a robust role in stabilizing the system. Furthermore, a cascading effect within
the system, stemming from the fear instigated by top predators, is observed and analyzed. Overall, this
research sheds light on the intricate dynamics of fear-induced responses in shaping the stability and
behavior of multi-species food web systems, highlighting the profound cascading effects triggered by
fear mechanisms in the ecosystem.
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1. Introduction

Interactions among species, such as host-pathogen, plant-herbivore, herbivore-carnivore,
phytoplankton-zooplankton, and host-parasitoid, play a pivotal role in driving species evolution. These
intricate connections maintain biodiversity within ecosystems. Predator-prey interactions, in particular,
serve as fundamental components of ecological food chains, illustrating the interdependence of organ-
isms through feeding relationships. Each level within a food chain represents a distinct trophic level,
and energy transfers from lower trophic levels to higher ones. The study of predator-prey interactions
has been a focal point of scientific inquiry since the seminal works of Lotka [1] and Volterra [2]. A
wealth of research articles exploring the complex dynamics of predator-prey interactions is available
in the literature [3–8]. These investigations delve into the intricate dynamics governing predator-prey
relationships, shedding light on the mechanisms shaping ecosystem stability and species coexistence.

Predators exhibit varying degrees of specificity in their prey choices, with some displaying a spe-
cialized diet while others are more flexible in their food preferences. Certain species, like certain
carabid and staphylinid beetles as well as certain types of ants, demonstrate a broad range of prey
choices. However, the size of potential prey often plays a crucial role in determining the suitability
of a target for predation [9]. For instance, the larvae of the green lacewings Chrysoperla carnea pre-
fer aphids as their primary food source but can also consume other small insects and their eggs [10].
Ladybirds, such as Coccinella septempunctata, primarily rely on various species of aphids but supple-
ment their diet with different insects, particularly Thysanoptera, as well as fungal spores and pollen
grains [11]. While some coccinellids, like Coleomegilla maculata, exhibit more flexibility in their
dietary choices [12, 13], others like Rodolia (Vedelia) cardinalis are less adaptable and tend to have
narrower food preferences. It is worth noting that many predators labeled as generalists might still
display varying degrees of specialization in their prey selection. Additionally, predators with a broad
range of prey options typically do not exhibit significant increases in population or consumption in
response to a single prey species unless that specific prey constitutes a substantial portion of the avail-
able food sources. Overall, the feeding behavior of predators is often shaped by a combination of
factors including prey size, availability, and the predator’s adaptability, leading to varying degrees of
specialization or generalization in their diet preferences.

Theoretical advancements in ecological modeling have traditionally emphasized specialist preda-
tors due to their relatively simpler parameterization. However, efforts have been made to incorporate
and understand the dynamics of generalist predators in relation to prey populations through two distinct
modeling approaches. The first approach involves studying scenarios where a single predator species
interacts with multiple prey species, with each prey serving as a potential food source for the preda-
tor [8]. Alternatively, the second approach assumes a single prey species that the predator consumes
while also obtaining supplemental nutrition from alternative food sources. Researchers such as Erbach
et al. [4] investigated predator-prey systems incorporating a generalist predator, focusing on phenom-
ena like bistability and the occurrence of limit cycles within the dynamics of these systems. Similarly,
Magal et al. [5] explored a model involving pests and their natural enemies, including a generalist
predator, to understand the dynamics of such systems. Moreover, studies by Mondal et al. [14] delved
into predator-prey systems featuring a generalist predator, specifically analyzing the influence of co-
operative hunting strategies on system dynamics. Their research investigated bistabilities and various
forms of local and global bifurcations exhibited by these complex ecological systems. In summary, the-
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oretical research has increasingly acknowledged the significance of generalist predators in ecological
dynamics, exploring their interactions within predator-prey systems through sophisticated mathemat-
ical models to uncover intricate patterns of stability, oscillations, and bifurcations that characterize
these ecological relationships.

Predators play a fundamental role in regulating prey populations by hunting for sustenance. How-
ever, recent scientific interest has focused on understanding the broader impacts of predation beyond
direct consumption, known as non-consumptive or fear effects, on prey demography. These effects
encompass changes in the reproductive and survival rates of prey species due to the perceived threat
of predation [15–17]. Experimental evidence has demonstrated that the mere presence of predators
can significantly alter prey demography in addition to direct killing. For instance, Zanette et al. [18]
conducted a comprehensive field experiment involving Song sparrows over an entire breeding season.
They shielded a specific group of the sparrow population from any predation risks but exposed them
to the perceived fear of predators, such as predator sounds, while preventing direct killing of the en-
tire population. The results revealed a substantial 40% reduction in the offspring production of Song
sparrows due to predation fear. Similarly, Sheriff et al. [19] observed a 30% decline in the survival
rates of adult female Snowshoe hares attributed to predation fear. Additionally, Suraci et al. [20] found
that the presence of carnivorous animals led to reduced hunting rates and population sizes of raccoons,
subsequently causing a notable increase in the populations of certain crab species and fishes that are
preyed upon by raccoons. These studies collectively highlight the significant influence of predation
fear on prey demography, showcasing that the mere presence or perception of predator risk can lead
to substantial changes in reproductive success, survival rates, and population dynamics of various prey
species.

Predator-prey interactions prompt significant alterations in the foraging behavior and habitat selec-
tion of animals and birds. These behavioral and physiological adaptations in response to the presence
of predators often outweigh the direct impact of predation itself. Prey species employ diverse anti-
predation tactics, such as heightened vigilance, alterations in habitat utilization, and physiological
adjustments [21, 22]. Studies have demonstrated that mule deer, when faced with the threat of lion
attacks, adjust their foraging activities as a defensive measure [23]. Likewise, elk within the Yel-
lowstone park ecosystem exhibit physiological changes in response to wolf predation [24]. While
relocating to safer habitats may initially enhance survival prospects, such shifts can potentially com-
promise long-term prey fitness. Habitats deemed less energy-efficient may exert adverse effects on
prey demographics [21]. Furthermore, prey animals perceiving predation threat demonstrate reduced
foraging behavior [20, 24–26]. In avian species, fear of predation manifests in decreased reproduc-
tive success, including diminished egg production, lower hatching rates, heightened nestling mortality,
thereby influencing demographic shifts in bird populations.

The seminal work addressing the impact of fear within a predator-prey system was initiated by
Wang et al. [7], where the fear of predation was modeled to account for a reduction in the birth rate
of prey. Subsequently, a plethora of studies have delved extensively into the effects of predation-
induced fear, exploring various traits inherent in both prey and predator species [27–34]. Zhang et
al. [34] investigated predator-prey dynamics by incorporating the fear phenomenon alongside prey
refuge. Their findings suggested that the fear factor contributes to system stabilization by eliminat-
ing persistent periodic oscillations and concurrently reducing predator density. However, higher fear
strength consistently led to a decline in the predator population towards extinction, irrespective of
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refuge size. In a separate analysis, Wang et al. [33] explored the effect of fear on the dynamics of a
modified Leslie-Gower predator-prey system with prey refuge, inferring that predation fear and prey
refuge have divergent effects on species persistence. Mukherjee [35] introduced the concept of the
cost of fear, which elevates the death rate while reducing the reproduction rate of prey. Additionally,
Mondal et al. [36] conducted a comprehensive study encompassing hunting cooperation, prey refuge,
harvesting, and predation-induced fear in both autonomous and nonautonomous predator-prey sys-
tems. They highlighted that the fear of predation diminishes the birth rate and intensifies intraspecies
competition among prey.

In natural ecosystems, it is widely observed that species prey upon one while also serving as prey
for other species. These interlinked interactions form intricate food chains, creating complex networks
within ecosystems. This complexity raises the fundamental question of how the fear experienced by
one or more species within this chain can impact the demography of the entire population cascade.
The experimental investigation by Suraci et al. [20] explored a trophic cascade by manipulating the
playback of large carnivores. Their findings showcased a decline in the population of meso-carnivores
and an increase in the population of their prey. This suggests that the fear induced by top predators
within the food chain explicitly or implicitly influences each species within the ecosystem. Cong et
al. [3] delved into a three-species food chain system enriched with the fear of predation, analyzing its
dynamics. Additionally, Panday et al. [37] examined a three-species food chain, incorporating the fear
effect in the predation rate of the intermediate predator along with growth rates. Their study observed
trophic cascading triggered by fear. Their results highlighted that the fear factor stabilizes the system’s
dynamics, and the cost associated with fear in the intermediate predator enhances the persistence of
species within the ecosystem.

