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Abstract: The spine is one of the most important structures in the human body, serving to support the 
body, organs, protect nerves, etc. Medical image segmentation for the spine can help doctors in their 
clinical practice for rapid decision making, surgery planning, skeletal health diagnosis, etc. The current 
difficulty is mainly the poor segmentation accuracy of skeletal Magnetic Resonance Imaging (MRI) 
images. To address the problem, we propose a spine MRI image segmentation method, Atrous Spatial 
Pyramid Pooling (ASPP)-U-shaped network (UNet), which combines an ASPP structure with a U-Net 
network. This approach improved the network feature extraction by introducing an ASPP structure into 
the U-Net network down-sampling structure. The medical image segmentation models are trained and 
tested on publicly available datasets and obtained the Dice coefficient and Mean Intersection over 
Union coefficients with 0.866 and 0.755, respectively. The experimental results show that ASPP-UNet 
has higher accuracy for spine MRI image segmentation compared with other mainstream networks. 
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1. Introduction 

The spine is composed of 26 vertebrae, including 7 cervical, 12 thoracic, 5 lumbar, 1 sacrum and 1 
coccyx. Under certain predisposing factors and the accelerated pace of life, specific groups of people 
are prone to spinal joint misalignment, disc herniation and osteophytes [1–3]. Computed Tomography 
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(CT) and Magnetic Resonance Imaging (MRI) are frequently used for the diagnosis and preoperative 
examination of various diseases in the clinic. For examinations of the spine, CT has the advantages of 
high sensitivity, fast imaging and low cost. Because CT has a certain amount of radiation, MRI can be 
used instead of CT when examining patients such as pregnant women. There are few studies on spinal 
MRI image segmentation compared with CT [4,5]. Medical image segmentation technology can be 
widely used in the medical field, such as focus segmentation: the focus’s shape, size and location can 
be identified and quantified through the segmentation of medical images. Organ segmentation: 
Medical image segmentation can be used to segment organs such as livers, hearts and lungs. This is 
useful for medical procedures such as surgical planning and cancer treatment. Medical image 
segmentation technology can improve the efficiency of diagnosis and treatment. Segmentation of 
spinal images can improve the efficiency of diagnosis and treatment of spinal related diseases, and lay 
the foundation for remote diagnosis, surgical rehearsal, organ printing and cloud-based teaching. 

With the development of medical image segmentation, the spine in MRI images can be segmented out, 
and doctors can more easily and quickly grasp the patient’s spine. Early MRI image segmentation was often 
based on a priori knowledge and traditional segmentation techniques. The image segmentation results were 
derived using morphological techniques and watershed algorithms [6–8]. Morphological techniques and 
watershed algorithms are relatively basic segmentation algorithms, which are more suitable for relatively 
simple and low-featured image segmentation. The Watershed algorithm first transforms the image into a 
gradient map and uses the concept of contour lines to find a more suitable “height”, which eventually 
completes the image segmentation operation. In some of the split tasks, this algorithm has the problems of 
low accuracy and poor generalization ability. Currently, some researchers have combined traditional 
algorithms and deep learning algorithms to solve medical image segmentation problems [8], However, the 
method still has some problems such as poor segmentation accuracy. 

With the development of artificial intelligence, many machine learning and deep learning 
methods are used in spine image segmentation, such as U-Net [9] and Fully Convolutional Networks 
(FCN) [10]. Both these algorithms are proposed after CNN and take advantage of the weight sharing 
and low parametric number of convolutions to solve the problem of poor segmentation accuracy of 
traditional image segmentation tasks to some extent. In the field of medical image segmentation, 
the U-Net network is widely used and improved by many groups [11–15]. The U-Net network 
structure is symmetrical, and the segmentation effect is greatly improved compared with the 
traditional segmentation algorithm. In the subsequent image segmentation field, many networks are 
largely influenced by U-Net and FCN [16,17]. After U-Net was proposed, DeepLab series networks, 
nnU-Net networks [18] and SegNet [19] networks were proposed successively, and the segmentation 
accuracy was continuously improved. In the DeepLab series, the ASPP structure in DeepLabV3 [20] was 
proposed and first parallels different ratios of Dilated convolution and normal convolution (1 × 1). Then, 
it restores the data to the original size by splicing operation and normal convolution (1 × 1), and 
increasing the number of a few parameters while expanding the perceptual field. 

