
MBE, 20(9): 17569–17588. 
DOI: 10.3934/mbe.2023780 
Received: 06 July 2023 
Revised: 03 September 2023 
Accepted: 06 September 2023 
Published: 14 September 2023 

http://www.aimspress.com/journal/MBE 
 

Research article 

A strategy for predicting waste production and planning recycling paths 

in e-logistics based on improved EMD-LSTM 

Shujuan Liu, Hui Jin* and Yanbiao Di 

School of Logistics, Liaoning Vocational University of Technology, Jinzhou 121007, China 

* Correspondence: Email: jinhui5868@edu.email.cn; Tel: +8613614165647. 

Abstract: With the rapid development of e-commerce, express delivery has been chosen and accepted 
by consumers, and a large number of express packages have resulted in serious waste of resources and 
environmental pollution. Because of the irregularity of online goods purchases by users in real life, 
logistics parks are unable to accurately judge the recycling needs of various regions. In order to solve 
this problem, we propose an improved empirical mode decomposition (IEMD) algorithm combined 
with a long-short-term memory (LSTM) network to deal with the addresses and categories in logistics 
data, analyze the distribution of recyclable logistics waste in the logistics park service area and in the 
express recycling station within the logistics park, judge the value of recyclable logistics waste, 
optimize the best path for recycling vehicles and improve the success rate of logistics waste recycling. 
In order to better research and verify the IEMD-LSTM prediction model, we model and simulate the 
algorithm behavior of the express waste packaging recycling prediction model system, and compare it 
with other classification methods through specific logistics data experiments. The prediction accuracy, 
stability and advantages of the four algorithms are analyzed and compared, and the application 
reliability of the algorithm proposed in this paper to the logistics waste recycling process is verified. 
The application in the actual express logistics packaging recycling case shows the feasibility and 
effectiveness of the waste recycling scheme proposed in this paper. 

Keywords: waste recycling; e-logistics; data-driven; long-short-term memory network; recycling 
path planning 
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1. Introduction 

In today’s growing e-commerce, the increase in express-package recycling has become an 
important factor affecting the green environment. Most of this express packaging can be recycled and 
reused, except for a small amount of fresh product packaging, disposable packaging and hazardous 
chemicals, which are polluting and non-reusable. Many logistics pickup points have set up recycling 
stations, but the use of recycling stations does not achieve satisfactory results for the convenience of 
users. Therefore, many logistics parks send out recycling vehicles to collect express-package recycling 
from the service area for centralized processing and secondary use. However, due to the effect of 
irregular purchase frequency by users, the vehicles are not economical to use, resulting in the recycling 
process being not environment-friendly. Therefore, we focus on the collection and transportation 
process of logistics waste, and propose a reasonable method to establish a logistics waste prediction 
model through the historical data of logistics waste recycling stations, to realize reasonable route 
planning and scheduling of logistics waste recycling vehicles, to reduce the costs in the collection and 
transportation process and to promote an efficient waste recycling mechanism and an advanced 
sustainable management method of logistics waste recycling. 

In 1997, Hochreiter and Schmidhuber first proposed the LSTM model [1]. The LSTM network is 
one of the most successful RNN architectures. Different from a traditional recurrent neural network 
(RNN), LSTM is very good at learning time series of arbitrary length and making predictions. In 
addition, the problem of vanishing gradients in RNNs can be solved to some extent by keeping 
temporal information about the storage unit at all times. LSTM introduces the storage unit, which is a 
computational unit rather than a traditional artificial neuron. Through the LSTM memory unit, the 
neural network can connect memory and remote input, so as to dynamically master the time series data 
structure with high predictive ability [2]. Evidence shows that LSTM is more effective than traditional 
RNNs [3,4]. LSTM has achieved excellent results in many fields, such as machine translation and 
image generation, and has been widely used. McDougall [5] used life cycle inventory tools to conduct 
life cycle assessment on the whole process of municipal solid waste (MSW) treatment, and Arena [6] 
carried out life cycle assessment research on waste logistics. In addition, Bautista and Pereira [7] 
studied the optimization algorithm of collection point selection by taking MSW as a recycling logistic 
problem, and analyzed the optimization and decision-making of MSW logistics, such as the 
optimization of the design of waste management planning [8]. In 2011, Polat and Savas [9] proposed 
a data preprocessing method combining a subtraction clustering attribute weighting method and a 
classifier algorithm. In 2012, Sun and Genton [10] used a functional box diagram to detect abnormal 
data based on the data obtained by a road detector. In 2014, Chiou et al. [11] used a functional principal 
component analysis to estimate missing traffic data based on the data obtained using induction coils. 
In 2015, Jin et al. [12] proposed an abnormal data identification method for the data acquired using a 
microwave detector and introduced data denoising to improve it. In 2016, Deb and Liew [13] proposed 
a new data repair method, which uses the correlation within and between records to repair missing data. 
In 2018, Deb and Liew [14] proposed a new algorithm called Noise Cleaner for identifying abnormal 
data. Mao, et al. [15] proposed a robust low-rank representation method, which combines time prior 
information to estimate the missing data and improves the global correlation characteristics of data. 
Amazal et al. [16] proposed a widely used method in pattern recognition and machine learning, i.e., 
feature selection optimization based on the mutual information (MI) method, and the maximum feature 
term frequency mutual information (MTF-MI) method. In other words, a distributed feature selection 
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method combining feature term frequency and mutual information technology is applied in the 
experiment to improve the quality of the feature subset used for text classification. Finally, according 
to the experimental results, the proposed method is improved in both macroscopic F1 and microscopic 
F1. Di Sarli [17] proposed a completely untrained model. In this case, after testing whether the 
sentences generated recursively can be dynamically embedded, a simple machine learning algorithm 
is used to classify the text. Currently, it is obvious that the model cannot only greatly reduce the training 
time, but also that the classification effect of the model has advantages. According to the experimental 
results, the proposed model has certain advantages compared with other machine learning algorithm 
models. Mehta et al. [18] combined different feature selection methods and selected two different 
levels of aggregator for exploration, namely univariate and multivariate aggregators. The experiment 
proved that the method was stable in the practical application. Fiok [19] proposed a method called Text 
Guide for text truncation in order to reduce the length of the original text and reduce the length to the 
predefined shortest length. This method not only reduced the computational complexity of text 
classification, but also ensured the accuracy of text classification. 