In this study, we investigate a three-species food chain model comprising a prey species, an inter-
mediate specialist predator, and a top predator with a generalist feeding behavior. We incorporate the
impact of predation induced fear, accounting for diminished birth rates and heightened intraspecies
competition in the model formulation. By employing a comprehensive array of mathematical and
numerical techniques, our primary objective is to elucidate the complex dynamics and interactions in-
herent within this food chain. Specifically, we aim to delve into the intricate effects arising from fear
responses and the consequential costs associated with predation, seeking a deeper understanding of
their influence on the dynamics of this ecological system.

The subsequent sections of the paper are structured as follows: we describe our proposed model in
Sections 2 and 3 delves into a comprehensive exploration of our model and lays out the foundational
mathematical concepts. In particular, Section 3.1 rigorously examines the positivity and boundedness
of the solution within the proposed system. Following this, Section 3.2 elucidates the identification
and characterization of feasible equilibrium points, along with their corresponding stability conditions.
Furthering our analysis, Section 3.3 scrutinizes the potential occurrence of local bifurcations under
specific parametric configurations, providing an in-depth assessment of the system’s behavior. Moving
forward to Section 4, we employ numerical examples and employ graphical representations to illustrate
and apprehend the dynamic nature exhibited by the proposed model system. Conclusively, Section 5
encapsulates the paper with insightful concluding remarks, synthesizing the findings and implications
drawn from the preceding sections.
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2. Mathematical model

Here, we propose a mathematical model for a food chain system of an ecological community. We
consider three species; prey, intermediate predator and top predator, and denote their densities by x(t),
y(t) and z(t), respectively, at any instant of time t > 0. We formulate our model based on the following
ecological assumptions.

1) In the absence of predators, the prey species grow logistically with intrinsic growth rate r and
carrying capacity r/d; d is the density-dependent death rate.

2) Predation of prey species by intermediate predators is quantified by Holling type-II functional
response, which is given by

α1xy
m + x

, where α1 is the capture rate and m is the half saturation
constant.

3) Intermediate predators are of specialist type, i.e., only the considered prey serves as the food
source for them. Therefore, their growth is proportional to the consumed food through predation.
Here, we consider θ1 as the respective gain in the density of intermediate predators; the value of
θ1 lies between 0 and 1 for ecological reasons.

4) The density of intermediate predators diminishes due to natural mortality as well as intraspecies
competition. We denote the natural mortality and intraspecies competition coefficient of the in-
termediate predators by δ1 and δ2, respectively. Their density also depletes due to predation by
top predators that is modeled by the bilinear functional response, α2yz.

5) Predation has positive feedback on the growth of top predators. Therefore, the growth rate is pro-
portional to the functional response with proportionality constant θ2. The density of top predators
depletes due to natural mortality at a rate δ3.

6) Unlike intermediate predators, the top predators are generalist in nature, i.e., even in the absence
of intermediate predators, the top predator population increase due to availability of food from
other sources. This growth is captured by Beverton-Holt like function [4, 14], and is given by
ηz

1 + η0z
, where η is the per capita reproduction rate, and η0 is the density-dependent strength.

With these assumptions, a three-species food chain model is obtained as follows:

dx
dt
= rx − dx2 −

α1xy
m + x

,

dy
dt
=
θ1α1xy
m + x

− δ1y − δ2y2 − α2yz,

dz
dt
=
ηz

1 + η0z
+ θ2α2yz − δ3z,

(2.1)

where the initial population densities are taken as positive, i.e., x(0) > 0, y(0) > 0 and z(0) > 0. In
system (2.1), the value of parameter η should be more than that of δ3, i.e., the natural mortality rate
of top predators. That is to say, the top predators can persist in the ecosystem even in the absence of
intermediate predators.

Predation-induced fear in prey species is a multifaceted phenomenon that significantly impacts their
population dynamics beyond direct predation. Studies such as Zanette et al. [18] have highlighted its
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role in diminishing birth rates, while research by Allen et al. [38], Clinchy et al. [39], and Sheriff et
al. [40] emphasizes its influence on foraging behavior and adult survival. This fear alters the intrinsic
growth rate of prey species, influencing their overall population dynamics. Furthermore, the perception
of predation risk prompts prey species to adopt anti-predation strategies, leading to reduced foraging,
seeking safer habitats, and allocating more energy and time to vigilance. These behavioral adaptations
often result in the congregation of prey in specific areas, forming high-density patches. Consequently,
this aggregation intensifies intraspecific competition among prey due to limited resources in these
localized areas, compounded by reduced foraging over larger territories. To mathematically model
this, we have incorporated the cost of fear by adjusting the parameters governing prey population
growth and intraspecific competition. Specifically, we multiply the growth rate (r) of prey species
by a decreasing function 1/(1 + ω1y), which accounts for the reduction in reproductive capacity due
to fear-induced changes in behavior. Simultaneously, we consider the impact of fear on intraspecific
competition by applying an increasing function (1 + ω2y) to the intraspecific competition coefficient
(d). Here, ω1 and ω2 represent fear parameters, enabling us to quantify and integrate the effects of fear
on both reproductive capacity and intraspecific competition within the mathematical model governing
the dynamics of prey populations.

Predation-induced fear not only impacts the growth rate of prey species but also exerts a substantial
influence on the behavior and predation activities of intermediate predators. Experimental study by
Gordon et al. [41] demonstrated that the presence of apex predators, such as dingoes, suppresses the
foraging and predation activities of intermediate predators like feral cats. This suppression alleviates
perceived predation risk for smaller prey species like desert rodents. Areas with a higher abundance
of dingoes exhibited reduced feral cat density, allowing the proliferation of rodent populations. Con-
versely, regions with fewer dingoes showed lower rodent numbers alongside elevated feral cat densi-
ties. Similarly, in a study by Suraci et al. [20], they have induced fear responses in mesopredators, like
raccoons, through auditory stimuli mimicking large carnivores. This induced fear led to a significant
reduction in foraging activity and increased vigilance among raccoons. The resultant decline in rac-
coon foraging had cascading effects on the ecosystem, benefiting the prey species of mesopredators
such as intertidal crabs, fish, worms, and red rock crabs. Moreover, in the Yellowstone National Park
ecosystem, the reintroduction of wolves, as apex predators, significantly altered the behavior and graz-
ing patterns of elk, illustrating the far-reaching effects of apex predators on the ecosystem’s trophic
dynamics [42]. In our modeled system, both the growth term and predation rate of intermediate preda-

tors are modified by a factor
1

1 + ω3z
, where ω3 is the fear parameter and z represents the density of top

predators. This adjustment accounts for the fear-induced changes in the behavior of mesopredators due
to the presence of top predators. As the fear factor or density of top predators increases, the foraging
and predation activities of mesopredators decrease. Additionally, the food obtained and consumed by
the mesopredator population contributes to their growth. Therefore, the growth term in the mesopreda-
tor population is proportional to a modified functional response with a proportionality constant θ1,

incorporating the same factor
1

1 + ω3z
. Furthermore, the intraspecific competition among intermediate

predators is influenced by predation-induced fear of top predators. Hence, the intraspecific competition
coefficient (δ2) is adjusted by an increasing function (1 + ω4z), where ω4 is the fear parameter. This
modification of the model formulation captures the intricate interplay between fear-induced behavioral
changes in intermediate predators, their predation activities, growth, and intraspecific competition, elu-
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Figure 1. Schematic diagram of model system (2.2).

cidating their impacts on trophic interactions within the ecosystem. The schematic representation of
these modifications is visually depicted in Figure 1, and the model equations are obtained as follows:



dx
dt
=

1
1 + ω1y

rx − d(1 + ω2y)x2 −
1

1 + ω3z
α1xy
m + x

,

dy
dt
=

1
1 + ω3z

θ1α1xy
m + x

− δ1y − δ2(1 + ω4z)y2 − α2yz,

dz
dt
=
ηz

1 + η0z
+ θ2α2yz − δ3z,

(2.2)

with initial condition x(0) > 0, y(0) > 0 and z(0) > 0.