In the field of medical image segmentation, the existing models may have some problems such 
as low segmentation accuracy or insufficient detail. We attempted to solve the above problem by 
adding an ASPP module to the U-Net network. Therefore, we proposed a medical image segmentation 
model named ASPP-UNet, which integrates multiple ASPP modules into the down-sampling process 
of the U-Net network. We believe that it is very important to improve the receptive field of medical 
image segmentation networks, and the ASPP module has a very significant advantage in this aspect. 
Compared with the traditional U-Net network, the ASPP-UNet model adds fewer parameters, but has 
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a larger sensitivity field when extracting features, which can improve the accuracy of image 
segmentation. Our ASPP-UNet model not only increases the number of parameters, but can also 
significantly improve the accuracy of image segmentation, which is a great improvement compared 
with the traditional U-Net network. Compared with the DeepLabV3 network, our model has a larger 
drop in parameters with the same accuracy. Although the ASPP-UNet network is an obvious 
improvement, it also has some limitations in terms of accuracy improvement compared to the current 
mainstream segmentation networks. However, compared with the mainstream medical image 
segmentation network nnU-Net, our model also has some advantages. This study provides a new idea 
and solution for the algorithm design in the field of medical image segmentation. 

2. Materials and methods 

2.1. Dataset 

The dataset was obtained from the second China Image and Graphics Society’s (CIGS) Image 
and Graphics Technology Challenge, with 172 MRI data of the spine with annotation, Pang et al. used 
hybrid supervised learning to complete the task of spinal MRI image segmentation in this dataset, and 
achieved good segmentation results [21,22]. At present, the age, gender, disease and other 
information of the subjects corresponding to the 172 MRI image data is not known. The website 
is https://www.spinesegmentation-challenge.com. In this paper, the size of spinal MRI images 
using the publicly available data set is inconsistent, as shown in Table 1. Since most of the data 
size is 12 × 880 × 880, the size of all MRI images is unified to 12 × 880 × 880. As shown in Figure 1(a), 
spine MRI image segmentation tasks were performed on eight targets in this work, including sacral S, 
lumbar L1–L5 and thoracic T11 and T12, while thoracic T9 and T10 in some data was ignored. 

Table 1. Original data size of spinal MRI images in data set. 

Shapes number 

12, 880, 880 126 

15, 880, 880 32 

12, 1008, 1008 4 

12, 512, 512 3 

15, 960, 960 2 

12, 864, 864 2 

15, 896, 896 1 

12, 960, 960 1 

12, 1024, 1024 1 

In order to reduce the amount of computation without degrading the accuracy, we removed the left and 
right full zero backgrounds of the data and labels. As shown in Figure 1(b) and (c), the data size is unified to 
12 × 464 × 880. For this operation, we and Huang use the same dataset and data processing methods [23]. 
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Figure 1. Schematic diagram of spine data processing and labeling. (a) is the label display 
after deleting part of the background, in which there are 9 labels, “BG” represents the 
background, “S” and “L” represent the sacrum and lumbar spine. (b) is the original data in 
the data set. (c) is the date with deleting some background. 

2.2. ASPP module 

In 2018, Chen et al. [20] used the atrous spatial pyramidal pooling module with holes (ASPP) and 
encoding-decoding structure for semantic segmentation. Low-level features for semantic segmentation of 
images are obtained by extracting network features from different classification networks. After normal 
convolution, ASPP is used to extend the width of the network and expand the field of perception by 
combining different ratios of dilated convolution and global pooling, etc. Furthermore, this operation will 
reduce the computation cost and allows the transforming of low-level features into high-level features. 
Using up-sampling such as bilinear interpolation, the size of high-level features is reduced to be the same 
as the size of low-level features. In the encoding and decoding process, the low-level features are combined 
with the up-sampled high-level features, and then the features are restored to the original image size using 
the up-sampling operation. During the segmentation process, the low-level features help the network to 
improve the segmentation details, and the high-level features help the network to improve the accuracy of 
the segmentation. In the subsequent semantic segmentation, many networks use the ASPP module [23,24]. 

