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Abstract: Social media contains useful information about people and society that could help advance 

research in many different areas of health (e.g. by applying opinion mining, emotion/sentiment analysis and 

statistical analysis) such as mental health, health surveillance, socio-economic inequality and gender 

vulnerability. User demographics provide rich information that could help study the subject further. However, 

user demographics such as gender are considered private and are not freely available. In this study, we propose 

a model based on transformers to predict the user's gender from their images and tweets. The image-based 

classification model is trained in two different methods: using the profile image of the user and using various 

image contents posted by the user on Twitter. For the first method a Twitter gender recognition dataset, 

publicly available on Kaggle and for the second method the PAN-18 dataset is used. Several transformer 

models, i.e. vision transformers (ViT), LeViT and Swin Transformer are fine-tuned for both of the image 

datasets and then compared. Next, different transformer models, namely, bidirectional encoders 

representations from transformers (BERT), RoBERTa and ELECTRA are fine-tuned to recognize the user’s 

gender by their tweets. This is highly beneficial, because not all users provide an image that indicates their 

gender. The gender of such users could be detected from their tweets. The significance of the image and text 

classification models were evaluated using the Mann-Whitney U test. Finally, the combination model 

improved the accuracy of image and text classification models by 11.73 and 5.26% for the Kaggle dataset 

and by 8.55 and 9.8% for the PAN-18 dataset, respectively. This shows that the image and text classification 
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models are capable of complementing each other by providing additional information to one another. Our 

overall multimodal method has an accuracy of 88.11% for the Kaggle and 89.24% for the PAN-18 dataset 

and outperforms state-of-the-art models. Our work benefits research that critically require user demographic 

information such as gender to further analyze and study social media content for health-related issues. 

Keywords: BERT; ELECTRA; gender recognition; LeViT; RoBERTa; social media; Swin transformer; 

transformers; ViT 

 

1. Introduction 

People are progressively becoming active in social media, sharing their thoughts, beliefs, concerns 

and experiences. Consequently, a huge amount of useful information is produced that can help solve many 

problems in health such as mental health [1], health surveillance [2], public safety and policy [3,4], 

healthcare [5,6] and gender vulnerability [7,8]. User demographics provide social media-based research 

with essential information that can help study the issue from diverse perspectives. However, on most social 

media platforms, user information such as gender is considered private and therefore not freely available. 

The COVID-19 pandemic has exacerbated global socio-economic inequalities, revealing how crises 

affect people differently according to their gender in troubling patterns which do not bode well for future 

resilience. Integrating governance at widening levels and mitigating the limited economic options of 

women are two examples of systematic challenges which require attention for human futurity. However, 

in many cases, even the data required to document and understand these challenges is not available. This 

paper addresses these systematic imperatives by providing a model for extracting users’ gender on social 

media and helping researchers identify the elements of promising emergent governance frameworks to 

address local and global-scale socio-ecological challenges that disproportionately impact women. 

Although many previous studies have focused on finding user information such as gender from 

text data [9–13], very few of them have considered using images. Combining image and text 

classification methods for finding users’ genders can significantly increase the classification 

accuracy [14,15]. In this paper, we propose a multimodal approach to find social-media users’ gender 

by combining text and image processing and adapting transformers. 

Transformers are novel deep learning models that use a self-attention mechanism to identify and 

learn significant parts of a content [16]. The attention mechanism is a technique that is capable of 

enhancing and highlighting important parts of the content while downgrading other parts [17]. Self-

attention is an attention mechanism that finds important tokens and their relations by comparing 

content with itself [18]. A token is usually a single word in natural language processing (NLP) and a 

group of pixels, known as a patch, that are processed together in computer vision. Since transformers 

can process tokens sequentially, they are suitable for both text and image processing [19,20]. 