3. Analysis of system (2.2)

3.1. Positivity and boundedness of solutions

In ecological modeling, it is crucial to ensure that the formulated model not only captures the inter-
actions among species but also reflects real-world ecological principles, such as population stability,
boundedness, and the absence of infinite growth or extinction.

Theorem 1. System (2.2) exhibits a unique solution that is positive for all t ≥ 0.

Proof. As the functions on the right-hand side of system (2.2) are continuous as well as locally Lip-
schitz in the positive octant R3

+, solution of system (2.2) exists uniquely in the interval [0,T ), where
0 < T ≤ ∞ [43].

System (2.2) can also be written as

dx
dt
= xg1(x, y, z),

dy
dt
= yg2(x, y, z),

dz
dt
= zg3(x, y, z).
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Therefore,

x(t) = x(0) exp
∫ t

0
g1(x(T ), y(T ), z(T ))dT

 , y(t) = y(0) exp
∫ t

0
g2(x(T ), y(T ), z(T ))dT

 ,
z(t) = z(0) exp

∫ t

0
g3(x(T ), y(T ), z(T ))dT

 ,
where

g1 =
r

1 + ω1y
− d(1 + ω2y)x −

1
1 + ω3z

α1y
m + x

, g2 =
1

1 + ω3z
θ1α1x
m + x

− δ1 − δ2(1 + ω4z)y − α2z,

g3 =
η

1 + η0z
+ θ2α2y − δ3.

Thus, x(t), y(t), z(t) > 0, for all t ≥ 0, whenever x(0), y(0) and z(0) are positive. Hence, the solution
trajectory of the system (2.2) that originates within the positive octant lies there indefinitely.

Theorem 2. Solutions of system (2.2) are uniformly bounded.

Proof. Analyzing the first equation of system (2.2), we get

dx
dt
=

1
1 + ω1y

rx − d(1 + ω2y)x2 −
1

1 + ω3z
α1xy
m + x

< rx − dx2 ⇒ lim sup
t→∞

x(t) ≤
r
d
.

Second equation of system (2.2) implies

dy
dt
=

1
1 + ω3z

θ1α1xy
m + x

− δ1y − δ2(1 + ω4z)y2 − α2yz

< θ1α1y − δ1y − δ2y2 ⇒ lim sup
t→∞

y(t) ≤
θ1α1 − δ1

δ2
, provided θ1α1 > δ1

[if θ1α1 ≤ δ1, lim
t→∞

y(t) = 0].

Define u = θ2y + z. Therefore,

du
dt
= θ2

(
1

1 + ω3z
θ1α1xy
m + x

− δ1y − δ2(1 + ω4z)y2
)
+
ηz

1 + η0z
− δ3z

≤ θ2(θ1α1y − δ2y2) +
η

η0
− δ1θ2y − δ3z

= −θ2δ2(y −
θ1α1

2δ2
)2 +
θ2θ

2
1α

2
1

4δ2
+
η

η0
− δ1θ2y − δ3z

≤
θ2θ

2
1α

2
1

4δ2
+
η

η0
− δ1θ2y − δ3z.

Let γ = min{δ1, δ3}, then we have

du
dt
+ γu ≤

θ2θ
2
1α

2
1

4δ2
+
η

η0
.
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Above differential inequality implies

0 < u(y(t), z(t)) ≤

θ2θ21α2
1

4δ2
+
η

η0

 (1 − e−γt) + e−γtu(y(0), z(0)).

Therefore, 0 < u(y(t), z(t)) ≤

θ2θ21α2
1

4δ2
+
η

η0

 + ϵ, for any ϵ > 0 as t → ∞. Thus, each solution of (2.2)

is eventually attracted to the region:

Ω =

(x, y, z) : 0 < x(t) ≤
r
d
, 0 < y(t) ≤

θ1α1 − δ1

δ2
, θ2y(t) + z(t) ≤

θ2θ
2
1α

2
1

4δ2
+
η

η0
+ ϵ, for any ϵ > 0

 .
Therefore, all the dynamical variables presented in the system (2.2) are bounded.

3.2. Equilibrium and stability analysis

3.2.1. Equilibria of the system

Due to the nonlinear nature of the predator-prey model represented by system (2.2), exact analytical
solutions are not feasible. Therefore, to understand the long-term behavior of the system, we focus
on identifying equilibrium points. These points are obtained by setting the growth rates, as described
by the differential equations of the model system, equal to zero. Equilibrium points represent steady
states where population changes cease. It can be easily seen that the system (2.2) exhibits three axial
equilibria; E0(0, 0, 0), E1(x̂, 0, 0), and E2(0, 0, ẑ); a planar equilibrium E3(x̂, 0, ẑ), where x̂ = r/d and
ẑ = (η−δ3)/η0δ3 > 0, as η > δ3. Another planar equilibrium with z component zero can be obtained by
putting z = 0 in the equilibrium equations of system (2.2), which leads to the following two algebraic
equations whose intersection point in the feasible region gives the top predator-free equilibrium Ẽ:

r
1 + ω1y

− d(1 + ω2y)x −
α1y

m + x
= 0, (3.1)

θ1α1x
m + x

= δ1 + δ2y. (3.2)

• The curve (3.1) passes through (x, y) = (r/d, 0) and for x = 0, it cuts the positive y-axis at some
point. Further, the slope of the curve at (r/d, 0) is negative.

• The curve (3.2) cuts the x-axis at x = mδ1/(θ1α1 − δ1) and the y-axis at y = −δ1/δ2. Also, it has a
horizontal asymptote y = (θ1α1 − δ1)/δ2 and a vertical asymptote x = −m. Moreover, the slope is
always positive on the right side of the vertical asymptote.

Therefore, it can be concluded that the curves (3.1) and (3.2) intersect uniquely in the feasible re-

gion if
mδ1

θ1α1 − δ1
<

r
d

; the intersecting point gives the x and y-components of the equilibrium Ẽ(x̃, ỹ, 0).

Now, in order to obtain a feasible interior equilibrium, we first write the variable y in terms of z
from the third equilibrium equation of system (2.2) to get,

y =
1
θ2α2

(
η0δ3z − (η − δ3)

1 + η0z

)
:= g(z). (3.3)
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Clearly, y will be positive if z >
η − δ3

η0δ3
= ẑ. Notably, g(ẑ) = 0 and g′(z) > 0. Putting this value of y in

the first two equilibrium equations of the system (2.2), we get the following two isoclines

θ1α1x
m + x

= (1 + ω3z)(δ1 + δ2(1 + ω4z)g(z) + α2z), (3.4)

r
1 + ω1g(z)

= d(1 + ω2g(z))x +
α1g(z)
m + x

1
(1 + ω3z)

. (3.5)

• For curve (3.4), at z = ẑ, x = m(δ1+α2 ẑ)
θ1α1

1+ω3 ẑ−(δ1+α2 ẑ)
, and the slope dx

dz > 0 in the positive quadrant.

• Putting z = ẑ in curve (3.5), we obtain x = r
d = x̂. At the point (x̂, ẑ), the slope dx

dz of the curve
(3.5) is negative.

Note that, if
m(δ1 + α2ẑ)

θ1α1
1+ω3 ẑ − (δ1 + α2ẑ)

<
r
d

and the slope of the isocline (3.5) remains negative in the positive

quadrant, then the two isoclines intersect uniquely, and the intersecting point gives the x and z compo-
nents of the interior equilibrium E∗(x∗, y∗, z∗). By using x∗ and z∗ in Eq (3.3), the y component of E∗

can be obtained.