Our work is inspired by the DeepLabV3 network, using the ASPP module shown in Figure 2 in the 
article. The speed of convergence and nonlinearity of the module is improved by using three dilated 
convolutions (the ratio of null convolutions is 6, 12 and 18), a 1 × 1 normal convolution and global average 
pooling in parallel. Batch Normalization (BN) and ReLU activation functions are added after the normal or 
dilated convolution. The parallel networks are stitched together by Concat. Normal convolution (convolution 
kernel is 1 × 1), BN and ReLU are used to ensure that the output image size is the same as the input 
image size. 

ASPP is stitched together by five parallel lines, among which three lines use atrous convolution with 
different ratios. Atrous convolution and ordinary convolution have the same number of parameters, but they 
have obvious advantages in the receptive field. This is the fundamental reason why the ASPP module has 
great advantages in expanding the receptive field, and why we choose ASPP and U-Net networks to combine. 
The experiment proves that our choice is reasonable in the direction of spinal MRI image segmentation. 

The DeepLabV3 network is typically divided into three steps using a different encoder to extract 
features. The ASPP module increases the sensitivity field, and then linear interpolation completes the 
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up-sampling. In contrast, the ASPP-UNet network is a little different. First, during the down-sampling 
process, we used the ASPP module several times to make the network have a larger receptive field. In 
addition, ASPP-UNet used the same jump join structure as U-Net between up-sampling and down-
sampling, allowing more segmentation details to be preserved. 

 

Figure 2. Schematic diagram of ASPP network. “BN” represents Batch Normalization; 
“Conv” represents normal convolution, and the subsequent numbers represent the size of 
the convolution kernel. “MConv” represents the dilated convolution, the subsequent 
number represents the size of the dilated convolution kernel and “rate” represents the ratio 
of dilated convolution. “Adaptive AVGPool” represents the global average pooling. 
“Bilinear Interpolate” represents bilinear interpolation. 

2.3. DC module 

In order to better extract high-level features for medical image segmentation, the ASPP module 
is added to the U-Net network down-sampling process for feature extraction. As shown in Figure 3, 
we designed the Double Convolution (DC) module and used it for the down-sampling process of the 
network. The major structure of the module is the normal convolution (convolution kernel size is 3 × 3), 
BN and ReLU and repeated twice, which is used to improve the extraction of high-level features from 
the network while expanding the network perceptual field. 
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Figure 3. DC module. “BN” represents Batch Normalization; “Conv” represents normal 
convolution, and the subsequent numbers represents the size of the convolution kernel. 
“ReLU” represents the ReLU Activation function. 

2.4. Network architecture example 

In 2015, the U-Net network [9] was proposed and widely used in the field of image segmentation. 
Although there are many variations and optimizations for the U-Net network, this network structure is 
still one of the classical image segmentation networks [25–28]. U-Net is named after the shape of its 
network, which is similar to the letter “U”. In the network structure, the structure is symmetrically 
divided into an up-sampling part and a down-sampling part. Three modules are combined into the 
down-sampling part, including two convolution operations, one pooling operation and ReLU. The 
feature size is continuously reduced and high-level features are obtained using multiple down-
sampling parts. In the up-sampling part, the high-level features are reduced to the original image size 
using deconvolution and linear interpolation. The addition of several skip connections between down-
sampling and up-sampling in order to enhance the details of network segmentation and speed up the 
convergence of the network. The U-Net network has many advantages, such as a relatively simple 
network structure, easy training with fewer parameters and easy control of the network size. 

The specific architecture of the network is shown in Figure 4. In the network structure, it can be 
divided into two parts, the left side is the down-sampling part and the right side is the up-sampling 
part. In the down-sampling process, the DC module is first passed once, and then the DC module, 
ASPP module and MaxPool are operated four times in turn. In addition, after each DC module, the 
obtained feature data is transmitted to the up-sampling section to complete the stitching operation. In 
the up-sampling part, after a transpose convolution operation, and then going through Concat, DC and 
TranConv operations three times in turn. Each time, Concat completes the splicing operation with the 
data transmitted by down-sampling. Finally, after going through the DC module once, the network 
structure of the whole module is completed. 

2.5. Loss function 

The training objective of the network contains a loss function, and the cross-entropy loss function 
is defined below. 