Transformers were initially used for NLP and later on for computer vision. Before transformers, 

recurrent neural network (RNN) models such as long-short term memory (LSTM) and gated recurrent 

units (GRUs) with added attention layers on top of them were commonly used for NLP and convolutional 

neural networks (CNN) were dominantly used for vision. In 2017, transformers were introduced by 

keeping the attention layer and dropping the RNN part to speed up the training process for NLP. Recently, 

transformers have been used and performed very well in image recognition. BERT [21] and ViT [22] are 

one of the first models built using transformers and trained for text and image classification, respectively. 
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BERT, which has become very popular for NLP lately, was first developed in 2018 to improve 

GPT by looking at sequences of texts in a bidirectional way. GPT is a transformer-based model that 

was proposed by OpenAI in 2018, trained in an unsupervised manner and then fine-tuned for a specific 

supervised NLP task [23]. GPT includes 12-layers of transformer decoders with masked self-attention. 

For unsupervised learning, the model was pretrained for next-token prediction using an unpublished 

book dataset. Then the model was fine-tuned through labeled datasets for procedures such as 

classification, textual entailment, and sentiment analysis. This training technique is extremely 

favorable to NLP developers, since it performs very well when less labelled data is available. 

BERT was presented in two different modes, BERTBASE and BERTLARGE which respectively 

include twelve layers of transformers with twelve-headed bidirectional self-attention and twenty-four 

layers of transformers with sixteen-headed bidirectional self-attention. Both models have been trained 

in an unsupervised manner for language modelling and next-sentence prediction, using a large corpus 

gathered from books and Wikipedia pages. This time consuming computationally-expensive pre-

training phase resulted in learning contextual embeddings for tokens i.e., words, by BERT. BERT can 

then be fine-tuned to perform different NLP tasks such as question answering and language 

understanding, in a supervised manner. 

Soon after, other models were developed to improve BERT. RoBERTa trains the BERT model with 

different hyperparameters, longer sequences and a larger batch size. Moreover, it applies dynamic masking 

for masked language modeling (MLM) rather than static masking which is usen in BERT and achieves 

significantly better results on different datasets [24]. XLNet replaces the autoencoding model of BERT 

with an autoregressive model and gains better results compared to BERT and RoBERTa [25]. ELECTRA 

substitutes the MLM pretraining method used in BERT with a replaced token detection method and 

outperforms the previous models in terms of accuracy while having less computational complexity [26]. 

After NLP, transformers were adjusted for constructing vision models using sequences of 

pixels/patches. Image GPT (iGPT) and ViT were the first vision models built with transformers. iGPT 

was developed in 2020 by OpenAI and trained in three different sizes, iGPT-S, iGPT-M and iGPT-L, 

which included 76 million, 455 million and 1.4 billion parameters, respectively. Since finding the 

relation between pixels is prohibitively complex in terms of memory and computation, iGPT reduces 

the resolution and color space of an image and then applies generative training on sequences of pixels 

using transformers [27]. ViT was developed in 2020 and published in 2021 by researchers from 

Google’s Brain Team [28]. To decrease memory and computation complexities, ViT divides an image 

into 16  16 pixel sections for processing. Thus, a token is a 16  16 pixel piece of an image in ViT. 

Next, a learnable embedding vector is assigned to each token and along with positional embeddings 

are fed into a transformer architecture. Three different models are defined and trained for ViT, namely, 

ViT-Base, ViT-Large and ViT-Huge, which respectively, include twelve layers of transformers with 

twelve-head self-attention, twenty-four layers of transformers with sixteen-head self-attention and 

thirty-two layers of transformers with sixteen-head self-attention. The models have been pre-trained 

for image classification on different datasets including ImageNet, ImageNet-21k and JFT-300M and 

have had up to 99.74% accuracy. The authors found that when trained on large datasets (14–300 million 

images), ViT outperforms CNN-based models such as ResNet [29] and EfficientNet [30]. 

Afterwards, different vision models were proposed and built on top of ViT for image classification. 

DieT [31] was the first work to successfully train transformer-based models using mid-sized datasets (i.e. 