3.2.2. Local stability

In this section, we conduct a local stability analysis to evaluate the behavior of the system (2.2) near
its equilibrium points. This analysis helps characterize whether the system tends towards or moves
away from an equilibrium when initiated close to, but not precisely at, that particular point. Specif-
ically, we investigate whether the equilibria are locally asymptotically stable, meaning that nearby
initial conditions lead the system to approach the equilibrium point as time (t) progresses towards in-
finity. To perform the local stability analysis of the feasible equilibria in the system (2.2), we compute
the Jacobian matrix, a matrix of partial derivatives, which provides insights into the system’s behavior
around these points. The Jacobian matrix corresponding to the system (2.2) is obtained as follows:

J =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 , (3.6)

where

a11 =
r

1 + ω1y
− 2d(1 + ω2y)x −

1
1 + ω3z

α1my
(m + x)2 ,

a12 = −
ω1rx

(1 + ω1y)2 − dω2x2 −
1

1 + ω3z
α1x

m + x
,

a13 =
ω3

(1 + ω3z)2

α1xy
m + x

, a21 =
1

1 + ω3z
θ1α1my
(m + x)2 ,

a22 =
1

1 + ω3z
θ1α1x
m + x

− δ1 − 2δ2(1 + ω4z)y − α2z,

a23 = −
ω3

(1 + ω3z)2

θ1α1xy
m + x

− δ2ω4y2 − α2y,
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a31 = 0, a32 =θ2α2z,

a33 =
η

(1 + η0z)2 + θ2α2y − δ3.

Theorem 3. The axial equilibria E0, E1 and E2, and the planar equilibrium Ẽ are always unstable.

Proof. Eigenvalues of the Jacobian matrix J evaluated at the equilibrium E0 are r, −δ1 and η − δ3;
positivity of one eigenvalue makes the equilibrium E0 unstable.

The matrix J after evaluation at the equilibrium E1(x̂, 0, 0) gives the eigenvalues as −r, θ1α1
r
d

m+ r
d
− δ1

and η − δ3. As η > δ3, the equilibrium E1 is unstable.

Eigenvalues of the matrix J corresponding to the equilibrium E2(0, 0, ẑ) are r, −δ1 −
α2(η − δ3)
η0δ3

and

−
δ3
η

(η − δ3). Again, this equilibrium is unstable as one eigenvalue is always positive.
Now, for the equilibrium Ẽ(x̃, ỹ, 0), one eigenvalue of the matrix J comes out to be η − δ3 + θ2α2ỹ,

which is always positive; the other two eigenvalues are the roots of the following quadratic equation:

λ2 − (a1 + a4)λ + (a1a4 − a2a3) = 0,

where

a1 = −d(1 + ω2ỹ)x̃ +
α1 x̃ỹ

(m + ỹ)2 , a2 = −
rω1 x̃

(1 + ω1ỹ)2 − dω2 x̃ −
α1 x̃

m + x̃
,

a3 =
θ1α1mỹ
(m + x̃)2 , a4 = −δ2ỹ.

In view of the positivity of one eigenvalue, the equilibrium Ẽ is unconditionally unstable.

Theorem 4. The equilibrium E3(x̂, 0, ẑ) is locally asymptotically stable if the following condition is
satisfied

θ1α1 x̂
m + x̂

< (1 + ω3ẑ)(δ1 + α2ẑ).

Proof. Eigenvalues of the matrix J evaluated at the equilibrium E3(x̂, 0, ẑ) are obtained as −r, − δ3
η

(η −

δ3), and
1

1 + ω3ẑ
θ1α1 x̂
m + x̂

− δ1 − α2ẑ. Clearly, two eigenvalues are negative, therefore sign of the third

eigenvalue will determine the stability of this equilibrium. Hence, E3 is stable if
θ1α1 x̂
m + x̂

< (1+ω3ẑ)(δ1+

α2ẑ).

Theorem 5. The equilibrium E∗(x∗, y∗, z∗), if exists, is locally asymptotically stable if and only if the
following conditions are satisfied:

J1 > 0, J3 > 0, J1J2 − J3 > 0, (3.7)

where Ji’s (i = 1, 2, 3) are defined in the proof.

Proof. Evaluating the Jacobian J at the point E∗, we get the following matrix:

J∗ =


j11 j12 j13

j21 j22 j23

j31 j32 j33

 , (3.8)
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where

j11 = −d(1 + ω2y∗)x∗ +
1

1 + ω3z∗
α1x∗y∗

(m + x∗)2 ,

j12 = −
ω1rx∗

(1 + ω1y∗)2 − dω2x∗2 −
1

1 + ω3z∗
α1x∗

m + x∗
,

j13 =
ω3

(1 + ω3z∗)2

α1x∗y∗

m + x∗
, j21 =

1
1 + ω3z∗

θ1α1my∗

(m + x∗)2 ,

j22 = −δ2(1 + ω4z∗)y∗,

j23 = −
ω3

(1 + ω3z∗)2

θ1α1x∗y∗

m + x∗
− δ2ω4y∗2 − α2y∗,

j31 = 0, j32 =θ2α2z∗,

j33 = −
ηη0z∗

(1 + η0z∗)2 .

Characteristic equation corresponding to matrix J∗ is obtained as follows:

λ3 + J1λ
2 + J2λ + J3 = 0, (3.9)

where

J1 = −( j11 + j22 + j33), J2 = j11 j22 + j11 j33 + j22 j33 − j23 j32 − j12 j21 − j13 j31,

J3 = − j11 j22 j33 + j11 j23 j32 − j12 j23 j31 + j12 j21 j33 − j13 j21 j32 + j13 j31 j22.

By the Routh-Hurwitz criterion, one can infer that the interior equilibrium E∗ is locally asymptotically
stable if and only if J1 > 0, J3 > 0 and J1J2 − J3 > 0.

All the feasible equilibria exhibited by model system (2.2) with the condition for existence and their
stability are mentioned in the following table.

Table 1. Existence and stability conditions for the feasible equilibria of the system (2.2).

Equilibria Existence condition(s) Stability condition(s)
E0(0, 0, 0) Always exists Always unstable
E1(x̂, 0, 0) Always exists Always unstable
E2(0, 0, ẑ) Always exists Always unstable
E3(x̂, 0, ẑ) Always exists Stable if θ1α1 x̂

m+x̂ < (1 + ω3ẑ)(δ1 + α2ẑ)
Ẽ(x̃, ỹ, 0) mδ1

θ1α1−δ1
< r

d Always unstable
E∗(x∗, y∗, z∗) Intersection of isoclines J1 > 0, J3 > 0,

(3.4) and (3.5) and J1J2 − J3 > 0

3.3. Bifurcation analysis

3.3.1. Transcritical bifurcation

In a transcritical bifurcation, a dynamic system undergoes a critical transformation where two equi-
libria within the system interchange their local stability characteristics as a specific parameter is sys-
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tematically altered. This transition marks a pivotal point where the stability properties of these equilib-
ria switch, leading to significant alterations in the system’s behavior. Evaluating the Jacobian matrix J
at the equilibrium E3(x̂, 0, ẑ), we get

JE3 =


−r − r2

d (ω1 + ω2) − 1
1+ω3 ẑ

rα1
r+md 0

0 1
1+ω3 ẑ

θ1α1r
r+md − δ1 −

α2(η−δ3)
η0δ3

0
0 θ2α2(η−δ3)

η0δ3
−
δ3
η

(η − δ3)

 . (3.10)

The equation 1
1+ω3 ẑ

θ1α1r
r+md−δ1−

α2(η−δ3)
η0δ3

= 0 will determine a critical value of η (say η∗), at which the matrix
JE3 has a zero eigenvalue. LetU = [u1 u2 u3]T andV = [v1 v2 v3]T be the eigenvectors corresponding
to the zero eigenvalue of the matrices JE3 and JT

E3
, respectively, where

U =


− r

d (ω1 + ω2) − 1
1+ω3 ẑ

α1
r+md

1
θ2α2η

η0δ
2
3

 andV =


0
1
0

 .
Consider G = [g1 g2 g3]T , where

g1 =
1

1 + ω1y
rx − d(1 + ω2y)x2 −

1
1 + ω3z

α1xy
m + x

,

g2 =
1

1 + ω3z
θ1α1xy
m + x

− δ1y − δ2(1 + ω4z)y2 − α2yz,

g3 =
ηz

1 + η0z
+ θ2α2yz − δ3z.