The data-driven based research methods have achieved a wide range of applications in the fields 
of uncertainty modeling, inverse problems and image or signal processing. In uncertainty modeling, 
data-driven methods mainly rely on large amounts of experimental data to reveal the intrinsic structure 
and laws of the system, thus avoiding many assumptions and approximations in traditional physical 
modeling methods [20,21]. For example, deep learning models are able to learn the dynamic behavior 
of a system directly from data rather than based on priori physical knowledge. The data-driven 
approaches also play an important role in the field of inverse problems. While traditional inverse 
problem approaches often need to be based on some physical model, data-driven approaches can 
recover unknown inputs or states directly from observed data, which greatly simplifies the problem-
solving process. A neural network model can be trained as an inverse operator that estimates the input 
signal directly from the output data. In the field of image and signal processing, data-driven approaches 
have become mainstream [22]. The deep learning models such as convolutional neural networks have 
achieved excellent results in tasks such as image classification and semantic segmentation. In the field 
of signal processing, models, such as RNN and LSTM, have also demonstrated strong capabilities in 
applications, such as speech recognition and time series prediction. The data-driven methods in discrete 
tomography can provide more accurate and faster image reconstruction techniques. While traditional 
image reconstruction methods often require complex algorithms and a large amount of computation 
time, deep-learning-based methods can accomplish image reconstruction in a short period of time and 
with higher image quality [23,24]. Hybrid systems and state switching are important directions in the 
study of dynamical systems. These systems often contain both continuous and discrete components, 
making both their modeling and control very complex [25,26]. The data-driven approaches provide a 
new perspective, allowing researchers to learn the behavior of systems directly from data, rather than 
relying on complex mathematical models. Research in networks and systems has also benefited from 
data-driven approaches. For example, in social network analysis, machine learning methods can be used 
to identify important nodes or community structures in the network, while in the modeling and optimization 
of complex systems, data-driven methods provide a more flexible and efficient means [27,28]. In short, 
whether it is an old research method or a new technology, data-driven is providing new ideas and tools 
for scientific research and engineering applications. With the development of big data technology, we 
have reason to believe that more breakthroughs and progress will be made in the future based on data-
driven research methods. 
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All of the above studies have classified and analyzed logistics data for improving logistics 
services, but there is no research related to the use of e-logistics information to improve the recycling 
rate of express-package recycling. Similar to the research in this paper, research on medical waste [29] 
management and sustainability started to emerge in the context of the popularity of COVID-19 [30,31], 
but more attention was paid to the process of waste disposal, while the logistic process of recycling 
was not sufficiently researched. In this paper, based on the previous methods related to data classification 
and analysis, we propose the LSTM based on an improved empirical mode decomposition (IEMD) 
algorithm to process addresses and categories in logistics data, study the concentration range of 
logistics dispatches and the distribution of recyclable express package recycling in the service area of 
logistics parks and optimize the routes of recycling trucks by judging the value of recyclable express 
package recycling, in order to improve the success rate of express package re-cycling. 

The major contributions of this paper are: 
• An advanced IEMD-LSTM algorithm is proposed in order to suppress logistic waste recycling 

data with nonlinearity and uncertainty; 
• Aiming at the problem of uneven data volume due to too little logistics data in certain regions, 

a corresponding data expansion method is proposed; 
• Experiments on real logistics data have proven that the method proposed in this paper has an 

excellent role in logistics waste recycling data management; 
• The simulation results of logistics waste recycling vehicles in real cases show that the success 

rate of waste recycling can be improved by using the recycling path planning method proposed in 
this paper. 

2. IEMD-LSTM method 

This section describes the methodology structure and improvement strategies used in this study. 
First, the basic structure of LSTM is described, and then the derivation of improved EMD is explained. 

2.1. The LSTM prediction model 

A recursive neural network is a kind of deep learning network particularly used for time series 
problems. Compared with the traditional deep neural network, it has significant advantages in nonlinear 
time series prediction. Too many storage layers in a recurrent neural network (RNN) will affect the 
speed of network training, to a certain extent, and will lead to gradient disappearance and gradient 
explosion. The gradient disappearance or explosion will cause the shallow weight not to be updated, 
which makes the RNN lack the ability to remember long-term input time information. In short, the 
traditional RNN model has the defect of long-term dependence when dealing with long-term sequence 
problems. With regard to this phenomenon, Hochreiter and Schmidhuber proposed an LSTM network 
structure model [1]. This model is a new network model based on RNN. LSTM is equipped with an 
input gate, a forgetting gate and an output gate. Through the gate connection, a hysteresis connection 
is established between the input and the feedback, and continuous flow error is forced to be maintained 
in the circulating neuron. Finally, the gradient disappearance or explosion caused by derivative 
multiplication is reduced, and the memory ability of the deep learning network is effectively improved. 

For a time series, 𝑥 = (𝑥ଵ, 𝑥ଶ, … , 𝑥௡) , traditional RNN neurons output a state sequence, ℎ =(ℎଵ, ℎଶ, … , ℎ௡). The calculation process can be expressed as: 
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 ℎ௡ = 𝑓(𝑊௫௛𝑥௡ + 𝑊௛௛ℎ௡ିଵ + 𝑏௛) (1) 

In Eq (1), W and b are the weights and deviations of RNN neurons, respectively, and 𝑓 represents 
the nonlinear activation function. Different from the general RNN model, the structure of the LSTM 
model in the self-circulation part is modified. These modified complex structures can help the model 
return to the model input of previous nodes, which can be called long-term memory. Its structure is 
shown in Figure 1. 

 

Figure 1. Structure diagram of LSTM. 