1.2 million samples of ImageNet rather than 300 million images of JFT). A CNN was used as a teacher 

model for DieT to train the useful representations of input images. Hard and soft labeling were explored 
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for this distillation approach, where the hard distillation was found to perform fairly better. Swin 

transformers [32] proposed hierarchical feature maps through merging image patches. It performs local 

attention using window partitioning, and uses shifted window approach to find cross-window connections. 

Several works have suggested to augment ViT with CNN architecture [33–35]. Convolutional vision 

transformer (CvT) [36] introduces CNNs to ViT to capture spatial structures and low-level details of image 

patches. CvT has a hierarchical design in which the sequence length progressively decreases while the 

token width increases. LeViT [37] used CNNs for image processing and feature extraction and passed the 

outcome as an input to a hierarchical ViT architecture. ViT has also been adjusted for carrying other image 

processing tasks such as object detection [38,39], segmentation [40] and image generation [41]. 

Previously, some works have used only the profile images to predicted user genders [42], while others 

have gathered several images posted by the users in social media to discover their gender [43,44]. In this 

work, we use transformer models to explore both of the methods and compare them in terms of accuracy. 

We use a gender classifier dataset available on Kaggle [45] and the PAN-2018 dataset [46,47] to build 

gender classification models based on profile images and image content posted by the user on social media, 

respectively. We fine-tune three vision models, i.e., ViT, LeViT and Swin Transformer to predict gender 

based on Twitter profile images (the Kaggle dataset) and ten different images posted by a user on Twitter 

(the PAN-18 dataset), respectively. In addition, we fine-tune three NLP models, i.e., BERT, RoBERTa and 

ELECTRA for text-based gender recognition using approximately 100 tweets posted by the user for both 

of the Kaggle and PAN-18 datasets. We found that concatenating several tweets improves the accuracy of 

the text-classification model. Likewise, concatenating several images posted on Twitter improves the 

accuracy of the image-classification model. Eventually, we combined the image- and text-classification 

models and found a high accuracy of 88.11 and 89.24% using transformers for the Kaggle and PAN-18 

datasets, respectively. Our contribution to this work is threefold: 

• We have fine-tuned and compared different state of the art transformer-based vision and text 

models for classification and evaluated their statistical significance using Mann-Whitney U test. 

• We have completed the publicly available dataset on Kaggle and provided approximately 100 

tweet ids for each female, male and brand classes. Therefore, we provide a great dataset that 

future works could build up on. Our dataset is publicly available at [48]. 

• Our work is extendable to other social media platforms such as Facebook and Reddit. This 

work paves the path for other research that require gender information of social media users 

for studying health-related issues. 

We compared our model with state-of-the-art models and found that our multimodal method is 

superior to other methods in terms of accuracy. 

In the following, Section 2 includes the literature review. Sections 3 and 4 present our proposed 

method and numerical results, respectively. A discussion is provided in Section 5, followed by 

conclusion and future work in Section 6. 

2. Literature review 

Finding gender from text has been practiced using different approaches [9–13]. Vashisth and 

Meehan [9] used different NLP methods for gender detection using Tweets, including bag of words 

(BoW) created with term frequency-inverse document frequency (TF-IDF), word embeddings using 

W2Vec and GloVe embeddings, logistic regression, support vector machine (SVM), and Naïve Bayes. 

They concluded that word embeddings have the highest performance for gender recognition. Ikae and 
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Savoy [10] compared different machine learning methods for gender detection using tweets including 

logistic regression, decision tree, k-nearest neighbors (KNN), SVM, Naïve Bayes, neural networks and 

random forest on seven different datasets. They concluded that neural networks and random forest 

perform best among the different approaches. Authors in [12] used n-grams as well as unigrams to 

tokenize sentences. They applied five different machine learning algorithms, Naive Bayes, sequential 

minimal optimization (SMO), logistic regression, random forest and j48 on text for gender recognition 

and found that a combination of 1- to 4-grams with SMO produces the best accuracy. 

