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Abstract: The accurate visualization and assessment of the complex cardiac and pulmonary structures
in 3D is critical for the diagnosis and treatment of cardiovascular and respiratory disorders. Conventional
3D cardiac magnetic resonance imaging (MRI) techniques suffer from long acquisition times, motion
artifacts, and limited spatiotemporal resolution. This study proposes a novel time-resolved 3D cardiopul-
monary MRI reconstruction method based on spatial transformer networks (STNs) to reconstruct the
3D cardiopulmonary MRI acquired using 3D center-out radial ultra-short echo time (UTE) sequences.
The proposed reconstruction method employed an STN-based deep learning framework, which used
a combination of data-processing, grid generator, and sampler. The reconstructed 3D images were
compared against the start-of-the-art time-resolved reconstruction method. The results showed that
the proposed time-resolved 3D cardiopulmonary MRI reconstruction using STNs offers a robust and
efficient approach to obtain high-quality images. This method effectively overcomes the limitations of
conventional 3D cardiac MRI techniques and has the potential to improve the diagnosis and treatment
planning of cardiopulmonary disorders.
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1. Introduction

Cardiovascular and respiratory diseases are leading causes of morbidity and mortality world-
wide [1–3]. Accurate and timely diagnosis is crucial for the effective management and treatment
of these disorders, necessitating the development of advanced diagnostic tools. MRI has emerged as
a powerful non-invasive tool for the assessment of cardiac and pulmonary structures [4–6], allowing
for a comprehensive evaluation of anatomy [7], function [8], and perfusion [9] in three dimensions
(3D). However, the acquisition of high-quality 3D images remains challenging due to the complex and
dynamic nature of the cardiovascular system, motion artifacts from respiratory and cardiac cycles, and
the inherently long acquisition times associated with MRI.

Conventional 3D cardiac MRI techniques, such as 3D balanced steady-state free precession (bSSFP)
[10] and 3D fast gradient echo (FGRE) [11], are widely used in clinical practice. These techniques
offer improved signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) compared to their 2D
counterparts [12,13]. However, they suffer from several limitations that may compromise their diagnostic
accuracy. First, they are sensitive to motion artifacts due to the long acquisition times, which can lead
to image degradation and impede the detection of subtle anatomical details. Second, these techniques
often exhibit limited spatiotemporal resolution, which may hinder the precise assessment of cardiac and
pulmonary function. Lastly, the breath-hold requirements and scan duration of conventional 3D cardiac
MRI techniques can be challenging for patients, particularly those with compromised respiratory or
cardiac function. Consequently, there is an unmet need for novel 3D cardiopulmonary MRI acquisition
methods and reconstruction methods that overcomes these limitations and provides improved image
quality and diagnostic accuracy.

From the data acquisition perspective, non-Cartesian (such as radial) ultrashort echo time (UTE)
sequences have recently emerged as a tool for imaging the cardiopulmonary system. 3D radial ac-
quisition has emerged as a powerful technique for cardiopulmonary MRI [14–16], offering numerous
advantages in terms of image quality, motion robustness and scan efficiency. 3D radial acquisition has
emerged as a powerful technique for cardiopulmonary MRI, offering numerous advantages in terms of
image quality, motion robustness and scan efficiency. 3D radial acquisition also enables more efficient
sampling of k-space, reducing scan times and increasing patient throughput. Employing the radial
pattern, 3D radial acquisition optimizes k-space sampling efficiency and minimizes the required number
of acquisitions. The non-Cartesian nature of 3D radial acquisition necessitates the development and
optimization of reconstruction algorithms that can efficiently handle radial k-space data. By interleaving
the radial trajectories, we are able to get the time-resolved images, and by binning the radial trajectories
corresponding to different motion state, we are able to get motion-resolved reconstruction. For the UTE
sequence, it enables us to capture the short T2 tissues [17]. The key feature of UTE sequence is its
ability to acquire images with extremely short echo times, typically on the order of microseconds, which
enables the visualization of tissues that are otherwise “invisible” with standard MRI sequences (bSSFP
or FGRE). The 3D UTE sequence also enables the possibility of providing high-resolution isotropic
data, which allows for multi-planar reformatting and improved visualization of complex anatomical
structures [18]. The rapid acquisition of images with 3D non-Cartesian UTE sequence reduces the
sensitivity to motion artifacts [19, 20], which can be particularly beneficial when imaging areas prone to
movement, such as the lungs or joints. This feature results in improved image quality and more reliable
assessment of the underlying pathology.