In Figure 1, the meanings of 𝑖 , 𝑓 , 𝑜  and 𝑐  are, respectively, the input gate, forgetting gate, 
output gate and state function of the LSTM model and tanh as the activation function. The structure of 
the input gate, forgetting gate and output gate can be written in the forms shown in Eqs (2)–(4) [1]: 

 𝑖௡ = 𝜎(𝑊௫௜𝑥௡ + 𝑊௛௜ℎ௡ିଵ + 𝑏௜), (2) 

 𝑓௡ = 𝜎൫𝑊௫௙𝑥௡ + 𝑊௛௙ℎ௡ିଵ + 𝑏௙൯, (3) 

 𝑜௡ = 𝜎(𝑊௫௢𝑥௡ + 𝑊௛௢ℎ௡ିଵ + 𝑏௢). (4) 

The state of the neuron of the neural network in the LSTM structure is represented by 𝑐, which 
can be calculated by the following equation. 

 𝑐௡ = 𝑓௡𝑐௡ିଵ + 𝑖௡tanh(𝑊௫௖𝑥௡ + 𝑊௛௖ℎ௡ିଵ + 𝑏௖). (5) 
where 𝑊  is the weight matrix of the corresponding neural network structure, and 𝑏  is the data 
deviation in the corresponding structure. 

The LSTM can handle sequential data more efficiently, and its design principles allows it to 
memorize information over long periods of time and to deal with gradient vanishing and gradient 
explosion problems. Therefore, the LSTM is a good choice for applications that need to deal with long 
sequential data such as logistics data or applications that need to capture long-term dependencies. The 
key structure of LSTM is the “gate” mechanism, which allows LSTM to precisely control the flow of 
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information in a cell. This flexible approach to information management allows the LSTM to capture 
complex patterns and long-term dependencies. Therefore, when faced with logistics data with long 
time intervals and poor continuity or with complex structural patterns in the data, the LSTM has an 
advantage over the traditional RNN. 

2.2. The IEMD algorithm 

The precondition of the Fourier transformation method for data processing, which is widely used 
in engineering, is that the signal must be stable and linear. However, due to the complexity of the 
supply chain, logistics data do not meet these conditions. For logistics data with non-stationary 
characteristics, the frequency spectrum obtained based on Fourier transformation does not contain time 
information. Therefore, in the process of Fourier transformation spectrum analysis, it is impossible to 
effectively identify the change in frequency with time, and a lot of information will be lost, resulting 
in distortion of the analysis results. Therefore, it is necessary to apply the EMD algorithm, which is 
equivalent to starting processing in the original time series. The core content is to calculate the sum of 
the intrinsic mode function component and a trend function component, which can smoothen the 
original time series. 

Traditional EMD often has serious errors in logistics data prediction. In transportation, especially 
in terminal logistics transportation, there are often specific situations that are difficult to consider using 
the EMD model. This specific situation is often a mixture of multiple factors, such as weather, traffic, 
quarantine, natural disasters and other single reasons, when long-distance transportation is considered. 
However, factors affecting terminal transportation often occur in combination. For example, weather 
problems will lead to traffic jams and natural disasters. Such mixed factors often determine the delay 
time. This leads to large fitting errors. These expected large errors will lead to poor recovery efficiency 
of logistics waste, which has negative effects on both low-carbon environmental protection and the 
economy. Therefore, an improved EMD algorithm is proposed to reduce the fitting error of the model. 

 ℎ௡ = 𝑜௡tanh(𝑐௡). (6) 
A component of ℎଵ(𝑡) is defined as Eq (7). 

 ℎଵ(𝑡) = 𝑥(𝑡) − 𝑚ଵ(𝑡). (7) ℎଵ(𝑡) is decomposed k times until ℎଵ௜(𝑡) is the intrinsic mode function (IMF). 

 ൞ ℎଵଵ = ℎଵ଴ − 𝑚ଵଵℎଵଶ = ℎଵଵ − 𝑚ଵଶ⋮ℎଵ௜ = ℎଵ(௜ିଵ) − 𝑚ଵ௜ . (8) 

The first IMF, 𝑐ଵ(𝑡), is defined as 𝑐ଵ(𝑡) = ℎଵ௜(𝑡). Generally, the time-characteristic scale of the 
first IMF is small, i.e., the frequency of the first IMF is the highest. Therefore, if the first IMF is 
separated from the original signal, 𝑥(𝑡), the remaining 𝑟ଵ(𝑡) is written as: 

 𝑟ଵ(𝑡) = 𝑥(𝑡) − 𝑐ଵ(𝑡). (9) 

To separate the nonlinear part of 𝑥(𝑡), the above process is repeated until the 𝑛-th IMF meets 
the requirement that the remaining 𝑟௡(𝑡) is an approximate monotonic function. 
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 ൞ 𝑟ଵ(𝑡) − 𝑐ଶ(𝑡) = 𝑟ଶ(𝑡)𝑟ଶ(𝑡) − 𝑐ଷ(𝑡) = 𝑟ଷ(𝑡)⋮𝑟ேିଵ(𝑡) − 𝑐ே(𝑡) = 𝑟ே(𝑡). (10) 

The original output of regional logistics big data can be defined as 

 𝑥(𝑡) = ∑ 𝑐௜(𝑡) + 𝑟ே(𝑡)ேଵ , 𝑖 = 1,2, … 𝑁. (11) 

However, in the decomposition process, the envelope obtained by connecting the extreme points 
does not usually represent the exact extreme points. Therefore, the upper and lower envelopes at the 
endpoints will diverge, which will introduce large fitting errors in the decomposition. As the IMF 
decomposes, errors will accumulate. Therefore, an EMD extreme point prediction strategy based on 
extreme point correlation is proposed. The calculation steps are as follows: 

1) Calculate each maximum, 𝑞max(𝑖), and minimum, 𝑞min(𝑖). 𝑞max(𝑒𝑛𝑑) and 𝑞min(𝑒𝑛𝑑) are 
extreme points on the far right. Define the error set as 

 𝐸 = ሼ∣ 𝑞max(𝑖) − 𝑞max(𝑒𝑛𝑑)|, |𝑞min(𝑖) − 𝑞min(𝑒𝑛𝑑) ∣ሽ 𝑖 = 1, 2 … 𝑛 . (12) 
2) Calculate the left monotonicity of the rightmost endpoint and compare it with the left 

uniqueness of each point in the error set. If the monotonicity is different, delete the 
corresponding points. 

3) Use the remaining 𝑚 maximum points to form Eq (13). 