 𝐿𝑜𝑠𝑠  ∑ 𝑦 log 𝑦   (1) 
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Here, 𝑦  represents the value of the pixel in the real label, and 𝑦  represents the value of 
the predicted result pixel, 𝑛 represents the number of categories of labels (𝑛 = 9) and 𝑢 represents 
the number of pixel points in an image. 

 

Figure 4. Overall network architecture. “DC” represents the DC module, and “MaxPool” 
represents maximum pooling. “Concat” represents splicing operation, “TranConv” 
represents transposition convolution operation. “ASPP” represents the ASPP module, and 
the dotted line represents the data transfer operation. 

2.6. Evaluation indicators 

The main evaluation metrics used in this paper are Dice coefficient (DSC) and Mean Intersection 
over Union (MIoU), and the definitions of two rating metrics are as follows. 

 𝐷𝑆𝐶 ∑ 2
∩

  (2) 

 𝑀𝐼𝑜𝑈  ∑
∩

∪
  (3) 

where 𝑛 represents the number of label types for image segmentation, and 𝑉 _  is the set of pixel 
points contained in the 𝑖-th real label, and 𝑉 _  is the set of pixel points predicted by the 𝑖-th model. 

2.7. Details about some parameters 

In this paper, the pytorch deep learning framework is used for training on a Tesla K80 machine 
with 11G video memory. The model optimization function is the stochastic gradient descent optimizer 
(SGD). The activation function is ReLU, the Batch Size is 2 and the training batch is 50. The learning 
rate is 0.01, and the learning rate variation strategy formula is shown below. 
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 𝐼𝑟 𝐼𝑟 0.99  (4) 

where 𝐼𝑟   is the learning rate of the 𝑖 th training batch, and 𝐼𝑟   is the learning rate of the i-1st 
training batch. 

2.8. Network settings 

We used a total of 6 medical image segmentation methods or network models for comparison. 
The specific configuration of segmentation methods is as follows: 
·U-Net-2D: After converting both 3D MRI images and labels into multiple 2D images, the U-Net 

network is used to train images and labels and its scale is consistent with ASPP-UNet. 
·DeepLabV3:The MRI dataset above is trained using the classical DeepLabV3 network, where the 

network size and parameters were not changed. Resnet101 network was selected as the feature 
extraction network for down-sampling. 
·ASPP-UNet: The specific structure and parameters of the network have been described above. 
·U-Net-3D: In order to construct 3D U-Net networks, the convolution and pooling of 2D U-Net 

networks are replaced by 3D convolution and 3D pooling. 2D U-Net networks and 3D U-Net networks 
have the same size and hyperparameters. 
·nnU-Net-2D: It is a medical image segmentation method based on the U-Net network, which can 

automatically perform data pre-processing, training and post-processing. In addition, the network is 
trained with 1000 epochs. 
·SegNet: The structure of the SegNet network we use has not changed. The size of the network is 

equivalent to that of ASPP-UNet and some of its super parameters are also consistent, such as batch 
size, Learning rate, etc.  

To better evaluate the performance of the six network models, the network models are cross-
validated fivefold on the training set data. Each segmentation method yields five models and 
segmentation results. We evaluated the network model using DSC and MIoU evaluation indicators, 
and all results were derived from the average of five cross-validations in order to reduce error. 

2.9. Ablation experiment 

Although the current ASPP-UNet network is designed, we conducted ablation experiments at the 
beginning of completion, mainly focusing on the location and number of ASPP modules. With other 
settings exactly the same, changing only the number and position of ASPP modules, we get DSC and 
MIoU for different ablation experimental models. 

In Figure 4, the ASPP-UNet network has four ASPP modules, which we name ASPP1, ASPP2, 
ASPP3 and ASPP4. Ablation experiments designed for the presence or absence of four ASPPs are 
shown in Table 2. We first designed four sets of experiments to observe the DSC and MIoU accuracy 
of spinal MRI image segmentation present in only one ASPP module at four locations. Through the 
results, it can be found that the segmentation accuracy of ASPP increases somewhat with the deepening 
of position, and in the first four experiments, only ASPP4 has the highest segmentation accuracy. Moreover, 
we designed experiments using multiple ASPP modules (experiments 5, 6 and 7 in Table 2), and finally 
experiment 7 used the segmentation results of four ASPP modules with the best segmentation accuracy 
among all experiments. 
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Table 2. DSC and MIoU for ablation experiments for ASPP-UNet networks. 