With respect to reconstruction methods, deep learning techniques, particularly convolutional neural
networks (CNNs) have achieved great success in many aspects [21, 22], and have shown promise in
various medical image processing tasks, including image reconstruction [23, 24], segmentation [25, 26],
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and classification [27, 28]. CNN models have demonstrated the ability to learn complex hierarchical
features and patterns in image data, which has led to significant improvements in the accuracy and
efficiency of medical imaging applications [29]. Specifically, deep learning-based image reconstruc-
tion methods have shown potential in addressing the limitations of conventional MRI techniques by
reconstructing high-quality images from undersampled k-space data, reducing acquisition times, and
improving the robustness to motion artifacts, see for recent example of the work [30, 31] and [32].
Different than the previous work, we propose a time-resolved reconstruction method without replying
on priori available reference image [30], or data binning [32]. In this work, we propose to use spatial
transformer networks (STNs) [33] for the reconstruction of time-resolved MRI. STNs are a class of
deep learning models that are specifically designed to handle spatial transformations. The original STNs
consist of a localization network, a grid generator and a sampler, which together enable the model to
learn and apply spatial transformations to input data and output the data which is manipulated by the
transformation. STN is known to provide improved performance by allowing the model to learn the
optimal spatial transformations for a task and STN is differentiable and hence it can be trained using
standard back-propagation techniques. Furthermore, STNs add robustness to the model by allowing
it to focus on the most relevant parts of the image and ignore the rest, thereby reducing the impact of
background noise or irrelevant details. By incorporating STNs into the MRI reconstruction process, we
can address the challenges posed by motion artifacts and limited spatiotemporal resolution, ultimately
enhancing the diagnostic utility of 3D cardiopulmonary MRI.

In this work, we employ a 3D center-out radial UTE sequence, in combination with a ferumoxytol-
based contrast agent, for the acquisition of cardiopulmonary MRI data. The specific parameters used
in the sequence are elucidated in the data acquisition portion of this paper. Subsequent to the data
acquisition, we develop a method for time-resolved 3D reconstruction of cardiopulmonary MRI data
based on STNs. The algorithm aims to achieve a temporal resolution of approximately 200 milliseconds
and a reconstruction matrix size of 256× 256× 256, providing highly detailed volumetric data over time.
In order to accomplish this, we utilized a time-dependent STN to transform the acquired volumetric data
into a temporal series of reconstructed 3D images. The implementation of the STN was carried out via a
deep CNN, which facilitates complex image transformations. The input volume for this transformation
process can be rendered as either modifiable, to facilitate training, or be fixed, using a static image
obtained from other rapid reconstruction methods. In this investigation, we chose to fix the input image
volume, using the Conjugate Gradient SENSE (CG-SENSE) reconstruction technique to ensure data
consistency. Next, time-dependent forward operators, implemented using a non-uniform fast Fourier
transformation, are applied to the time-resolved reconstruction to generate a set of measurements. These
are then compared to the original measurements collected from the MRI scanner to ascertain the degree
of divergence. This deviation, quantified as a mean-square error, is subsequently used to train the STN,
enabling it to iteratively refine its reconstruction process and improve accuracy. This reconstruction
algorithm operates in a fully unsupervised manner, relying solely on the undersampled k-space data
acquired for each individual subject. Importantly, the training of the network does not necessitate any
fully-sampled ground-truth data, rendering the method adaptable and free from pre-existing biases.