 ቐ𝐴௠𝑞max(𝑗ଵ) + 𝐴௠ିଵ𝑞max(𝑗ଵ − 1) + ⋯ + 𝐴଴𝑞max(𝑗ଵ − 𝑚) = 𝑞max(𝑗ଵ + 1)𝐴௠𝑞max(𝑗ଶ) + 𝐴௠ିଵ𝑞max(𝑗ଶ − 1) + ⋯ + 𝐴଴𝑞max(𝑗ଶ − 𝑚) = 𝑞max(𝑗ଶ + 1)𝐴௠𝑞max(𝑗௠) + 𝐴௠ିଵ𝑞max(𝑗௠ − 1) + ⋯ + 𝐴଴𝑞max(𝑗௠ − 𝑚) = 𝑞max(𝑗௠ + 1). (13) 
4) Predict the next maximum point of the rightmost point, 𝑞max(𝑒𝑛𝑑 + 1), according to Eq (14). 

 𝐴௠𝑞max(𝑒𝑛𝑑) + ⋯ + 𝐴଴𝑞max(𝑒𝑛𝑑 − 𝑚) = 𝑞max(𝑒𝑛𝑑 + 1). (14) 
Based on the same strategy, 𝑞min(𝑒𝑛𝑑 + 1) , 𝑞max(𝑠𝑡𝑎𝑟𝑡 − 1)  and 𝑞min(𝑠𝑡𝑎𝑟𝑡 − 1)  can be 

calculated. Therefore, the key aim of the proposed strategy is to predict the extreme points of the data. 

3. Sample expansion method 

The data in this paper come from an enterprise with its own logistics data server. Due to different 
distributions, the logistics data samples collected from open source datasets cannot be applied to actual 
scenarios. Therefore, the model needs to be trained and used to detect the real-world delivery logistics 
data. Thus, it is very important to label the data in the actual data environment and obtain a training 
data set that meets the needs. As data tagging is a relatively complex work, a small amount of tag data 
is obtained through manual methods, particularly for malicious samples. 

Next, K Nearest Neighbors (KNN) and k-means are used to expand the samples of the entire 
dataset on the basis of these few labeled data. Then, extended samples highly similar to manually 
labeled data were used for the subsequent analysis. 

A network electronic logistics data feature extraction algorithm network for electronic logistics 
data has the characteristics of broadcast, so there are a lot of similar network electronic logistics data 
in the electronic logistics data server. They may come from the same IP or the same address. A feature 
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extraction algorithm for electronic logistics data based on a seven-tuple set is proposed, and the 
electronic logistics data are marked with this algorithm. The features mostly consist of the following 
two parts: 

Title features: These features include the real source IP, the real sender address and the consistency 
between the real address and the displayed sender address. Since the displayed mailing address can be 
forged, the true information about the recipient is very important and should be considered. This part 
can be obtained from the *.eml file in the electronic logistics data server. 

Content function of e-logistics data: This part includes the e-logistics data title, e-logistics data 
attachment name, e-logistics data attachment suffix and whether e-logistics data include the goods type. 
If the cargo type is included, it is first determined whether the cargo type is long or short, and then 
whether the cargo type is correctly judged by the cargo type, because the sender often uses this method 
in the electronic logistics data. 

The e-logistics data samples can be vectorized based on the e-logistics data feature extraction 
algorithm, and then the e-logistics data clustered to obtain an accurate marking training data set, so 
that the e-logistics data detection algorithm can accurately and efficiently identify the e-logistics data. 

3.1. Improved levenshtein distance 

The edit distance represents the minimum number of times a single character needs to be deleted, 
inserted, or replaced from 𝑠  to 𝑡 . For two strings 𝑎  and 𝑏 , their lengths are |𝑎|  and |𝑏| , their 
Levenshtein Distance, 𝐿𝑎, 𝑏(|𝑎|, |𝑏|), is defined as 

 𝐿a ,௕(|𝑎|, |𝑏|) ⎩⎪⎨
⎪⎧max(𝑖, 𝑗)                                                   if min (𝑖, 𝑗) = 0

min ቐ 𝐿௔ ,௕(𝑖 − 1, 𝑗) + 1𝐿௔ ,௕(𝑖, 𝑗 − 1) + 1 𝐿௔,௕(𝑖 − 1, 𝑗 − 1) + 1൫𝑎௜ ≠ 𝑏௝൯  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (15) 

when 𝑎௜ = 𝑏௝ is 0 or, otherwise, is 1. 𝐿a ,௕(𝑖, 𝑗) is the edit distance between the first 𝑖 characters of 
a and the first 𝑗 characters of 𝑏. The similarity of 𝑎 and 𝑏 can be expressed as 𝑆௔,௕, 

 𝑆௔,௕ = 1 − (𝐿௔ ,௕(|𝑎|, |𝑏|)/max(|𝑎|, |𝑏|)). (16) 
Through this string distance, e-logistics data can be clustered, eliminating the problem of feature 

loss and accurately grouping the e-logistics data. 

3.2. Sample labeling algorithm 

The k-means algorithm [32] is a classical partition-based clustering algorithm. The core idea is 
that all data are clustered around k points in the space, and all clusters will update their center values 
iteratively until the best clustering result is obtained.  

The central idea of the KNN algorithm [33] is that, when the data in the training set and their 
labels are known, input the test data, compare the characteristics of the test data with the corresponding 
characteristics in the training set, and find the first k data that are most similar to the training set. The 
test data category is the most common category of k data. 

The KNN is a theoretically mature classification algorithm. It is an algorithm based on the idea 
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of template matching, which is simple but effective and is still being used today on a number of 
simple problems. However, KNN is quite time-consuming because it is quite computationally 
intensive, so it is necessary to use the feature of k-means, an unsupervised clustering technique that 
does not require the use of training data for learning, to preprocess the data once and reduce the 
complexity of model prediction. 

After the sandbox detects all the sample data, it is divided into recyclable areas and insufficient 
recovery areas. Owing to the high false alarm rate of sandboxes, sandboxes are classified as insufficient 
recovery areas containing normal samples, whereas data classified as recyclable areas contain 
insufficient recovery areas. 