Index ASPP1 ASPP2 ASPP3 ASPP4 MIoU (%) DSC (%) 

1 √ × × × 68.12 ± 1.12 80.18 ± 3.15 

2 × √ × × 69.51 ± 2.57 81.31 ± 2.18 

3 × × √ × 70.41 ± 2.16 81.92 ± 2.16 

4 × × × √ 71.31 ± 2.65 82.60 ± 1.79 

5 × × √ √ 72.34 ± 2.28 83.90 ± 2.79 

6 × √ √ √ 74.34 ± 2.26 82.94 ± 2.15 

7 √ √ √ √ 75.49 ± 1.98 86.60 ± 2.19 

Finally, the ASPP-UNet network structure used in this paper is the structure of Experiment 7 in 
Table 2. The results show that using more ASPP modules or using ASPP in the deep network structure 
may improve the segmentation accuracy. 

2.10. Generalization testing 

To test the generalization ability of the model, we add noise to the spine MRI image data in the 
test set and use the trained model to infer the data with added noise. The calculation formula for adding 
noise is as follows. 

 𝐺𝑟𝑎𝑦 𝐺𝑟𝑎𝑦 𝑘 ∗ 𝑍  (5) 

where 𝐺𝑟𝑎𝑦  and 𝐺𝑟𝑎𝑦  are the grayscale values of each pixel point in the spine MRI image before 
and after adding noise, respectively; 𝑘 is the controllable coefficient of the degree of adding noise; 𝑍 is 
a random number that conforms to the standard normal distribution, and the 𝑍 corresponding to each pixel 
point needs to be regenerated randomly. Also, to ensure that 𝐺𝑟𝑎𝑦  is an integer between 0 and 255, we 
restrict 𝐺𝑟𝑎𝑦  accordingly to meet the requirements as an image. 

After processing by adding noise, the boundary between the background and the label in the spine 
MRI image will be gradually blurred, which requires higher segmentation generalization ability. In 
Figure 5, we show the preprocessed MRI image, labels and prediction results of an image in the test 
set, and will add noise to the MRI image and make predictions. We add noise processing to one image 
in the test set with the values of 10, 30, 50, 70 and 90 in Eq 5 to generate five images with added noise, 
and after inference by the trained model, the results shown in Figure 6 are obtained. From Figure 6, it 
can be concluded that the inference ability of the model decreases continuously with the increase, and 
the generalization ability of the model is relatively limited. When it is greater than 30, the inference 
ability of the model decreases rapidly. 

It can be found that the generalization ability of the model is relatively average. After discussion, 
we think there may be several reasons. First, the model was trained without adding noise, and the 
existence of a certain consistency of the data limited the generalization ability of the model. Second, 
the deep learning models of medical images generally have a certain problem of poor generalization 
ability. After that, we will start a study on noisy training of spine MRI images, and adding noise to the 
images of the training set may be helpful for the generalization ability. 
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Figure 5. MRI images, labels and prediction results that increase the generalization ability 
of noise test models. 

 

Figure 6. Increase MRI images and predictions with varying degrees of noise (The first 
row is an MRI image of the spine, the upper 𝑘 is the controllable coefficient for increasing 
noise in Equation 5, and the second row corresponds to the prediction result). 

3. Results 

In order to compare our model with other methods, among 172 MRI images, we randomly divided 
the data set into a training set and a test set in a ratio of 4:1, with 138 pieces of data in the training set 
and 34 pieces of data in the test set. The training and testing of the model were completed 5 times 
cross-validation. In the training process of each fold, there is no overlap between the training set and 
the test set. 