2. Methods

2.1. Background on 3D time-resolved reconstruction

Time-resolved MRI, also known as real-time MRI, aims to capture the temporal evolution of
anatomical structures and physiological processes by acquiring a series of images over time. This
approach enables the visualization and analysis of dynamic events, such as blood flow, cardiac motion,
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and respiratory motion, which can provide valuable insights into the underlying pathophysiology of
various diseases. The main challenges in 3D time-resolved MRI reconstruction are the inherently long
acquisition times, motion artifacts and limited spatiotemporal resolution. These challenges arise from
the need to acquire a large number of k-space data points to achieve high spatial resolution while also
capturing the dynamic changes in the imaged structures. Traditional approaches, such as Cartesian
sampling and breath-holding, can lead to sub-optimal image quality and restricted temporal resolution
due to their sensitivity to motion artifacts and limited efficiency in sampling k-space. To overcome the
challenges in 3D time-resolved MRI reconstruction, various strategies have been proposed, including
novel sampling schemes and advanced reconstruction algorithms.

Mathematically speaking, we model the MRI signal as a function of the underlying spin density,
relaxation times T1,T2 and magnetic field inhomogeneities. In the context of 3D time-resolved MRI,
we consider the signal model as a function of both spatial coordinates (x, y, z) and time i:

S (x, y, z, i) = ρ(x, y, z) · exp (−i/T ∗2) · exp ( jϕ(x, y, z, i)),

where S (x, y, z, i) is the MRI signal, ρ(x, y, z) represents the spin density, T ∗2 is the effective transverse
relaxation time and ϕ(x, y, z, i) denotes the phase term accounting for magnetic field inhomogeneities
and other sources of phase variation. The k-space data can then be formulated using Fourier transform:

K(u, v,w, i) =
$

S (x, y, z, i) · exp (− j2π(ux + vy + wz)) dx dy dz,

where K(u, v,w, i) represents the k-space data, and (u, v,w) are the spatial frequencies corresponding to
the spatial coordinates (x, y, z). In 3D time-resolved MRI, the k-space data is acquired using various
sampling trajectories, such as Cartesian, radial, or spiral, over time.

The goal of 3D time-resolved MRI reconstruction is to estimate the underlying image series I(x, y, z, i)
from the acquired k-space data K(u, v,w, i). The image series can be obtained by applying an inverse
Fourier transform to the k-space data:

I(x, y, z, i) =
$

K(u, v,w, i) · exp ( j2π(ux + vy + wz)) du dv dw.

However, due to the limited spatiotemporal resolution and motion artifacts, the acquired k-space data
is often incomplete or corrupted. In such cases, we usually pose the time-resolved reconstruction as a
minimization problem. A general optimization framework for 3D time-resolved MRI reconstruction
can be written as

I∗ = arg min
I
||A(I) −K||2 + λ · R(I), (2.1)

where I = [I(x, y, z, i)], and K = [K(u, v,w, i)] for all i in the time series, andA(I) represents the forward
imaging model. R(I) is a regularization term that encodes prior knowledge or constraints about the
image series (e.g., sparsity, smoothness, or motion consistency), and λ is a regularization parameter that
balances the trade-off between data fidelity and regularization. Directly solving the above minimization
problem poses a few challenges because the problem is vastly underdetermined and heavily stressing
computing resources as well as memory management and storage. To overcome the challenges, [34]
proposed a compressed representation using multi-scale low-rank matrix factorization for time-resolved
imaging representation, and to use stochastic optimization to reduce computation. This method is
termed as Extreme-MRI.
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2.2. Background on STN

The STN is a differentiable network with spatial transformation capabilities. It consists of three main
components: a localization network, a grid generator, and a sampler. The localization network is a
sub-network that predicts the transformation parameters from the input feature map. The output of the
localization network is a set of parameters that define the transformation matrix. The grid generator uses
the transformation parameters output by the localization network to compute a sampling grid. This grid
is a set of points that correspond to the locations from which the output will be sampled. The sampler is
responsible for interpolating the input at the locations specified by the sampling grid to produce the
output. The interpolation can be performed using various techniques, such as bilinear, nearest-neighbor,
or bicubic interpolation. The sampler is designed to be differentiable, which allows gradients to be
backpropagated through the STN module during training.