There is a certain amount of similar data in the logistics data server, so it can be effectively 
clustered by a clustering algorithm. The characteristics of these invalid data are displayed in the form 
of string, such as address area and cargo name, so the above string distance is used as the distance of 
the clustering algorithm. A k-means algorithm and a KNN algorithm are used to cluster and reclassify 
the sandbox results. 

The results are defined by the following rules: the first character represents the logistics data type 
judged by the sandbox; “𝑝 ” represents logistics data from non-recyclable logistics waste, and “𝑛 ” 
represents logistics data from recyclable logistics waste. The second character represents the logistics 
data type judged by the algorithm; “𝑝” represents logistics data that are classified as non-recyclable 
logistics waste and “𝑛” represents logistics data that are judged as recyclable logistics waste. The third 
character represents the algorithm used. “1” is the result of the k-means algorithm, and “2” is the result 
of the KNN algorithm. For example, “𝑝𝑝ଵ” means that the logistics data are non-recyclable logistics 
waste, that is classified as non-recyclable logistics waste by the k-means algorithm. To ensure the size 
and reliability of the dataset, the Eqs (17) and (18) are used to obtain the extended dataset. 
Non-recyclable samples in the dataset are calculated as follows: 

 Non-recyclable = 𝑝𝑝ଵ&𝑝𝑝ଶ + 𝑛𝑝ଵ&𝑛𝑝ଶ. (17) 

Recyclable logistics samples in the dataset are calculated as follows: 

 𝑅𝑒𝑐𝑦𝑐𝑙𝑎𝑏𝑙𝑒 = 𝑝𝑛ଵ&𝑝𝑛ଶ + 𝑝𝑛ଵ& 𝑛𝑛ଶ. (18) 
In Eqs (21) and (22), “𝑎 and 𝑏” denote the intersection of 𝑎 and 𝑏, “𝑎 + 𝑏” denotes the union 

of 𝑎 and 𝑏. 

4. Results and discussion 

The experiments in this paper are divided into two parts. In Section 4.2, the validation of the 
proposed IEMD-LSTM method for analyzing logistics waste recycling data is discussed, and in 
Section 4.3, the results of using the predictive model built from the analyzed data in an actual logistics 
waste recycling scheduling application are discussed. 

4.1. Experimental platform and data source 

In this experiment, first real-time logistics data have been collected from the logistics park server 
and supplemented the data from some logistics distribution points and logistics delivery points. Email 
data were collected from January 2021 to December 2021. The experiment used MATLAB 2020a as 
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the neural network framework to build the network. The computer of the simulation platform was an 
Intel Core, i7-7700 @ 4.20 GHz, 8 GB RAM. 

4.2. Experimental result 

In the experiment, the experimental results were evaluated by four parameters, namely the Accuracy 
(𝐴𝑐𝑐), Precision (𝑃), Recall (𝑅) and F1 score (𝐹1). These four parameters are defined as follows: 

 𝐴𝑐𝑐 = ቀ1 −  error  sum ቁ × 100%, (19) 
 𝑃 = ்ು்ುାிು × 100%, (20) 

 𝑅 = ்ು்ುାிಿ × 100%, (21) 

 𝐹1 = ଶ×௉×ோ௉ାோ × 100%. (22) 

In Eq (19), “error” represents the number of samples with wrong classification, and “sum” 
represents the total number of samples. In Eqs (20)–(22), 𝑇௉ is true, represents the amount of waste 
that cannot be recycled; 𝐹௉  and 𝐹ே  are the number of false negatives and false positives; 𝑅 
represents the recall rate , i.e., represents the non-recyclable quantity of waste correctly classified by 
the model; the 𝐹1 score is based on the harmonic average of accuracy and recall to comprehensively 
evaluate the performance of the model. 

The express delivery category is selected in a delivery area in the logistics data, used 50 weeks of 
data extracted in a year for classification, and the recyclable logistics waste was divided into five 
standards. In order to show the superiority of the classification accuracy of the IEMD-LSTM method 
proposed in this paper, it was compared with three popular classification algorithms, RNN [34], Bi-
LSTM [35] and GRU [36]. 

From Figure 2, the classification accuracy of the two LSTM methods is high, and excellent 
compared to the traditional RNN and GRU methods. However, one of them, Bi-LSTM, had the 
problem of a sudden drop in accuracy and did not have the advantage of the IEMD-LSTM proposed 
in this paper with regard to stability. The classification accuracies of the RNN, Bi-LSTM, GRU and 
IEMD-LSTM were 81.82%, 87.88%, 79.8% and 91.92%, respectively. 

As can be seen in the prediction of the global recovery necessity index, the prediction accuracy 
of the four methods slowly deteriorates with the increase in disturbing logistics information, as shown 
in Figure 3. Among them, it is obvious that the stability of Bi-LSTM is worst among the four methods, 
but it has certain advantages in prediction accuracy. From Table 1, it can be seen that the IEMD-LSTM 
proposed in this paper has obvious advantages in prediction accuracy and stability compared to the 
other three methods, which could provide powerful help in improving the success rate and efficiency 
of logistics scrap recycling. It is worth noting that the recovery costs evaluation index of the target data 
is evaluated according to the supervisory judgment of the recovery personnel, which is used as the 
evaluation standard in the experiment. 
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Figure 2. Logistics waste recycling classification results. (a) Results using RNN; (b) 
Results using Bi-LSTM; (c) Results using GRU; (d) Results using IEMD-LSTM.  

Table 1. Evaluation of accuracy of classification results of four methods. 

Method MSE RMSE MAE Std 
RNN 0.15775 0.39718 -6.44e-16 0.40121 
Bi-LSTM 0.13713 0.37032 -0.22915 0.29386 
GRU 0.15264 0.39069 0.039681 0.39262 
IEMD-LSTM 0.10141 0.31845 0.072915 0.18419 
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Figure 3. Data prediction results. 

Figure 4 shows the performance of the IEMD-LSTM when using various activation functions. 
The traditional sigmoid activation function in general provides better accuracy, recall and F1 score in 
LSTM than relu, selu, softmax and softplus activation functions. However, in the case of this paper, 
the softplus activation function in LSTM has better accuracy. Figure 5 shows the performance of the 
EMD-LSTM using Adam, sgd, Nadam, Rmsprop and Adagrad optimizers. The Adam optimizer 
performs better than the other optimizers used in the LSTM. 
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Figure 4. IEMD-LSTM with different activation functions. 
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Figure 5. IEMD-LSTM with different optimizers. 