The studies mentioned above, have only used text for gender recognition and have not considered 

image data. Authors in [49] were the first to use profile images for gender detection. They stacked 

different approaches, namely, Microsoft discussion graph tool (DGT) using the username of the users, 

Face++ using their profile images, and SVMLight using their tweets. However, they combined pre-

existing methods and did not train or fine-tune any model. In [44], VGG, a well-known image 

recognition model based on CNN has been fine-tuned for gender detection of Twitter users. In [50], 

text and image have been used for predicting the gender of Twitter users. In the image classification 

method, a CNN is trained for gender recognition. The text classification method includes applying TF-

IDF to the hashtags and using latent Dirichlet allocation (LDA) to find the topics that the user is 

interested in. The results show that the combined method has higher accuracy. 

Some studies have focused on image classification techniques for gender recognition. For 

example, authors in [51] propose a method for gender detection using images. First, they use CNN for 

feature extraction. Next, they apply a self-joint attention model for feature fusion. Finally, they use 

two fully connected neural network layers with ReLu and SoftMax activation functions and one 

average pooling layer to predict the gender. In [52], a method using gated residual attention networks 

has been proposed for gender recognition using images and tested on five different datasets. In [53], 

different CNNs are trained for gender recognition using different methods such as KNN, decision tree, 

SVM and SoftMax for feature extraction. The results of the CNN methods are combined by majority 

voting to increase the accuracy. Authors in [11] used posts, comments and replies on Facebook for 

gender recognition. They compared BERT with different machine learning and deep learning 

algorithms such as Naïve Bayes, Naïve Bayes Multinomial, SVM, decision tree, random forest, KNN, 

RNN and CNN. The results show that BERT has the highest performance among the different methods. 

Some studies have combined both text and image classification models and employed 

transformers for gender recognition. Authors in [54] have designed a model for gender identification 

of Twitter users that combines three models, a multi-classifier for basic features (e.g. name, 

description), a multi-classifier for advanced features (i.e. k top words of tweets) and a ResNet-18 

classifier for profile images of users. Among all the different methods (i.e. decision tree, SVM, 

AdaBoost, Gradient Boosting and Random Forest) that have been used for the multi-classifiers and for 

combining the models, Gradient Boosting has the highest accuracy. In [55], a multimodal approach 

using both text and image is proposed for the gender detection of Twitter users. The text classification 

part uses BERTBASE and the image classification part uses EfficientNet, a CNN-based approach for 

image recognition. The two methods are then combined to gain a higher accuracy. In [13], the gender 

of Twitter users has been predicted using their names, descriptions, tweets, and profile colors. SVM, 

BERT and BLSTM have been applied to user descriptions and BERT has performed better compared 

to SVM and BLSTM. Next, the different approaches are combined to improve the accuracy. 

Some methods mentioned above have used transformers for text classification for author profiling, 

and have found that transformers have higher performance compared to other methods. However, 
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transformer-based text-classification models have not been enhanced with transformer-based image 

recognition models for demographic information extraction. In this paper, we use transformer models 

to improve the performance and accuracy of text classification by combining it with image 

classification for gender recognition of Twitter users. 

3. Materials and methods 

Two datasets were used to conduct this study. The first dataset which was released in 2016 and is 

freely available on Kaggle includes the link to the profile image and one random tweet of 20050 

different Twitter users [45]. The dataset has four different labels for the users, female, male, brand and 

unknown. The second dataset is PAN-18 which was released in 2018 and includes 100 tweets and 10 

images posted by Arabic, English and Spanish speaking Twitter users. In this work, powerful models 

based on transformers were fine-tuned, tested, combined and compared on both of the datasets. In the 

following, the datasets, methods and models are explained. 

3.1. The Kaggle dataset 

The Kaggle dataset which could be downloaded from [45] includes link to profile image and a 

random tweet of 20050 different Twitter users. However, one single tweet does not carry much 

information and is not enough for training a strong gender classification model. Moreover, most of the 

profile image links did not work. Therefore, similar to other works [42,56], we gathered more tweets 

and the updated profile image link of the Twitter users of the Kaggle dataset. The tweet IDs of the 

dataset that we gathered is available at [48]. First, all the users with the unknown label were removed. 