2.3. Proposed approach

In this work, we propose a time-resolved 3D cardiopulmonary MRI reconstruction framework using
a modified STN. Instead of using a localization network to output the transformation parameters as
the first step, we choose to use the smoothly filtered multi-channel center k-space data as the first
step. The signal model S (x, y, z, i) is implemented on the MR scanner and the k-space data K(u, v,w, i)
is encoded and obtained directly on the scanner using the receiver coils. The multi-channel center
k-space data is also averaged based on the number of radial interleaves for each image frame in the
time series. The processed multi-channel center k-space data is then fed into a CNN to generate the
time-dependent sampling grids Φi(G). Based on a static image volume, which can be either trainable or
fixed using some simple reconstruction (e.g., CG-SENSE [35]) from all the k-space data, the sampler
produces the time-resolved reconstruction using the time-dependent sampling grids Φi(G). In this work,
we make the static image trainable. For the training of the network, we apply the forward imaging
model on the time-resolved reconstruction and compare the results with the undersampled k-space
measurements. The forward model is realized using non-uniform inverse Fast Fourier Transformation.
The detailed formulas for non-uniform inverse Fast Fourier Transformation can be found in [36]. We
use the torchkbnufft [37] library in Python to implement the operator. The mean-square-error (MSE)
loss in k-space is used for training. The whole framework is illustrated in Figure 1.

In the whole proposed framework, only the CNN parameters in the STN, and the static image volume
(if we make the static image volume trainable) need to be learned based on the minimization criteria
(2.1), where the images I is obtain using the output of the STN. We should note here that we are actually
solving for the motion fields (which are the outputs of the STN) in the framework, rather than the
time-resolved images. This make the whole framework memory-efficient because solving the images in
the time-series will require way more memory as the images contain more details than the motion fields.
We also applied a total variation regularization [38] term on the images during the reconstruction.

The network and optimization was implemented using PyTorch [39]. We use ADAM optimization
[40] with a batch size of one time-frame for the training. The CNN in the STN is implemented using
an eight-layer network. The 3D convolutional layers have 250 features per layer. ReLU activation
function [41] is used for all the convolutional layers. All the experiments in this work were done on a
workstation with with an Intel Xeon CPU at 2.40 GHz and a Tesla A100 80 GB GPU.
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Figure 1. Illustration of the proposed scheme. We adopt the smoothly filtered multi-channel
center k-space data, averaged based on radial interleaves per image frame, as the input into
a CNN to generate time-dependent sampling grids, Φi(G). Utilizing a static image volume,
obtained through INNUFT reconstruction or a trainable alternative, the sampler yields time-
resolved reconstructions based on Φi(G). Training the network involves applying the forward
imaging model to the time-resolved reconstruction, comparing outcomes with undersampled
k-space measurements, and utilizing MSE loss.

The proposed framework offers multiple benefits that make it well-suited for time-resolved MRI recon-
struction. First, the approach is subject-specific, as the training and reconstruction processes are tailored
to each individual subject and rely exclusively on highly undersampled k-space measurements. This unsu-
pervised nature of the scheme renders it particularly advantageous for time-resolved MRI reconstruction,
where obtaining fully-sampled ground truth data for training purposes is infeasible. Second, the proposed
framework demonstrates memory efficiency, as it does not necessitate the storage of all reconstructed image
volumes in the time series. Instead, only a single static image volume and the STN require storage. This
feature enables the high spatiotemporal resolution 3D MRI reconstruction to be performed even with limited
GPU memory resources, further enhancing the practical applicability of the approach.