We compare the ASPP-UNet method with other classical methods, including U-Net-2D, 
DeepLabV3, SegNet, U-Net-3D and nnU-Net-2D. As shown in Figure 7, by predicting the same three 
subjects’ MRI images, our algorithm is compared with the other five mainstream algorithms in terms 
of the details of image segmentation. In the collection of tags “BG”, there is a small chance that our 
method incorrectly splits “BG” into other tags. For example, in the first row of Figure 7, some “BG” 
pixels in the U-Net-3D and nnU-Net methods are incorrectly divided into “L3” and “L4”. In the set of 
labels “L1–L5”, “T11–12” and “S”, our method is unlikely to misclassify one label as another. For 
example, in the second row of Figure 7, the “L2” pixels of U-Net-3D and U-Net-2D methods are 
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incorrectly divided into “L1” pixels, and a small number of “L3” pixels in U-Net-2D are divided into 
“L2” pixels. In the third row of Figure 5, all the methods split better, but ours has fewer “BG” pixels 
divided into labels. The SegNet model has more “BG” split into “L3” and L4. At the same time, the 
overall segmentation effect of the SegNet model is poor. 

 

Figure 7. Visualization results between different methods, where each row represents one 
subject MR data and “BG” represents the background. 

As shown in Figure 7, the reason for errors in other segmentation networks may be that the 
receptive field of the network is too small. Although the receptive field can be increased by increasing 
the depth of the network, the amount of computation will be greatly increased at the same time. 

Table 3. Average DSC (%) and MIoU (%) of the vertebrae by each method. 

 Model S L5 L4 L3 L2 L1 T12 T11 Mean 

DSC 

(%) 

U-Net-2D 85.0 ± 1.3 88.5 ± 2.4 87.4 ± 2.3 78.5 ± 4.2 67.5 ± 2.1 75.8 ± 3.2 78.4 ± 1.5 78.4 ± 4.2 79.94 ± 2.65 

SegNet 84.2 ± 1.9 87.0 ± 1.9 83.2 ± 2.2 81.6 ± 2.3 70.5 ± 1.9 77.1 ± 1.2 77.9 ± 1.5 78.3 ± 3.1 79.98 ± 2.01 

DeepLabV3 87.5 ± 2.1 86.5 ± 2.2 85.0 ± 2.5 80.5 ± 3.2 75.3 ± 3.5 83.4 ± 1.5 81.5 ± 1.2 84.0 ± 3.1 82.96 ± 2.41 

U-Net-3D 86.3 ± 1.5 89.5 ± 2.1 88.5 ± 3.2 82.8 ± 2.8 77.5 ± 2.1 85.7 ± 2.6 83.4 ± 2.5 84.8 ± 2.1 84.81 ± 2.36 

nnU-Net-2D 85.2 ± 1.2 85.5 ± 3.2 86.7 ± 2.4 86.4 ± 2.1 84.4 ± 1.9 81.8 ± 1.5 83.7 ± 1.6 89.0 ± 2.4 85.34 ± 2.04 

ours 88.4 ± 1.5 91.0 ± 2.5 89.1 ± 2.4 87.5 ± 2.5 84.0 ± 2.3 82.0 ± 2.1 82.7 ± 1.4 88.1 ± 2.8 86.60 ± 2.19 

U-Net-2D 73.5 ± 0.9 78.3 ± 1.5 76.3 ± 2.9 64.5 ± 1.6 54.2 ± 2.5 60.8 ± 2.8 66.2 ± 3.4 64.9 ± 2.5 67.34 ± 2.26 

SegNet 74.7 ± 1.5 78.5 ± 1.7 75.6 ± 1.4 66.7 ± 1.9 52.0 ± 2.9 61.7 ± 1.4 66.0 ± 3.9 62.9 ± 1.8 67.26 ± 2.06 

DeepLabV3 79.2 ± 0.5 76.1 ± 2.3 74.1 ± 2.3 68.5 ± 2.1 64.2 ± 3.4 71.4 ± 2.6 68.1 ± 2.9 73.1 ± 1.8 71.84 ± 2.24 

U-Net-3D 78.2 ± 0.8 81.5 ± 2.1 81.4 ± 2.5 71.4 ± 1.2 64.3 ± 2.1 74.8 ± 2.7 73.4 ± 2.7 74.4 ± 2.5 74.93 ± 2.08 

nnU-Net-2D 78.2 ± 1.2 79.4 ± 1.7 75.9 ± 1.5 77.5 ± 0.7 72.3 ± 4.5 68.9 ± 1.8 68.4 ± 2.4 78.7 ± 1.6 74.83 ± 1.93 