Then, using the Twitter API Academic Researcher account and through the usernames of the users 

provided by the Kaggle dataset, user IDs and subsequently updated profile image links and 

approximately 100 different tweets posted by the user were gathered. The tweet IDs that were retrieved 

for each user are available online [48]. In compliance with Twitter’s privacy policy, only the Tweet 

IDs and user IDs could be publicly released [57]. To obtain the text and other metadata, e.g. create date 

and location, the Tweet IDs need to be hydrated [58]. Tweets were cleaned, hyperlinks and mentions 

were removed and punctuations were fixed. Emojis were preserved since they carry valuable 

information that machine learning models could significantly benefit from. After balancing the 

dataset 2943 records of each class, i.e. female, male and brand, were acquired. 

3.2. The PAN-18 dataset 

In the PAN-18 dataset, which can be downloaded from [47] after permission is granted, 100 tweets and 

10 images posted by 2500, 4900 and 5200 Arabic, English and Spanish speaking Twitter users have been 

gathered, respectively. Among the users 1000, 1900 and 2200 belong to the Arabic, English and Spanish 

testing and the rest to the training datasets, respectively. All the users have been labelled based on their gender, 

i.e. female and male. Half of the users in the training and testing datasets are female and the other half are 

male and the datasets are completely balanced. The tweets included emojis and were already cleaned. We 

used only the English datasets to train and test our models. Each of the 10 images of a user carries some 

information that could help the model separate the two genders. We found that by concatenating several 

images and feeding them into the base model for fine-tuning, the accuracy will significantly increase. The 
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reason is that an image created from several images carries more information about the user and can help 

classify the gender with higher confidence. Since nine images can be concatenated to create a square image, 

nine of the ten images of a user were selected for concatenation. This was repeated ten times for a user, each 

time a different image was left out. The final image was resized to 224  224 pixels to be compatible with 

the transformer models. In order for our work to be reproducible, we have provided the code 

(“concatenate_images.py” in [48]) to generate the exact image combination that was used for training the 

models. We found that the accuracy of the model fine-tuned using the concatenated images is up to 16.92% 

higher compared to the model fine-tuned using the single original images. 

3.3. Fine-tuning the image classification models 

Deep learning models such as transformers are advantageous to other machine learning models 

only when a large dataset is fed to them. Oftentimes, labelled data is not available or it is very limited. 

In cases where a great amount of data is not accessible, fine-tuning a pre-trained deep learning model 

can help find the desired accuracy. To this end, we have fine-tuned ViT-Base, LeViT and Swin 

transformer for gender recognition of users based on their Twitter profile images (the Kaggle dataset) 

and based on ten different images that they have posted on Twitter (the PAN-18 dataset). 

We split the Kaggle dataset into balanced train, validation, and test datasets with precisely, 7332, 

498 and 999 users, respectively. Three models, namely, ViT, LeViT and Swin transformer, were fine-

tuned to classify the images into three classes, female, male and brand. 

For the PAN-18 dataset, 100 users of the train dataset were pulled out and allocated to the 

validation dataset. For each user ten concatenated images were created. All the ten images created for 

all the users from the training dataset were used for fine tuning the same three models (ViT, LeViT and 

Swin transformer). The accuracy of the model fine-tuned using the concatenated images was up to 16.92% 

higher compared to the model fine-tuned using the original images. Next, for each user the results of the 

ten concatenated images were combined using two fully connected neural network layers (Figure 1). 

 

Figure 1. The image classification model for gender recognition of the PAN-18 dataset. 
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Before training each model, the cross-validation datasets were used for hyperparameter 

optimization using the WandB (weights and biases) library. We found that fine-tuning deep-learning 

models was not sensitive to the hyperparameters. The reason is that they have already been trained on 

a large dataset and require only a few more epochs to be fine-tuned. However, the fully connected neural 

network which combines the results of the ten different concatenated images was highly sensitive to the 

hyperparameters, since it was being trained from scratch. Most importantly, it was sensitive to the 

optimizer and performed well with Adam or AdamW optimizers, but very poor with the stochastic 

gradient descent (SGD) optimizer. Also, we found that smaller learning rates (≥ 0.001) work better when 

training the stacked neural networks. Table 1 shows the best hyperparameters used for training the 

stacked layers which combined the ten different concatenated images created for the PAN-18 dataset. 