Now, the transversality conditions are given by

VTGη(E3; η∗) = 0, VT DGη(E3; η∗)U = 0,

VT D2G(E3; η∗)(U,U) = −2δ2(1 + ω4ẑ) −
2θ1α1m
(m + x̂)2

1
1 + ω3ẑ

( r
d

(ω1 + ω2)

+
1

1 + ω3ẑ
α1

r + md

)
−

(
ω3

(1 + ω3ẑ)2

θ1α1 x̂
(m + x̂)

+ α2

) θ2α2η

η0δ
2
3


< 0,

where all the notations are the same as in Theorem 1 of Section 4.2 of [44]. Thus, system (2.2)
exhibits degenerate transcritical bifurcation [45] around the equilibrium E3 at η = η∗. Note that for
non-degenerate transcritical bifurcation,VT DGη(E3; η∗)U must be nonzero.

3.3.2. Hopf bifurcation

In ecological modeling, nonlinear interactions among populations, even in systems with a low level
of complexity involving two or three species, can result in intricate dynamical behaviors. Oscilla-
tory patterns, commonly observed in population dynamics, are indicative of complex dynamics within
ecological systems. The occurrence of oscillations or the manifestation of a limit cycle typically cor-
responds to a Hopf bifurcation in the system. The Hopf bifurcation is characterized by the appearance

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1–33.



14

or disappearance of a periodic orbit due to a local change in the stability properties of an equilibrium
point. In our analysis, we aim to explore the potential occurrence of a Hopf bifurcation and determine
its direction concerning the coexistence equilibrium E∗ concerning the parameter ω1 that induces bi-
furcation. Specifically, we investigate how changes in the parameter ω1 influence the stability of the
equilibrium point E∗ and whether these changes lead to the emergence or disappearance of a periodic
orbit. The direction of the Hopf bifurcation signifies whether an equilibrium point becomes stable or
unstable, leading to the creation or elimination of periodic behavior within the system.

Suppose there is a critical value of ω1 (ω∗1 say) at which the conditions J1 > 0 and J3 > 0 hold but
J1J2 − J3 = 0. In this case, the characteristic equation (3.9) becomes

(λ2 + J2)(λ + J1) = 0. (3.11)

The above equation has two purely imaginary roots, say λ1,2 = ±ι
√

J2, and a negative real root, say
λ3 = −J1. Assume that at any point ω1 in the ϵ-neighborhood of ω∗1, λ1,2 = γ1 ± ιγ2. Putting this in Eq
(3.9) and separating real and imaginary parts, we get

γ3
1 − 3γ1γ

2
2 + J1γ

2
1 − J1γ

2
2 + J2γ1 + J3 = 0, (3.12)

3γ2
1γ2 − γ

3
2 + 2J1γ1γ2 + J2γ2 = 0. (3.13)

As γ2 , 0, from Eq (3.13), we have

γ2
2 = 3γ2

1 + 2J1γ1 + J2.

Using this value of γ2 in Eq (3.12), we get

8γ3
1 + 8J1γ

2
1 + 2γ1(J2

1 + J2) + J1J2 − J3 = 0.

Differentiating the above equation with respect to ω1 and using the fact that γ1(ω∗1) = 0, we get[
dγ1

dω1

]
ω1=ω

∗
1

= −

 1
2(J2

1 + J2)
d

dω1
(J1J2 − J3)


ω1=ω

∗
1

.

Clearly, the left side of the above equation will be nonzero if d
dω1

(J1J2 − J3)|ω1=ω
∗
1
, 0. Therefore, we

can say that the system (2.2) exhibits Hopf bifurcation around the equilibrium E∗ as ω1 crosses the
critical value ω∗1.

For a clear understanding of the instability behavior, it is needed to obtain the amplitude and the
initial period of the periodic solutions. For this, we set J3 = κJ1J2 in the characteristics equation (3.9).
Assuming λ as a continuous function of κ, we can rewrite Eq (3.9) as

λ3 + J1λ
2 + J2λ + κJ1J2 = 0. (3.14)

At κ = κ∗ = 1, J3 = J1J2 and Eq (3.14) factorizes into (λ + J1)(λ2 + J2) = 0, that gives the roots
λ(κ∗) = −J1 and λ(κ∗) = ±i

√
J2. This assures the occurrence of Hopf bifurcation in system (2.2).

Notably, this new parametrization, 0 ≤ κ ≤ κ∗ corresponds to 0 ≤ ω1 ≤ ω
∗
1, 0 ≤ κ = κ∗ corresponds to
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ω1 = ω
∗
1 and κ ≥ κ∗ is identical to ω1 ≥ ω

∗
1. Setting κ = κ∗ + µ2ξ, where ∥µ∥ < 1 and ξ = ±1, we get

λ(κ) = λ(κ∗ + µ2ξ). Expanding by Taylor series about κ∗ gives

λ(κ) = λ(κ∗) + λ′(κ∗)µ2ξ + O(µ4), (3.15)

where ′ represent derivative with respect to κ. Differentiating both side of Eq (3.15) and simplifying,
we get

λ′(κ) =
J1J2

2(J2
1 + J2)

± i
J2

1

√
J2

2(J2
1 + J2)

. (3.16)

As ℜ(λ(κ∗)) = 0, we have ℜ(λ′(κ∗)) > J1 J2
2(J2

1+J2) > 0. Substituting the values of λ(κ∗) and λ′(κ∗) in Eq
(3.15), we get the following approximation:

λ(κ) = λ(κ∗) + λ′(κ∗)µ2ξ

=
J1J2µ

2ξ

2(J2
1 + J2)

± i
√

J2

1 + J2
1µ

2ξ

2(J2
1 + J2)

 + O(µ4). (3.17)

From the above equation, we obtain the amplitude and initial period of the oscillatory solutions that

occurred along with the loss of stability when κ > κ∗ as exp
(

J1 J2µ
2ξ

2(J2
1+J2)

)
and 2π

√
J2

1+ J2
1µ

2ξ

2(J2
1+J2)

 , respectively,

where µ =
√
|κ−κ∗ |
|ξ|

.

3.3.3. Direction and stability of Hopf bifurcation

By using normal form theory [46], we discuss the direction of Hopf bifurcation with stability prop-
erties of bifurcating oscillatory solutions of system (2.2). The eigenvectors W1 and W2 corresponding
to the eigenvalues λ1 = iϕ and λ3 = −J1, at ω1 = ω

∗
1, where ϕ =

√
J2, are respectively given by:

W1 =


b11 − ib12

b21 − ib22

b31 − ib32

 and W2 =


b13

b23

b33

 (3.18)

with

b11 =
−ϕ2 + j22 j33 − j23 j32

j21 j32
, b21 = −

j33

j32
, b31 =0,

b12 =
ϕ( j22 + j33)

j21 j32
, b22 = −

ϕ

j32
, b32 =0,

b13 =
(J1 + j22)(J1 + j33) − j23 j32

j21 j32
, b23 =

j11 + j22

j32
, b33 =1.