3. Datasets and evaluation

3.1. Data description and pre-processing

The Institutional Review Board (IRB) at the University of Wisconsin granted approval for all study
procedures and protocols, adhering to the guidelines set forth by the campus Human Research Protection
Program. All study processes were conducted in accordance with the Declaration of Helsinki, including
the acquisition of written informed consent from each participant. A total of seven healthy volunteers
participated in the study, undergoing post-ferumoxytol (4 mg/kg) free-breathing UTE acquisitions. Data
were collected using a 3T GE scanner equipped with a 32-channel coil.

For post-ferumoxytol data, the scan parameters were as follows: scan duration of 5:45 minutes, flip
angle of 24◦, echo time (TE) of 0.25 ms and repetition time (TR) of 3.6 ms. A total of 94,957 projections
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were acquired employing a 3D pseudorandom bit-reversed view ordering [42] with a readout length of 636
points per acquisition. This approach facilitated whole chest coverage with a reconstruction matrix size of
256×256×256. Density compensation was normalized utilizing the maximum eigenvalue of the non-uniform
fast Fourier transform (NUFFT) operator, and k-space was subsequently rescaled based on this value.

We use the principal component analysis (PCA) coil combination method to combine the 32-channel
data into 8 virtual coil data for reconstruction. Specifically, PCA coil combination performs a singular
value decomposition of the Hermitian matrix formed by all the coil elements. Then the approximation
matrix can be found by selecting the first few number of rows of the unitary matrix. The detailed process
can be found in [43]. We delete 1500 projections at the very beginning and very end of the total 94,957
projections, and bin the rest of the radial spokes into 1500 frames for time-resolved reconstruction. This
corresponds to a temporal resolution of ∼ 200 ms for the reconstruction.

3.2. Metrics for quantitative evaluation

In this work, we compare the proposed method with the state-of-the-art time-resolved 3D MRI
reconstruction method termed as “Extreme-MRI”. To quantitatively compare the reconstructed image
quality, we use the following metrics in this work.

1) Signal-to-noise ratio (SNR):

SNR = 20 log(
µs

σn
),

where µs represents the mean intensity of a selected region of interest, while σn denotes the standard
deviation of the intensity within a designated noise region. A higher SNR typically correlates with
improved image quality. For our investigation, regions of interest were manually selected.

2) Contrast-to-noise ratio (CNR):

CNR = 20 log(
|µA − µB|

σn
),

where µA and µB correspond to the mean intensities of two distinct regions (one within the region of
interest and one within the background), while σn signifies the standard deviation of the intensity for a
selected noise region. A higher CNR generally indicates superior image quality. In our research, regions
of interest were determined manually.

4. Results

4.1. Time-resolved cardiopulmonary MRI reconstruction using STN

In this section, we showcase the proposed time-resolved MRI reconstruction using STN. The
proposed method is used to reconstruct the seven datasets that we collected.
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Figure 2. Showcase of the proposed reconstruction method on one of the subjects. To
illustrate the reconstruction method, three representative slices were chosen for each view,
namely axial, coronal, and sagittal. These views are commonly utilized in cardiac imaging
to capture different aspects of the heart and surrounding structures. By selecting slices from
the end-diastolic cardiac phase, which corresponds to the phase of maximum relaxation and
ventricular filling, the reconstruction method aimed to capture the anatomical details during
a critical point in the cardiac cycle. In the showcased images, important cardiovascular
structures were labeled to provide clear visual guidance and enhance the interpretability of the
results. These labels highlight anatomical landmarks and structures of clinical significance,
such as the left ventricle, right ventricle, aorta, and pulmonary artery. By accurately depicting
these structures in the reconstructed images, the proposed method demonstrates its ability to
faithfully capture the intricate details of the cardiovascular system.