Table 1. The optimized hyperparameters of the stacked neural network trained for 

combining the image classification models of the PAN-18 dataset. 

Model Batch size Dropout Hidden layer size Optimizer Learning rate 

ViT 16 0.5 8 AdamW 0.001 

LeViT 16 0.2 8 AdamW 0.0001 

Swin Transformer 16 0.2 5 AdamW 0.001 

3.4. Fine-tuning the text-classification models 

Some Twitter users may not have a suitable image for detecting their gender. However, we are 

able to retrieve the tweets of most Twitter users. Therefore, training a text classification model for 

gender recognition could help extract the gender of more users and increase the performance of the 

model. In both of our Kaggle and PAN-18 datasets, one hundred tweets are available for each user and 

are used to fine-tune the three transformer-based models, namely, BERTBASE, RoBERTa and 

ELECTRA for gender recognition. 

We found that longer tweets result in a higher accuracy. Therefore, concatenating several tweets 

and using them for training the models significantly increase the accuracy. Since the number of tokens 

fed into BERTBASE cannot exceed 512, ten number of tweets could be concatenated at maximum. Thus, 

for each user we found ten concatenated tweets, and used them to fine-tune the models. This increased 

the accuracy of the model by 28.8 and 27.9% for the Kaggle and PAN-18 datasets, respectively. The 

model had three outputs, female, male and brand for the Kaggle dataset and two outputs, female and 

male for the PAN-18 dataset. The output of the model for each of the concatenated tweets of a user were 

combined using two fully connected layers. Figure 2 shows the text-classification model for the (A) 

Kaggle and (B) PAN-18 datasets. Similar to image-classification models, fine-tuning on text-

classification models was not sensitive to hyperparameters. However, the stacked layer was highly 

sensitive to the hyperparameters, especially the optimizer and performed poorly with the SGD optimizer. 

Moreover, lower learning rates provided a higher accuracy. Table 2 shows the hyperparameters optimized 

using WandB library for the stacked fully connected network of the two datasets. 
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(A) (B) 

Figure 2. The text-classification model for gender recognition of the (A) Kaggle and (B) 

PAN-18 datasets. 

Table 2. The optimized hyperparameters of the stacked neural network trained for 

combining the text classification models of the Kaggle and PAN-18 datasets. 

 Model Batch size Dropout Hidden layer size Optimizer Learning rate 

The 

Kaggle 

dataset 

BERT 16 0.1 10 Adam 0.001 

RoBERTa 16 0.1 5 Adam 0.001 

ELECTRA 16 0.2 10 Adam 0.001 

The 

PAN-18 

dataset 

BERT 32 0.2 10 Adam 0.001 

RoBERTa 32 0.1 5 Adam 0.001 

ELECTRA 32 0.2 10 Adam 0.001 

3.5. Combining text and image classification 

For each of the Kaggle and PAN-18 datasets, the image and text classification models were 

combined using a neural network of two stacked layers. A SoftMax layer was placed at the top of the 

model to get the final outputs. Figures 3 shows the complete model for (A) the Kaggle and (B) the 

PAN-18 datasets. Since the model was built using three image-classification models and three text-

classification models, nine different combinations were possible. Table 3 shows the optimized 

hyperparameters of the final stacked neural network for the nine different combinations. Our code is 

available at [48]. 
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(A)                                          (B) 

Figure 3. The complete model for (A) the Kaggle and (B) the PAN-18 datasets. 

Table 3. The optimized hyperparameters for the nine different combinations of image- and text-

classification for the Kaggle and PAN-18 datasets. 