Through the above analysis, the IEMD-LSTM proposed in this paper has obvious advantages in 
classification accuracy and prediction accuracy can be inferred. Moreover, to better apply the 
method, the performance of the proposed IEMD-LSTM with different activation functions and 
optimizers are compared. The experimental results demonstrate that the soft plus activation function 
combined with the Adam optimizer can achieve satisfactory results. It can improve the efficiency of 
logistics scrap recycling. 

4.3. Waste recycling strategy 

The classification and prediction accuracy of the IEMD-LSTM proposed in this paper on logistics 
waste recycling addresses have already been discussed. Hereafter, what advantages the method 
proposed in this paper has in performing the recycling process will be illustrated through an example 
of logistics waste recycling in a logistics park. 

The logistics park shown in Figure 6 was used in the experiment. A logistics park in Liaoning 
province is chosen, which has 15 major recycling points in its service area. First, the express packaging 
recycling data of the 15 logistics waste recycling points were used in the experiment. The yellow five-
pointed star was the logistics distribution station. The distribution of the 15 recycling points involved 
residential areas, campuses and industrial parks. According the accessibility of the major roads, the 15 
logistics waste collection points are divided into 6 collection areas, which can be considered as the 
recycling vehicles without additional transportation costs for recycling within the zones, and the long-
distance transportation costs will be calculated in case of transfer between the collection areas. Their 
data characteristics were different in different time periods. It is difficult to process such strongly 
nonlinear data with the general data analysis method, Therefore, the method proposed in this paper is 
adopted in the experiment, and the corresponding path planning method is selected to improve the 
logistics waste recovery scheme proposed in this paper. 
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Figure 6. Map of logistics park in the case. 

Two new intelligent swarm optimization algorithms are used, Golden eagle optimizer (GEO) [37] 
and Reptile Search Algorithm (RSA) [38], to find the optimal recycling path in the range and compare 
the speed of finding it with that of the classical PSO algorithm. The results are shown in Figure 7. 

As can be seen in Figure 7, the RSA algorithm has a clear advantage over the other two algorithms 
in terms of path finding efficiency and optimization degree for logistics waste recycling. Of course, 
the path finding effect can be also improved by other improvement algorithms and by introducing 
improvement mechanisms. However, our main research goal was to classify and predict the logistics 
data for the purpose of waste recycling, not to optimize the recycling path, and the advantages of the 
RSA algorithm are given in this paper mainly to provide a complete system of reference for related 
enterprises and logistics parks. 

The valid data for seven days in February, June, August and November were randomly selected 
from the historical data of the 15 logistics waste collection sites in 2021 as the basis for the experiments, 
where the data in June were used to train the model and the rest of the data were used to validate the 
illustration of the cost utilization of the logistics waste collection vehicles operating in the six 
collection areas. In addition to this, it is also compared with other prediction methods to demonstrate 
the positive effect of the proposed IEMD-LSTM in logistics waste recycling. As shown in Figure 8, 
the success rate of recycling using the proposed method in this paper is 100% in the regional recycling 
sites numbered 1, 2, 3 and 5, and the success rate in Regions 4 and 6 is also above 90% and much 
higher than the other three methods, although there are a number of failures. This shows that the 
classification and prediction of logistics data using the method proposed in this paper can provide 
effective support for logistics waste recycling, avoiding the need to traverse all regions to find 
recyclable logistics waste each time. Using the method in this paper not only improves the economy, 
but also reduces the driving distance of recycling vehicles, contributing to green and low carbon goals. 
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Figure 7. Comparison of different algorithms in recycling path optimization efficiency. 

 

Figure 8. Comparison of the recovery success rate of different classification prediction methods. 

The items used in the historical data will be used for costs calculation as the criteria for evaluating 
the costs, as shown in Table 2. Since some of the costs vary over time such as fuel consumption, the 
average is curved and rounded to the nearest whole number to facilitate the calculation, and the 
absolute error between the results of the data processing and the actual data is less than 10%. 
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Table 2. Logistics waste recycling costs. 

Costs items Costs value
Logistics waste recycling 150 USD/t
Logistics waste accumulation -80 USD/day
Fuel consumption of recovery vehicles -1 USD/km
Hours of work for recycling staff -8 USD/h

Table 3. Comparison of the earnings of the optimal recovery strategy based on four methods. 

Method Waste recycling strategy Earnings (USD/week) 
RNN 2→(3)→1→6→5→4 -796 
Bi-LSTM 1→[6]→5→4→3→2 -1410 
GRU (3)→2→1→6→(5)→4 -484 
IEMD-LSTM (2)→3→4→(5)→6→1 -112 

As shown in Table 3, the application gains the optimal recovery strategy planned on the basis of 
the predictive model developed based on the four methods. “(·)” means recycling every two days and 
“[·]” means recycling every three days. The experimental results show that recycling logistics waste 
will not bring profit, but accurate predictions of the stock of logistics waste in the recycling area can 
avoid duplicate paths and reduce the working time of the staff, thus effectively saving costs and 
avoiding the secondary waste caused by the behavior of logistics waste recycling and management 
decision errors. It can be seen that applying the method proposed in this paper to establish a prediction 
model for the amount of logistics waste, and then planning the process of urban logistics waste 
recycling management, is an effective way to reduce logistics waste recycling costs. The effectiveness 
and feasibility of the method in this field are proven. 

5. Conclusions 

The recycling of express packaging plays a vital role in protecting the environment and saving 
resources. Based on the design and construction of logistics waste recycling path scheduling, we 
establish a data-driven courier packaging recycling system and propose an IEMD-LSTM prediction 
model with higher prediction accuracy and better stability. This method is used to conduct modeling 
and simulation research on the relevant logistics data of each node participating in the express recycling 
behavior. It provides a basis for finding the most mileage-saving route for recycling vehicles and a new 
method and idea for solving similar problems, such as making the recycling of express packaging more 
economical in scale. 