In Figure 2, we use the reconstructed images of one of the datasets to show the results. A comprehensive
evaluation was conducted to demonstrate the capabilities and effectiveness of the reconstruction technique.
The goal was to provide visual evidence of the reconstruction results and highlight the key cardiovascular
structures that are accurately depicted in the images. We chose three representative slices from each of the
three views for illustration. Important structures of the cardiovascular system, including ascending aorta
(AscAo), descending aorta (DescAo), thoracic aorta (TAo), aortic arch (AoArch), main pulmonary artery
(PA), right pulmonary artery (RPA), left pulmonary artery (LPA), superior pulmonary vein (SPV), superior
vena cava (SVC), inferior vena cava (IVC), left ventricle (LV), right ventricle (RV), left atrium (LA), right
atrium (RA), right ventricular outflow tract (RVOT) and coronary sinus (CS) are labeled in the images.
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Figure 3. The proposed time-resolved reconstruction scheme showcases the capability in
resolving cardiac motion. By leveraging the proposed method, it successfully captures the
dynamic changes that occur during different phases of the cardiac cycle. The reconstructed
diastolic and systolic phases from one subject, obtained using the proposed method, are
presented in the figure.

In Figure 3, we showcase the capacity of the method to accurately capture and represent different
phases of the cardiac cycle, including both diastolic and systolic phases. To achieve this, one slice
was selected from each of the three views (axial, coronal and sagittal) to provide a comprehensive
representation of the cardiac motion in different anatomical planes. By carefully choosing slices that
span the entire cardiac cycle, the reconstruction method aimed to showcase its effectiveness in capturing
the dynamic changes that occur during the heart’s contraction and relaxation phases. The selected
slices corresponded to both diastolic and systolic phases of the cardiac cycle. The reconstructed images,
presented in the figure, clearly demonstrate the effectiveness of the proposed method in capturing various
cardiac phases. This capacity to resolve cardiac motion in the reconstructed images has significant
clinical implications. Accurate depiction of cardiac motion enables clinicians to assess the function
of the heart, evaluate cardiac performance and identify abnormalities or irregularities in the cardiac
cycle. The showcased results validate the proposed scheme’s ability to faithfully capture the dynamic
nature of the heart, empowering medical experts to make more informed clinical decisions based on
comprehensive and accurate assessments of cardiac motion.

We further demonstrate the proposed method’s ability to resolve respiratory motion in the recon-
structed images, as illustrated in Figure 4. Two coronal slices at distinct time points are presented,
exhibiting identical cardiac phases but differing respiratory phases. This showcases the effectiveness of
the proposed scheme in capturing and distinguishing respiratory motion in the reconstructed images.
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Figure 4. The proposed time-resolved reconstruction scheme is able to resolve the respiratory
motion. The end-inhalation and end-exhalation phase from one subject, which are recon-
structed using the proposed method, are shown in the figure. The dashed red line indicates the
respiratory motion.

4.2. Comparsion with the state-of-the-art method

We compare the proposed reconstruction scheme with the state-of-the-art 3D time-resolved car-
diopulmonary MRI reconstruction method termed as Extreme-MRI. Extreme-MRI aims to reconstruct
time-resolved 3D cardiopulmonary MRI from highly undersampled k-space data acquired using non-
Cartesian methods. Extreme-MRI employs multi-scale low-rank matrix factorization to establish a
compressed representation, which simultaneously constrains the reconstruction problem and diminishes
its memory requirements. It also utilizes stochastic optimization techniques to decrease computational
demands, enhance memory locality and minimize communication between threads and processors.

In this work, we quantitatively and visually compared the reconstructions from the two methods. In
Figure 5, we showed the visual comparison between the two method. One slice from each of the three
views from one dataset are used for the comparison. From the images, we can see that the proposed
method shows its capability of capturing small details such as coronary. Also, we can see from the
images that the proposed method is able to catch more details such as the papillary muscle, the lung
vessels and the lung-liver interfaces.