 
Vision 

model 
NLP Model 

Batch 

size 
Dropout 

Hidden 

layer size 
Optimizer 

Learning 

rate 

The 

Kaggle 

dataset 

ViT 

BERT 16 0.2 5 AdamW 10-5 

RoBERTa 16 0.2 5 AdamW 10-5 

ELECTRA 16 0.2 5 AdamW 10-5 

LeViT 

BERT 16 0.2 5 AdamW 10-5 

RoBERTa 16 0.2 5 AdamW 10-5 

ELECTRA 16 0.2 5 AdamW 10-5 

Swin 

Transformer 

BERT 16 0.5 5 AdamW 10-5 

RoBERTa 16 0.5 5 AdamW 10-5 

ELECTRA 16 0.5 5 AdamW 10-5 

The 

PAN-

18 

dataset 

ViT 

BERT 8 0.5 5 AdamW 10-5 

RoBERTa 8 0.5 5 AdamW 10-5 

ELECTRA 8 0.5 5 AdamW 10-5 

LeViT 

BERT 16 0.2 8 AdamW 10-5 

RoBERTa 16 0.2 8 AdamW 10-5 

ELECTRA 16 0.2 8 AdamW 10-5 

Swin 

Transformer 

BERT 16 0.5 5 AdamW 10-5 

RoBERTa 16 0.5 5 AdamW 10-5 

ELECTRA 16 0.5 5 AdamW 10-5 
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4. Results 

4.1. The Kaggle dataset 

Each of the image-classification models were fine-tuned ten times, so that their statistical significance 

could be evaluated and compared. The different text-classification models were trained and built ten times, 

as well. Figure 4 compares the statistical significance of different (A) image- and (B) text-classification 

models through Mann-Whitney U test. In most cases, a p-value lower than 0.05 is considered significant 

in statistical analysis [59]. Table 4 compares the maximum accuracies of different models and their 

precision, recall and f1-scores. The p-value in Figure 4(A) indicates that the accuracy of the LeViT model 

is significantly lower than that of the ViT and Swin transformer models. This result suggests that 

transformer models that are enhanced with CNN have a lower accuracy compared to models that are solely 

built using transformers for our dataset. According to Table 4, Swin transformer provides a higher accuracy 

compared to the ViT and LeViT models on the Kaggle dataset. The same result is confirmed by Table 4 for 

the three image-classification models. The p-value in Figure 4(B) shows that the accuracy of BERT is 

significantly lower than RoBERTa and ELECTRA. Nonetheless, the accuracy of RoBERTa and 

ELECTRA are not significantly different from each other. However, Table 4 shows that the maximum 

accuracy of RoBERTa is higher than that of ELECTRA for the Kaggle dataset. Moreover, according to 

Table 4, the maximum accuracy of BERT is lower than RoBERTa and ELECTRA. 

 
(A)          (B) 

Figure 4. The accuracy of the different (A) image- and (B) text-classification models 

compared using the Mann-Whitney U test. 

The three different vision models were combined with the three different NLP models to acquire a 

higher accuracy through a multimodal approach. Table 5 compares the maximum accuracies and the 

precision, recall and f1-score of the nine different combinations with each other. Precision indicates the 

percentage of the correctly classified items detected for a particular class and recall indicates the percentage 

of the items from a particular class that were actually detected. High precision and recall for all the classes 

of the final combined model indicate that it can distinguish between all the classes pretty well. According 

to Table 5, the highest accuracy is obtained when the result of the Swin transformer model is combined 
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with the NLP models and the best accuracy is acquired from the combination of Swin transformer and 

BERT. The accuracy of all the nine different combination models is higher than that of their image- and 

text-classification models. The accuracy of the Swin transformer-BERT multimodal is 11.73 and 5.26% 

higher than the accuracy of Swin transformer and RoBERTa models, respectively. 

Table 4. The maximum accuracy and model evaluation parameters obtained for different 

models for the Kaggle dataset. 