In this paper, via collection and processing of the logistics data from the specific distribution 
center network, the output results under different simulation schemes have been comprehensively 
analyzed, and the prediction accuracy, stability, degree of influence and express-package recovery 
distribution have been discussed. Conclusions have been drawn about the probability of express 
package recycling activities, the total amount of recycling and the operating costs and benefits of the 
recycling system under different models, so as to provide valuable suggestions for decision-making 
about express package recycling. However, owing to limited research time, there are still some issues 
in this paper to be improved and perfected. When constructing the IEMD-LSTM model of express 
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packaging recycling, although the analysis of individual dependent variables had a theoretical basis, it 
is still subjective to some extent. It would be beneficial to carry out subsequent research from the 
perspectives of economics, sociology, psychology and so on. It is hoped that future research can expand 
the scope of this investigation and the number of samples, and conduct more-accurate and in-depth 
analysis of the IEMD-LSTM prediction model, in order to make the research results more valuable for 
reference. In addition, the method proposed in this paper can be extended to supply chain networks 
with broader applications [39,40], providing a new method and idea for research related to the accurate 
establishment of complex networks. 

Use of AI tools declaration  

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article. 

Acknowledgments  

This research received funding supported by the Basic Scientific Research Project of Colleges 
and Universities of Education Department of Liaoning Province (grant number LJKMR20221890). 

Conflict of interest 

The authors declare no conflict of interest. 

References 

1. S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput., 9 (1997) ,1735–1780. 
https://doi.org/10.1162/neco.1997.9.8.1735 

2. M. Roondiwala, H. Patel, S. Varma, Predicting stock prices using LSTM, Int. J. Sci. Res., 6 (2017), 
1754–1756. 

3. H. Palangi, L. Deng, Y. Shen, J. Gao, X. He, J. Chen, et al., Deep sentence embedding using long 
short-term memory networks: Analysis and application to information retrieval, IEEE/ACM Trans. 
Audio Speech Lang. Process., 24 (2016), 694–707. https://doi.org/10.1109/TASLP.2016.2520371 

4. H. Palangi, R. Ward, L. Deng, Distributed compressive sensing: A deep learning approach, IEEE 
Trans. Signal Process., 64 (2016), 4504–4518, 2016. https://doi.org/10.1109/TSP.2016.2557301 

5. F. R. McDougall, J. P. Hruska, Report: The use of Life Cycle Inventory tools to support an 
integrated approach to solid waste management, Waste Manage. Res., 18 (2000), 590–594. 
https://doi.org/10.1034/j.1399-3070.2000.00159.x 

6. U. Arena, M. L. Mastellone, F. Perugini, The environmental performance of alternative solid 
waste management options: A life cycle assessment study, Chem. Eng. J., 96 (2003), 207–222. 
https://doi.org/10.1016/j.cej.2003.08.019 

7. J. Bautista, J. Pereira, Modeling the problem of locating collection areas for urban waste 
management: An application to the metropolitan area of Barcelona, Omega, 34 (2006), 617–629. 
https://doi.org/10.1016/j.omega.2005.01.013 



17586 

Mathematical Biosciences and Engineering  Volume 20, Issue 9, 17569–17588. 

8. O. Eriksson, M. C. Reich, B. Frostell, A. Björklund, G. Assefa, J. O. Sundqvist, et al., Municipal 
solid waste management from a systems perspective, J. Cleaner Prod., 13 (2005), 241–252. 
https://doi.org/10.1016/j.jclepro.2004.02.018 

9. K. Polat, S. S. Durduran, Subtractive clustering attribute weighting (SCAW) to discriminate the 
traffic accidents on Konya-Afyonkarahisar highway in Turkey with the help of GIS: A case study, 
Adv. Eng. Software, 42 (2011), 491–500. https://doi.org/10.1016/j.advengsoft.2011.04.001 

10. Y. Sun, M. G. Genton, Adjusted functional boxplots for spatio-temporal data visualization and 
outlier detection, Environmetrics, 23 (2012), 54–64. https://doi.org/10.1002/env.1136 

11. J. M. Chiou, Y. C. Zhang, W. H. Chen, C. W. Chang, A functional data approach to missing value 
imputation and outlier detection for traffic flow data, Transportmetrica B: Transport Dyn., 2 
(2014), 106–129. https://doi.org/10.1080/21680566.2014.892847 

12. P. Jin, S. Parker, J. Fang, B. Ran, C. M. Walton, Freeway recurrent bottleneck identification 
algorithms considering detector data quality issues, J. Transp. Eng., 138 (2012), 1205–1214. 
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000424 

13. R. Deb, A. W. C. Liew, Missing value imputation for the analysis of incomplete traffic accident 
data, Inf. Sci., 339 (2016), 274–289. https://doi.org/10.1016/j.ins.2016.01.018 

14. R. Deb, A. W. C. Liew, Noisy values detection and correction of traffic accident data, Inf. Sci., 
476 (2019), 132–146. https://doi.org/10.1016/j.ins.2018.10.002 

15. R. Mao, Z. Chen, G. Hu, Robust temporal low-rank representation for traffic data recovery via 
fused lasso, IET Intel. Transport Syst., 15 (2021), 175–186. https://doi.org/10.1049/itr2.12010 

16. H. Amazal, M. Kissi, A new big data feature selection approach for text classification, Sci. 
Program., 2021 (2021), 6645345. https://doi.org/10.1155/2021/6645345 

17. D. Di Sarli, C. Gallicchio, A. Micheli, Text classification by untrained sentence embeddings, Intell. 
Artif., 14 (2020), 245–259. https://doi.org/10.3233/IA-200053 

18. P. Mehta, S. Chandra., Robustness and predictive performance of homogeneous ensemble feature 
selec-tion in text classification, Int. J. Inf. Retr. Res., 11 (2021), 75–89. 
https://doi.org/10.4018/IJIRR.2021010104 

19. K. Fiok, W. Karwowski, E. Gutierrez-Franco, M. R. Davahli, M. Wilamowski, T. Ahram, et al., 
Text guide: Improving the quality of long text classification by a text selection method based on 
feature importance, IEEE Access, 9 (2021), 105439–105450. 
https://doi.org/10.1109/ACCESS.2021.3099758 