We’ve also invited two cardiologists with special training on advanced cardiac imaging to assess the
reconstructed image quality. The cardiologists are asked to look at the reconstructed image volumes and
rate the image quality based on certain important structures in the cardiovascular system. Specifically,
the cardiologists are invited to looked at the right superior pulmonary vein (RSPV), right inferior
pulmonary vein (RIPV), left superior pulmonary vein (LSPV), left inferior pulmonary vein (LIPV),
left atrium (LA), left atrium appendage (LAA), Coronary Sinus (CS) and PA segmental branch in the
reconstructed images. They are then required to rate the image quality of these structures based on
a 4-scale criterion: 1—anatomy or structure NOT seen or NOT presented in the image; 2—anatomy
or structure can be barely seen in the image; 3—anatomy or structure can be seen, but are blurred, or
noisy; 4—anatomy or structure can be seen clearly in the image. The results are shown in Table 1.
From the scores, we can see that the proposed method is able to provide state-of-the-art reconstructions,
especially for the tiny details such as PA segmental branches.
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Table 1. In the case of the proposed reconstruction scheme, the image quality was assessed
through a systematic process involving the evaluation of seven datasets. The assessment
was conducted by two cardiologists who possessed specialized training and expertise in
advanced cardiac imaging. To ensure consistency and reliability in the assessment, the
cardiologists followed a standardized protocol and rating system. This involved rating each
dataset independently and assigning scores based on specific criteria established beforehand.
The scores were then averaged to obtain an overall assessment score for each dataset.

Proposed Extreme-MRI p-value
RSPV 3.86 ± 0.36 3.43 ± 0.65 0.04
RIPV 3.86 ± 0.36 3.43 ± 0.65 0.04
LSPV 3.86 ± 0.36 3.43 ± 0.65 0.04
LIPV 3.86 ± 0.36 3.43 ± 0.65 0.04
LA 4 ± 0 3.50 ± 0.52 0.001
LAA 3.64 ± 0.50 3.00 ± 0.78 0.016
CS 2.85 ± 0.77 2.78 ± 0.70 0.79
PA segmental branch 3.93 ± 0.27 3.07 ± 0.62 0.0001

Figure 5. Visual comparison between the proposed reconstruction and Extreme-MRI re-
construction. The comparison is based on one slice of end-diastolic phase from one of the
subjects. From the figure, we can see that the proposed method is able to catch more details
about vascular (highlighted by the red arrows). Also, we can see that the proposed method
is able to catch tiny structures such as coronary (highlighted by the orange arrows) and the
papillary muscle (highlighted by blue arrows). Also, we can see that the liver-lung interface
are shown more clear in the proposed reconstruction (highlighted by green arrows).

The comparison of the image quality of the reconstructions between the two methods is also done
quantitatively. Specifically, we segment a section of the major airway, a section of the aortic arch and a
section of lung parenchyma in all the cases, following the instructions in [44]. We then compare the SNR
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(a) SNR comparison (b) CNR comparison

Figure 6. SNR and CNR comparison. In (a), we compare the SNR of the airway, aortic arch,
and lung parenchyma of all the datasets. From the comparison, we can see that the proposed
method is able to provide higher SNR, corresponding to improved image quality. In (b), we
show the comparison of the CNR. From the results, we can see that the proposed method is
also able to provide improved reconstructions.

and CNR for the three structures between the two methods. The results are shown in Figure 6. From
which we can see that the proposed method is able to provide comparable results as the state-of-the-art
Extreme-MRI reconstruction.

4.3. Maximum intensity projections of the reconstructions

In this section, we present the results obtained from the proposed reconstruction method. Figure 7 displays
the reconstructions derived from a single subject, generated using maximum intensity projection (MIP) [45].
MIP is recognized for its ability to effectively visualize vascular structures as tubular and branching formations
within images [46]. By presenting three views of the reconstruction employing MIP, the heart structure and
vascular features for the subject can be directly observed, facilitating their practical application in clinical
settings. In Figure 7, each view consists of 60 slices utilized for MIP images.

5. Discussion

This work proposed a reconstruction framework for time-resolved 3D cardiopulmonary MRI, which
has emerged as a valuable tool in medical imaging, offering dynamic visualization of cardiac and
pulmonary structures with high spatial and temporal resolution. The implementation of a STN for
reconstructing time-resolved 3D cardiopulmonary MRI offers several advantages and presents new
opportunities for improving diagnostic accuracy and clinical utility.