In view of the following transformations

x = x∗ + b11X + b12Y + b13Z,

y = y∗ + b21X + b22Y + b23Z,
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z = z∗ + b31X + b32Y + b33Z,

system (2.2) transforms to

dX
dt
= L1,

dY
dt
= L2,

dZ
dt
= L3,

(3.19)

where

L1 =
b22C1 − b12C2 + (b12b23 − b13b22)C3

D
,

L2 =
(b23 − b21)C1 + (b11 − b13)C2 + (b13b21 − b11b23)C3

D
,

L3 =
−b22C1 + b12C2 + (b11b22 − b12b21)C3

D

with

D = (b11b22 + b12b23 − b12b21 − b13b22),

C1 =
1

1 + ω1(y∗ + b21X + b22Y + b23Z)
r(x∗ + b11X + b12Y + b13Z)

− d(1 + ω2(y∗ + b21X + b22Y + b23Z))(x∗ + b11X + b12Y + b13Z)2

−
α1(x∗ + b11X + b12Y + b13Z)(y∗ + b21X + b22Y + b23Z)(

1 + ω3(z∗ + b31X + b32Y + b33Z)
) (

m + (x∗ + b11X + b12Y + b13Z)
) ,

C2 =
θ1α1(x∗ + b11X + b12Y + b13Z)(y∗ + b21X + b22Y + b23Z)(

1 + ω3(z∗ + b31X + b32Y + b33Z)
) (

m + (x∗ + b11X + b12Y + b13Z)
)

− δ1(y∗ + b21X + b22Y + b23Z) − α2(y∗ + b21X + b22Y + b23Z)×
(z∗ + b31X + b32Y + b33Z) − δ2(1 + ω4(z∗ + b31X + b32Y + b33Z))×
(y∗ + b21X + b22Y + b23Z)2,

C3 =
η(z∗ + b31X + b32Y + b33Z)

1 + η0(z∗ + b31X + b32Y + b33Z)
− δ3(z∗ + b31X + b32Y + b33Z)

+ θ2α2(y∗ + b21X + b22Y + b23Z)(z∗ + b31X + b32Y + b33Z).

Thus, the interior equilibrium E∗ shifts to the origin (0, 0, 0) for system (3.19), and the corresponding
Jacobian matrix is obtained as

J(E∗) =


∂L1

∂X
∂L1

∂Y
∂L1

∂Z
∂L2

∂X
∂L2

∂Y
∂L2

∂Z
∂L3

∂X
∂L3

∂Y
∂L3

∂Z

 ,
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where ∂L
1

∂X
= ∂L

2

∂Y
= ∂L

1

∂Z
= ∂L

3

∂X
= ∂L

3

∂Y
= ∂L

2

∂Z
= 0,−∂L

1

∂Y
= ∂L

2

∂X
= ϕ, and ∂L

3

∂Z
= D1.

The values of g11, g02, g20, G101, G110, G21, h11, h20, ϕ, ϕ20, ϕ11, and g21 are computed by using the
following relations:

g11 =
1
4

∂2L1

∂X2 +
∂2L2

∂Y2

 + i
∂2L2

∂X2 +
∂2L1

∂Y2

 ,
g02 =

1
4

∂2L1

∂X2 +
∂2L1

∂Y2 − 2
∂2L2

∂X∂Y

 + i
∂2L2

∂X2 −
∂2L2

∂Y2 + 2
∂L1

∂X∂Y

 ,
g20 =

1
4

∂2L1

∂X2 −
∂2L1

∂Y2 + 2
∂2L2

∂X∂Y

 + i
∂2L2

∂X2 −
∂2L2

∂Y2 − 2
∂L1

∂X∂Y

 ,
G21 =

1
8

∂3L1

∂X3 +
∂3L1

∂X∂Y2 +
∂3L2

∂X2∂Y
+
∂3L2

∂Y3


+ i

∂3L2

∂X3 +
∂3L2

∂X∂Y2 −
∂3L1

∂X2∂Y
−
∂3L1

∂Y3

 ,
ϕ =
∂L1

∂Y
,

h11 =
1
4

∂2L3

∂X2 +
∂2L3

∂Y2

 ,
h20 =

1
4

∂2L3

∂X2 −
∂2L3

∂Y2 − 2i
∂2L3

∂X∂Y

 .
Solutions of the following equations will give the values of ω11 and ω20:

D1ω11 = −h11, (D − 2iϕ)ω20 = −h20.

Then, we compute

G110 =
1
2

 ∂2L1

∂X∂Z
+
∂2L2

∂Y∂Z

 + i
 ∂2L2

∂X∂Z
−
∂2L1

∂Y∂Z

 ,
G101 =

1
2

 ∂2L1

∂X∂Z
−
∂2L2

∂Y∂Z

 + i
 ∂2L2

∂X∂Z
+
∂2L1

∂Y∂Z

 ,
g21 = G21 + 2G110ω11 +G101ω20.

Now, using the above values, we calculate the following quantities:

C1(0) =
i

2ϕ

(
g20g11 − 2|g11|

2 −
1
3
|g02|

2
)
+

1
2

g21,

µ2 = −
ℜ{C1(0)}
α′(0)

,

β2 = 2ℜ{C1(0)},

T2 = −
ℑ{C1(0)} + µ2ϕ

′(0)
ϕ

,
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where α′(0) = d
dω1

(ℜ{λ1(ω1)})|ω1=ω
∗
1

and ϕ′(0) = d
dω1

(ℑ{λ1(ω1)})|ω1=ω
∗
1
. The direction of Hopf bifurca-

tion, supercritical or subcritical, is determined by the sign of µ2. A positive (µ2 > 0) value indicates
a supercritical Hopf, while a negative (µ2 < 0) value indicates a subcritical Hopf bifurcation. Further,
the stability of the oscillatory solutions is characterized by the parameter β; a negative (β2 < 0) value
indicates stability and a positive (β2 > 0) value indicates instability. Additionally, the period of the
oscillatory solutions increases or decreases when T2 > 0 or T2 < 0.

4. Numerical simulations

In this section, we aim to computationally investigate the dynamics of system (2.2) using MAT-
LAB and MATCONT. Initially, we focus on analyzing the behavior of system (2.2) in the absence of
predation-induced fear. Subsequently, we aim to assess the influence of fear on the dynamical charac-
teristics of system (2.2) and the population dynamics of the species within the ecosystem. To facilitate
numerical observations, we consider a specific set of parameter values for system (2.2):

r = 2, d = 0.3, α1 = 12, m = 3, θ1 = 0.7, δ1 = 0.1, δ2 = 0.03,
α2 = 1, η0 = 2, θ2 = 0.3, δ3 = 0.3. (4.1)

It is important to note that unless specifically mentioned, we consistently employ the aforementioned
set of parameter values for simulations. To explore diverse dynamics manifested by system (2.2), we
systematically vary certain parameters within biologically plausible ranges. Through these numerical
analysis, we aim to glean insights into the various behaviors and interactions exhibited by system (2.2)
under different parameter configurations. This exploration will provide valuable perspectives on the
ecosystem’s dynamics and the impact of fear-induced responses on the species’ population dynamics
within this framework.

4.1. Sensitivity analysis

In order to address the inherent uncertainties in determining parameter values for system (2.2), we
employ global sensitivity analysis, leveraging two statistical techniques: Latin Hypercube Sampling
(LHS) and Partial Rank Correlation Coefficients (PRCCs) [47, 48]. LHS involves a stratified sampling
approach without replacement, allowing simultaneous variation of multiple parameters in an efficient
manner. Meanwhile, PRCC evaluates the strength and direction of correlation between model output
and input parameters, yielding values within the interval [−1, 1]. Assuming a uniform distribution
for the input parameters, namely ω1, ω2, ω3, ω4, α1, η and η0, we conduct 50 simulations per LHS of
system (2.2). Utilizing the baseline values specified in Eq (4.1) alongsideω1 = 0.5, ω2 = 0.5, ω3 = 0.1,
ω4 = 0.5, α1 = 12, η = 0.6 and η0 = 2. We allow parameters to deviate within a range of ±25% from
these nominal values. This approach facilitates a comprehensive exploration of the parameter space
and aids in understanding the sensitivity of the model output to variations in these parameters. By
systematically analyzing how alterations in parameter values impact the system’s behavior, we aim to
enhance our comprehension of the model’s robustness, uncertainties, and the influence of individual
parameters on the overall dynamics of the system.