20. E. Savku, G. W. Weber, A stochastic maximum principle for a markov regime-switching jump-
diffusion model with delay and an application to finance, J. Optim. Theory Appl., 179 (2018), 
696–721. https://doi.org/10.1007/s10957-017-1159-3 

21. S. Kuter, Z. Akyurek, G. W. Weber, Retrieval of fractional snow covered area from MODIS data 
by multivariate adaptive regression splines, Remote Sens. Environ., 205 (2018), 236–252. 
https://doi.org/10.1016/j.rse.2017.11.021 

22. A. Özmen, E. Kropat, G. W. Weber, Robust optimization in spline regression models for multi-
model regulatory networks under polyhedral uncertainty, Optimization, 66 (2017), 2135–2155. 
https://doi.org/10.1080/02331934.2016.1209672 

23. Ö. N. Onak, Y. S. Dogrusoz, G. W. Weber, Evaluation of multivariate adaptive non-parametric 
reduced-order model for solving the inverse electrocardiography problem: A simulation study, 
Med. Biol. Eng. Comput., 57 (2019), 967–993. https://doi.org/10.1007/s11517-018-1934-9 



17587 

Mathematical Biosciences and Engineering  Volume 20, Issue 9, 17569–17588. 

24. A. Cevik, G. W. Weber, B. M. Eyuboglu, K. K. Oguz, Voxel-MARS: A method for early detection 
of Alzheimer’s disease by classification of structural brain MRI, Ann. Oper. Res., 258 (2017), 31–
57. https://doi.org/10.1007/s10479-017-2405-7 

25. B. Kalaycı, A. Özmen, G. W. Weber, Mutual relevance of investor sentiment and finance by 
modeling coupled stochastic systems with MARS, Ann. Oper. Res., 295 (2020), 183–206. 
https://doi.org/10.1007/s10479-020-03757-8 

26. P. Taylan, F. Yerlikaya-zkurt, B. Bilgi Uak, G. W. Weber, A new outlier detection method based 
on convex optimization: Application to diagnosis of Parkinson’s disease, J. Appl. Stat., 48 (2021), 
2421–2440. https://doi.org/10.1080/02664763.2020.1864815 

27. R. Lotf, Z. Yadegari, S. H. Hosseini, A. H. Khameneh, E. B. Tirkolaee, G. W. Weber, A robust 
time-cost-quality-energy-environment trade-off with resource-constrained in project management: 
a case study for a bridge construction project, J. Ind. Manage. Optim., 18 (2020), 375–396. 
http://doi.org/10.3934/jimo.2020158 

28. S. Özöğür-Akyüz, B. C. Otar, P. K. Atas, Ensemble cluster pruning via convex-concave 
programming, Comput. Intell., 36 (2020), 297–319. https://doi.org/10.1111/coin.12267 

29. E. B. Tirkolaee, A. Goli, S. Mirjalili, Circular economy application in designing sustainable 
medical waste management systems, Environ. Sci. Pollut. Res. Int., 29 (2022), 79667–79668. 
https://doi.org/10.1007/s11356-022-20740-x 

30. R. Lotfi, K. Kheiri, A. Sadeghi, E. Babaee Tirkolaee, An extended robust mathematical model to 
project the course of COVID-19 epidemic in Iran, Ann. Oper. Res., 2022 (2022), 1–25. 
https://doi.org/10.1007/s10479-021-04490-6 

31. M. Khalili, M. Karamouzian, N. Nasiri, S. Javadi, H. Sharifi, Epidemiological characteristics of 
COVID-19: A systematic review and meta-analysis, Epidemiol. Infect., 148 (2020), e130. 
https://doi.org/10.1017/S0950268820001430 

32. P. Wang, X. Chen, X. Zhang, Research on location of logistics distribution center based on k-
means clustering algorithm, Secur. Commun. Netw., 2022 (2022), 2546429. 
https://doi.org/10.1155/2022/2546429 

33. R. Bobbili, V. Madhu, A machine learning model for failure of perforated plates under impact, 
Mech. Based Des. Struct. Mach., 50 (2022), 2582–2590. 
https://doi.org/10.1080/15397734.2020.1763184 

34. C. Li, Construction of the reverse resource recovery system of e-waste based on DLRNN, Comput. 
Intell. Neurosci., 2021 (2021), 2143235. https://doi.org/10.1155/2021/2143235 

35. M. K. Lim, Y. Li, X. Song, Exploring customer satisfaction in cold chain logistics using a text 
mining approach, Ind. Manage. Data. Syst., 121 (2021), 2426–2449. 
https://doi.org/10.1108/IMDS-05-2021-0283 

36. K. Cao, A machine learning-based approach to railway logistics transport path optimization, Math. 
Probl. Eng., 2022 (2022), 1691215. https://doi.org/10.1155/2022/1691215 

37. A. Mohammadi-Balani, M. D. Nayeri, A. Azar, M. Taghizadeh-Yazdi, Golden eagle optimizer: 
A nature-inspired metaheuristic algorithm, Comput. Ind. Eng., 152 (2021), 107050. 
https://doi.org/10.1016/j.cie.2020.107050 

38. L. Abualigah, M. Abd Elaziz, P. Sumari, Z. W. Geem, A. H. Gandomi, Reptile Search Algorithm 
(RSA): A nature-inspired meta-heuristic optimizer, Expert Syst. Appl., 191 (2022), 116158. 
https://doi.org/10.1016/j.eswa.2021.116158 



17588 

Mathematical Biosciences and Engineering  Volume 20, Issue 9, 17569–17588. 

39. J. W. Wang, W. H. Ip, R. R. Muddada, J. L. Huang, W. J. Zhang, On Petri net implementation of 
proactive resilient holistic supply chain networks, Int. J. Adv. Manuf. Technol., 69 (2013), 427–
437. https://doi.org/10.1007/s00170-013-5022-x 

40. J. Wang, R. Dou, R. R. Muddada, W. Zhang, Management of a holistic supply chain network for 
proactive resilience: Theory and case study, Comput. Ind. Eng., 125 (2018), 668–677. 
https://doi.org/10.1016/j.cie.2017.12.021 

©2023 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