STNs have the potential to enhance the reconstruction quality of time-resolved 3D cardiopulmonary MRI.
By employing CNN, STNs can adaptively learn and apply complex, non-linear transformations to the input
data, resulting in improved image quality and reduced artifacts compared to conventional reconstruction
methods. Furthermore, one of the challenges in time-resolved 3D cardiopulmonary MRI is the presence
of motion, which can lead to artifacts and decreased image quality. STNs inherently provide robustness
to motion by learning to account for and correct motion-related inconsistencies during the reconstruction
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Figure 7. Showcase of the proposed method with the aim of providing visual evidence of
the reconstruction results. In the showcased figures, the MIP images for each of the three
views are presented, providing a holistic and comprehensive visualization of the reconstructed
data. The axial MIP view allows for a comprehensive assessment of structures in a transverse
plane, such as the heart, lungs, and major vessels. The coronal MIP view provides a frontal
perspective, enabling a detailed examination of structures from a different angle, including
the heart chambers, great vessels, and pulmonary vasculature. Finally, the sagittal MIP view
offers a lateral perspective, facilitating the evaluation of structures along the longitudinal axis,
such as the cardiac apex, ventricles, and associated vessels.

process. This results in clearer images that enable better visualization of anatomical structures and functional
information. STNs are also capable of unsupervised learning, which means that they can be trained and
perform reconstructions without requiring fully-sampled ground truth data. This characteristic is especially
advantageous for time-resolved MRI, where acquiring fully-sampled data for training is often impractical or
impossible. The use of STNs for time-resolved 3D cardiopulmonary MRI reconstruction also allows for
memory-efficient processing. Instead of storing all reconstructed image volumes in the time series, only a
single static image volume and the STN need to be stored, enabling high spatiotemporal resolution 3D MRI
reconstruction even with limited GPU memory.

Experimental results have shown improved reconstruction results from the proposed method compared
to the state-of-the-art reconstruction algorithm. Specifically, the proposed method is able to provide more
detailed reconstructions, such as the ability to capture small vessels. Also, the the proposed method is able to
provide sharper images. These improvements are also confirmed by the quantitative results (SNR and CNR).
Visual comparison by the medical experts also indicates better performance.

While the application of STNs to time-resolved 3D cardiopulmonary MRI reconstruction shows
promising results, several challenges and opportunities for future research remain. First of all, further
exploration and optimization of STN architectures hold promising potential for enhancing reconstruction
performance in the field of time-resolved 3D cardiopulmonary MRI. STN architectures are designed to
leverage both spatial and temporal information in the data, enabling more accurate reconstructions. To
achieve improvements in reconstruction performance, one area of exploration involves the development
of novel network architectures that can effectively capture the complex spatiotemporal patterns present
in cardiopulmonary MRI data. This includes investigating different layer configurations, connectivity
patterns and fusion strategies to better integrate spatial and temporal information. Additionally, efforts
can be made to optimize the hyperparameters and training strategies of STN models, such as exploring
different loss functions, regularization techniques and data augmentation approaches. Furthermore, to
ensure the clinical utility of STN-based time-resolved 3D cardiopulmonary MRI reconstruction, thor-
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ough validation with real-world clinical data and evaluation by medical experts are crucial. Validation
involves assessing the performance of the STN models using diverse datasets comprising patient data,
including both MRI and/or CT images. This allows us to evaluate the generalizability and robustness of
the reconstruction algorithms across different patient populations, pathologies, and imaging protocols.

6. Conclusions

In this study, we proposed a time-resolved 3D cardiopulmonary MRI reconstruction using spatial
transformer network. The use of spatial transformer networks in time-resolved 3D cardiopulmonary
MRI reconstruction presents a promising avenue for enhancing image quality, robustness to motion, and
memory efficiency. Future research will focus on optimizing network architectures, integrating with
other advanced imaging techniques and validating the clinical applicability of this approach.
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