ours 79.1 ± 0.9 80.8 ± 1.2 78.0 ± 1.9 78.3 ± 1.4 72.4 ± 3.4 68.3 ± 2.6 69.1 ± 3.0 77.9 ± 1.4 75.49 ± 1.98 
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In addition, we also obtained the DSC and MIoU scores of each method, as shown in Table 3. The 
DSC and MIoU of the ASPP-UNet network were respectively 86.6% and 75.5%. Compared with U-
Net-2D, SegNet, DeepLabV3, U-Net-3D and nnU-Net-2D, ASPP-UNet leads in DSC evaluation 
metrics by 6.66, 6.62, 3.64, 1.79 and 1.26%, respectively, and MIoU evaluation metrics by 8.15, 8.23, 
3.65, 0.56 and 0.66%, respectively. On the eight spinal skeletal labels, the ASPP-UNet network leads 
by four DSC evaluation metrics, S, L5, L4 and L3, and three MIoU evaluation metrics, S, L3 and L2. 
The numbers after “±” in Table 3 represent standard deviations. 

We compared our model with other models and calculated the number of parameters and inference 
time of the model. U-Net-2D, SegNet, U-Net-3D and our model use the same network scale. The 
model network depth is 4, and the number of channels is 64, 128, 256 and 512. DeepLabV3 uses 
ResNet101 as the feature extraction network, while nnU-Net uses a classical model setup. As shown 
in Table 4, the number of parameters and inference time in the ASPP-Unet network is relatively small, 
only slightly higher than that in the U-Net-2D network. 

Table 4. Parameters and inference schedules for different networks. 

Model Params Inference time(s/image) 

U-Net-2D 15.08M 0.163s 

SegNet 15.21M 0.170s 

DeepLabV3 46.9M 0.198s 

U-Net-3D 31.03M 0.221s 

nnU-Net-2D 60.5M 0.292s 

ours 22.06M 0.171s 

In order to better illustrate the stability of the model, the Loss curve of the ASPP-UNet network 
and other networks in the training and testing process is given, as shown in Figures 8–9. We trained 
all models with 50 epochs, among which the nnU-Net network trained with 1000 epochs, and sampled 
Loss every 20 epochs. In Figure 8, we can see that the ASPP-UNet loss converges well and the curve 
flattens out after epoch 15. The curve is basically stable at epoch 35. When compared with other models, 
the ASPP-UNet network converges faster. In Figure 9, the difference between all models is not very 
big. In this work, there are only 42 cases of images in the test set, and there is slight Loss fluctuation 
in the test process. More spinal MRI data will be added to training and testing models in the future. 

 

Figure 8. Loss curves of each model during training. 
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Figure 9. Loss curves of each model during testing. 

4. Discussion 

In this paper, we propose a segmentation method called ASPP-UNet for spine MRI images. This 
method combines U-Net and ASPP modules in DeepLabV3 and adds several ASPP modules to the part 
of the U-Net network down-sampled. It expands the model perceptual field without substantially 
increasing the number of model parameters. In addition, the structure of the up-sampling part of ASPP-
UNet is exactly the same as that of U-Net. 

Our main innovation in this work lies in the fusion of ASPP and U-Net networks, which has led 
to improved segmentation accuracy compared to the traditional U-Net network. Importantly, this 
improvement was achieved without significantly increasing the number of network parameters. 
Additionally, our approach exhibits outstanding performance in capturing segmentation details 
compared to some mainstream networks. 

In future work, we will attach importance to the innovative nature of the article. By building upon 
the current research, we strive to make significant contributions and push the boundaries of innovation 
in this area. 

Limitations of this study include the small size of the dataset used in our experiments. Although 
we carefully curated the dataset to ensure its relevance and diversity, a larger dataset would provide a 
more comprehensive evaluation of our proposed approach. Furthermore, we acknowledge that we did 
not compare our approach with a wider range of existing methods, which could have provided a more 
thorough analysis of its strengths and weaknesses. 

Future work could focus on expanding the dataset used in this study to include more diverse 
examples and improving the evaluation by comparing our approach with a wider range of state-of-the-
art methods. Additionally, further investigations into the underlying mechanisms of our proposed 
approach could help to provide a more nuanced understanding of its performance and potential 
limitations. With the continuous progress of technology and the accumulation of data, we believe that 
the performance and efficiency of medical image segmentation will be greatly improved. 
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