Figure 2 illustrates the Partial Rank Correlation Coefficients (PRCC) values assigned to the con-
sidered input parameters within model system (2.2), utilizing the density of prey species as the output
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Figure 2. Effect of uncertainty of the system (2.2) on prey population.

variable. Notably, parameters exhibiting higher PRCC values exert a more pronounced impact on the
density of prey species. Consequently, parameters affecting the density of prey species positively (via
positive PRCC values) or negatively (via negative PRCC values) are identified. From the analysis,
parameters exhibiting a negative influence on the density of prey species include ω1, ω2, α1 and η0,
while those contributing positively to the density of prey species comprise ω3, ω4 and η. Among
these parameters α1, η and η0 emerge as particularly significant. Identifying these key parameters as-
sumes significance in devising effective control strategies essential for preserving prey species within
the ecosystem. This sensitivity analysis suggests that strategies aimed at augmenting (diminishing)
parameters associated with positive (negative) PRCC values would effectively enhance the density of
prey species in the ecosystem. Understanding the influential parameters and their respective impacts
on the population dynamics of prey species provides valuable insights for implementing targeted in-
terventions or management practices crucial for sustaining and conserving the prey species within the
ecosystem.

4.2. Dynamics of system (2.2) in the absence of fear factors

In this section, we initiate simulation by assigning a zero value to all fear factors to investigate
the influence of parameters η and η0 on the dynamics of the system (2.2). This investigation aims
to elucidate the effects arising from the inclusion of generalist top predators rather than specialized
predators. Upon setting η = 1, the proposed system demonstrates a unique stable interior equilibrium
E∗ = (2.23442, 0.58000, 3.46831). The corresponding Jacobian matrix yields eigenvalues of −0.10878
and −0.06073 ± 1.82598i. Concurrently, all other feasible boundary and planar equilibria manifest
as intrinsically unstable. Figure 3 portrays the time series solutions for all system variables and the
respective phase portrait. It is notable that as the value of η diminishes, the stability of the system is
compromised, resulting in instability. When η = 0.5, Figure 4 illustrates the time series solution and
the phase portrait, revealing the periodic oscillations around the co-existence equilibrium. This figure
demonstrates that trajectories converging towards the limit cycle, regardless of their initiation from
within or outside the cycle.

Subsequently, Figure 5 illustrates the equilibrium curve across a significant spectrum of η values,
serving to elucidate the repercussions of augmented food availability on the dynamics of the system.
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Figure 3. (a) Time series solution and (b) projection of phase portrait with initial condition
(x0, y0, z0)=(1.6, 0.9, 1.5) in x − y plane for η = 1.

In this depiction, stable equilibria are denoted in blue, whereas unstable equilibria are marked in red.
Notably, for lower η values, the system manifests oscillatory behavior. However, with an increase in
η, the co-existence equilibrium stabilizes via a supercritical Hopf bifurcation occurring at η = 0.84127
(designated as H). To visually comprehend these bifurcations, Hopf bifurcation diagrams are repre-
sented in Figure 6. As η continues to escalate, the system experiences a transcritical bifurcation at
η = 3.71586 (labeled as BP). At this bifurcation point, stability transitions from the internal equilib-
rium to the intermediate predator-free equilibrium E3, rendering the former infeasible. This transition
is accompanied by a noteworthy observation that as η increases toward the BP point, the density of top
predators steadily rises, whereas that of intermediate predators diminishes due to their consumption
by the top predators. Consequently, the density of prey species surges. Upon surpassing the threshold
value at the BP point, the intermediate predators face extinction, and the density of prey species sat-
urates at r/d. Interestingly, the population of top predators continues to surge, even in the absence of
intermediate predators, owing to the availability of alternative food resources. It is important to note
that the saturated prey density, coupled with the heightened abundance of top predators, may culminate
in the extinction of intermediate predators within the ecosystem.

To investigate the influence of η0 on the system’s dynamics, we examine the equilibrium curves
concerning η0, as depicted in Figure 7. In contrast to the effect observed with variations in η, we
note that for lower values of η0, the intermediate predator-free equilibrium E3 exhibits stability. At
η0 = 0.40985, a transcritical bifurcation denoted as BP occurs, marking the transition to a stable
branch of the co-existence equilibrium. Additionally, at η0 = 2.44551, a supercritical Hopf bifurcation
takes place, leading to system instability. It is notable that the impact of η0 on the equilibrium densi-
ties of species is opposite to the effects witnessed with alterations in η. Ecologically interpreting the
dynamics portrayed in Figures 5 and 7, it becomes evident that system stability is sustained when sup-
plementary food sources, aside from the primary prey (intermediate predators), significantly contribute
to the proliferation of top predators. These findings underscore the intricate interplay between different
food sources and their effects on the stability and dynamics within the ecosystem.
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Figure 4. (a) Time series solution and (b) projection of phase portrait with initial condition
(x0, y0, z0) = (0.4, 1, 1.5) in x − y plane for η = 0.5.

Thereafter, we present the Hopf curve in the η-η0 plane (depicted in Figure 8(a)), which delineates
the bi-parametric regions of stability and instability. The blue-colored region signifies stability, while
the brown-colored region denotes instability. This graphical representation succinctly encapsulates the
previously discussed dynamics: an increase in η tends to stabilize the system, whereas an increase in
η0 tends to destabilize it. In addition, we have plotted the Hopf curve in the η-δ3 bi-parametric plane
(Figure 8(b)). In this representation, the colored regions within the parametric plane correspond to fea-
sibility, i.e., η > δ3. Notably, we observe that if the mortality rate of the top predator remains relatively
low, the system tends to maintain stability, and the dynamics exhibit no significant alterations with
increasing η. However, for higher values of δ3, the stability behavior around the co-existence equilib-
rium shifts from unstable to stable with increasing η. The critical point GH delineates the generalized
Hopf bifurcation point, signifying a transition in the nature of the Hopf bifurcation from supercritical
to subcritical, or vice-versa. Biologically interpreting these findings, it implies that for top predator
species with shorter life spans, the growth rate resulting from additional food resources, besides their
natural prey (intermediate predator), must be sufficiently substantial to maintain system stability. Con-
versely, for species with longer life spans, no such stringent condition is necessary to ensure stability.
These insights shed light on the complex interplay between top predator characteristics, food resource
availability, and the resulting ecosystem stability.

4.3. Impacts of fear factors on the dynamics of system (2.2)

To explore the influence of fear parameters on the dynamics of system (2.2), we first plot equi-
librium curves concerning ω1, while assigning other fear parameters zero. In Figure 9, equilibrium
curves are depicted for three distinct values of α1, denoted as (1), (2), and (3) corresponding to α1 = 8,
α1 = 10, and α1 = 12, respectively. The blue and red color signifies stable and unstable equilibria of
the system. In curve (1), it is evident that the system maintains stability without any alteration as ω1

varies. However, curve (2) demonstrates a different behavior, showcasing two instances of Hopf bifur-
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Figure 5. Equilibrium curves of the system (2.2) with respect to η in (a) η − x, (b) η − y and
(c) η − z planes. Other parameter values are the same as mentioned in (4.1). Here, the blue
and red colored curves respectively represent stable and unstable equilibria of the system.

cation occurring at ω1 = 0.24314 and ω1 = 0.47583. Within the interval 0.24314 < ω1 < 0.47583,
the system exhibits oscillatory behavior around the interior equilibrium, while outside this range, it
remains dynamically stable. The corresponding Hopf bifurcation diagram is presented in Figure 10(a),
showcasing a phenomenon referred to as a “bubbling” effect induced by the fear parameterω1. This ob-
servation aligns with findings reported by [29, 49]. For curve (3), a distinctive pattern emerges where
the system displays oscillatory behavior at lower values of ω1, transitioning into stability through a
supercritical Hopf bifurcation at larger values (occurs at ω1 = 1.487185). The associated Hopf bi-
furcation diagram is illustrated in Figure 10(b), revealing a declining trend in the equilibrium density
of prey species with increasing values of ω1. Figure 11 delineates the region of stability and instabil-
ity, demarcated by the Hopf curve, in the ω1 − α1 parametric plane. Notably, in scenarios involving
intermediate predators with higher predation rates, the prey species exhibit heightened anti-predation
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Figure 6. Hopf bifurcation with respect to η. Other parameter values are the same as men-
tioned in (4.1).

activities, perceiving greater predation risk. Consequently, all species coexist stably, albeit with lower
prey density.

Subsequently, Hopf bifurcation diagrams were generated concerning the fear parameters ω2, ω3,
and ω4 in Figure 12(a)–(c), respectively. These illustrations reveal a consistent trend where all fear
parameters exhibit a stabilizing influence on the system’s dynamics. To further analyze the stability
and instability regions in the ω1 − ω2, ω1 − ω4, and ω2 − ω4 parameter spaces, Figure 13(a)–(c) were
constructed. Specifically, in Figure 13(a), Hopf curves are plotted for four distinct values of α1. It is
observed that an increase in the predation rate of the intermediate predator (α1) constricts the stability
region. Notably, for α1 = 16, only region I remains stable, while for α1 = 14, stability expands to
encompass regions I

⋃
II. Following this trend, for α1 = 11, stability encompasses regions I

⋃
II

⋃
III

⋃
IV, leaving region V as the sole region of instability. Thus, Figure 13(a) illustrates that when

either the cost of intermediate predator-induced fear on growth rate or intra-species competition of prey
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Figure 7. Equilibrium curve with respect to η0 in (a) η0 − x plane, (b) η0 − y plane. Here, we
choose η = 1 and other parameters are the same as given in (4.1).

(a) (b)

Figure 8. Hopf curves of system (2.2) in (a) η − η0 and (b) η − δ3 planes. Other parameter
values are the same as mentioned in (4.1).

species is high, the system exhibits stable behavior around the interior equilibrium. Conversely, when
both costs are relatively low, the system becomes unstable. This implies that an excessive predation
rate of the intermediate predator imposes additional costs on prey, leading to increased investment in
vigilance and reduced foraging areas, thereby escalating intra-species competition. Moreover, Figure
13(b) illustrates that achieving stability depends on the interplay between the cost of intermediate
predator-induced fear on growth rate and the cost of top predator-induced fear on the intra-species
competition of the intermediate predator. Interestingly, Figure 13(c) demonstrates a straightforward
influence of the costs associated with fear-induced intra-species competition. Higher values of either
ω2 or ω4 lead to system stability, whereas lower values of both parameters result in system instability.
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Figure 9. Equilibrium curves of the system (2.2) with respect to ω1 for three different values
of α1. Other parameter values are same as mentioned in (4.1) except η = 0.6 and ω2 = ω3 =
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Figure 10. Depiction of Hopf bifurcation in system (2.2) with respect to ω1 for different
values of α1: (a) α1 = 10 and (b) α1 = 12. Here, η = 0.6 and other parameter values are the
same as mentioned in (4.1).

The alteration in the parameter ω3 yields distinct population density variations among the three
species, as illustrated by the bar diagrams in Figure 14. The graphical representation demonstrates
a positive correlation between the increment in the value of ω3 and the equilibrium density of the
prey species, while concurrently observing a decrease in the equilibrium densities of intermediate and
top predators. This ecological trend suggests that heightened apprehension induced by top predators
triggers behavioral adjustments in intermediate predators, compelling them to limit their foraging ac-
tivities, consequently leading to a decline in their population density. The reduced foraging efforts of
intermediate predators, in turn, alleviate predation pressure on the prey species, culminating in an even-
tual surge in their population density. The decline in the density of top predators is primarily linked
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Figure 11. Hopf curve of system (2.2) in theω1−α1 plane. Here, η = 0.6 and other parameter
values are the same as mentioned in (4.1).

to the scarcity of intermediate predators, as these constitute a favored food source for the top preda-
tors. This qualitative behavioral pattern is in accordance with empirical findings observed by Suraci
et al. [20], wherein the fear elicited by large carnivorous animals initiates cascading effects on lower
trophic levels. In summary, alterations in ω3 exhibit a pronounced impact on predator-prey dynam-
ics, eliciting shifts in population densities among trophic levels. The observed changes underscore the
intricate interplay of fear-driven behavioral adaptations and predator-prey interactions, aligning with
empirical evidence highlighting the cascading effects of fear-induced responses in ecological systems.

5. Conclusions

Various factors, including resource availability, body size, and ecological niches, play pivotal roles
in shaping the prey preferences exhibited by predator species. While some predators exhibit highly se-
lective feeding behaviors, others display a more generalized approach to their dietary habits. Theoreti-
cal investigations into predator-prey dynamics and food web structures have predominantly centered on
specialized predators. However, it’s crucial to recognize the significance of generalist predators within
ecosystems, as they contribute substantially to biodiversity maintenance and serve as effective bio-
control agents. In this study, we have constructed a food chain model comprising three distinct species:
prey, intermediate predators (of specialist nature), and top predators (generalists). The growth dynam-
ics of the top predators, when devoid of their primary prey (intermediate predators), are described
using a Beverton-Holt like function. Beyond the direct impact of predation on species demography,
we have also accounted for the non-consumptive effects of predation. Specifically, we incorporated the
“cost of fear”, introducing heightened intraspecies competition among both the primary prey and inter-
mediate predators, leading to a reduction in their reproduction rates. Empirical evidence supports the
notion that the presence of top predators suppresses foraging and predation activities among interme-
diate predators. Hence, we have adjusted the predation rate of intermediate predators by introducing
a decreasing function, which is influenced by the fear parameter and the density of top predators.
Our analysis extensively delves into the qualitative behaviors exhibited by the proposed model. We
have scrutinized the potential existence of Hopf-bifurcation, investigating the direction and stability
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Figure 12. Hopf bifurcation with respect to other fear parameters (a) ω2 (ω1 = 0.5), (b)
ω3 (ω1 = 0.5, ω2 = 0.1), (c) ω4 (ω1 = 0.5, ω2 = 0.1, ω3 = 0.05). Here, η = 0.6 and other
parameter values are the same as mentioned in (4.1).

of the resultant periodic solution arising from this bifurcation phenomenon. This study contributes to
the deeper understanding of predator-prey dynamics, shedding light on the intricate interplay between
species interactions, predator behaviors, and the broader ecological implications within food chain
systems.

Our findings highlight the stability of the intermediate predator-free equilibrium under conditions
where the maximum growth rate falls below a critical threshold. In such instances, the intermediate
predator faces extinction within the system. This phenomenon can be elucidated by the significant con-
tribution of supplementary food sources to the exponential growth of top predators, thereby elevating
their population density, consequently leading to a decline in the density of intermediate predators. Al-
though this benefits the prey species initially, their density reaches saturation due to limited resources.
As a result, a persistent increase in top predator density, coupled with constrained prey availability,
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Figure 13. Hopf curves in bi-parametric planes: (a) ω1 − ω2 (ω3 = 0, ω4 = 0), (b) ω1 − ω4

(ω2 = 0.1, ω3 = 0.05), (c) ω1 − ω4 (ω2 = 0.1, ω3 = 0.05). Other parameter values are the
same as in (4.1) except η = 0.6.

ultimately drives the intermediate predators to extinction. However, in scenarios where there is mini-
mal fear of predation and higher natural mortality rates among top predators (resulting in shorter life
spans), the role of additional food sources in fostering the growth of top predators must be substan-
tially significant for the ecosystem’s dynamical stability. Our research also illustrates the influence of
fear parameters on the equilibrium densities of prey and predators, as well as on the dynamics within
the considered food chain system. Notably, all fear parameters exhibit stabilizing effects, robustly
contributing to the system’s stability. Heightened predation pressure triggers increased anti-predation
activities among prey species, which are imperative for the stable coexistence of all species within the
ecosystem. Fear induced by intermediate predators, whether manifesting as a reduced birth rate or
heightened intraspecies competition, diminishes the abundance of prey species. Conversely, the fear
induced by top predators on intermediate predators enhances prey density. This fear suppresses the
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Figure 14. Effect of the parameter ω3 on the population densities of prey, intermediate
predator and top predator, respectively.

foraging and predation activities of intermediate predators, setting off a trophic cascading effect within
lower trophic levels. Reduced foraging activities consequently diminish intermediate predator abun-
dance, ultimately amplifying the abundance of prey species. Consequently, the deliberate manipulation
or propagation of fear can emerge as a valuable tool for augmenting endangered species and ensuring
a balanced ecosystem. Additionally, the introduction of top predators could prove advantageous for
biodiversity conservation efforts.
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