 Model Class Accuracy Precision Recall F1-score 

Image-

classification 

models 

ViT 

Female 

76.87 

76.05 79.11 77.54 

Male 77.44 76.82 77.13 

Brand 75.93 75.34 75.63 

LeViT 

Female 

72.8 

76.82 75.12 75.96 

Male 70.18 70.68 70.43 

Brand 75.69 74.22 74.94 

Swin 

Transformer 

Female 

78.86 

79.92 75.32 77.55 

Male 81.61 74.42 77.85 

Brand 74.12 79.09 76.52 

Text-

classification 

models 

BERT 

Female 

83.69 

82.11 83.25 82.68 

Male 82.02 83.17 82.59 

Brand 85.54 81.93 83.7 

RoBERTa 

Female 

84.92 

83.11 85 84.04 

Male 83.09 85.21 84.14 

Brand 85.91 83.11 84.49 

ELECTRA 

Female 

84.66 

82.64 85.78 84.18 

Male 82.81 85.16 83.97 

Brand 84.81 82.04 86.35 

Table 5. The maximum accuracy and model evaluation parameters of the multimodal 

techniques for the Kaggle dataset. 

Vision NLP Class Accuracy Precision Recall F1-score 

ViT 

BERT 

Female 

82.84 

79.80 83.74 81.72 

Male 80.09 83.22 81.63 

Brand 86.13 80.13 83.02 

RoBERTa 

Female 

83.42 

81.12 85.67 83.33 

Male 80.79 85.21 82.94 

Brand 86.49 81.52 83.93 

ELECTRA 

Female 

83.11 

80.02 86.04 82.92 

Male 80.13 85.86 82.9 

Brand 86.17 80.42 83.2 

Continue to next page 
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Vision NLP Class Accuracy Precision Recall F1-score 

LeViT 

BERT 

Female 

81.47 

77.23 83.15 80.08 

Male 76.49 83.41 79.8 

Brand 84.33 78.12 81.11 

RoBERTa 

Female 

81.79 

78.71 84.39 81.45 

Male 78.48 84.84 81.53 

Brand 85.12 78.97 81.93 

ELECTRA 

Female 

81.56 

76.81 85.93 81.11 

Male 77.28 86.10 81.45 

Brand 86.33 78.51 82.23 

Swin 

Transformer 

BERT 

Female 

88.11 

85.81 90.42 88.05 

Male 86.14 89.2 87.64 

Brand 91.39 86.12 88.68 

RoBERTa 

Female 

85.32 

82.23 88.11 85.07 

Male 81.91 87.87 84.78 

Brand 89.19 82.18 85.54 

ELECTRA 

Female 

85.74 

82.48 88.32 85.3 

Male 82.14 88.48 85.19 

Brand 88.94 82.11 85.89 

4.2. The PAN-18 dataset 

Similar to the Kaggle dataset, each image- and text-classification model for the PAN-18 was built 

and tested ten different times. Figure 5 evaluates the statistical significance of the (A) image- and (B) 

text-classification models using the Mann-Whitney U test. Moreover, Table 6 compares the maximum 

accuracies of different vision and NLP models. Figure 5(A) shows that the accuracy of the Swin 

transformer model is significantly higher than the other two models and the accuracy of ViT is 

significantly higher than LeViT model. Additionally, according to Table 6, the maximum accuracy 

observed for Swin transformer is higher than ViT and LeViT and the maximum accuracy observed for 

ViT is higher than LeViT. Figure 5(B) shows that RoBERTa has a significantly higher accuracy 

compared to ELECTRA and BERT, but BERT and ELECTRA are not significantly different for the 

PAN-18 dataset. However, according to Table 6, the maximum accuracy of RoBERTa is higher than 

BERT and ELECTRA and the maximum accuracy of ELECTRA is higher than BERT. 

Maximum accuracies, and their precision, recall, and f1-score of the nine different multimodal 

methods for the PAN-18 dataset are compared in Table 7. Table 7 shows that the final model has a high 

value for the precision, recall and f1-score for the two female and male classes. This means that the model 

performs well for both of the classes and is capable of distinguishing them from each other very well. In 

addition, the maximum accuracy of the models combined with Swin transformer is dominantly higher than 

that of other models. Although RoBERTa significantly had a higher accuracy compared to other NLP 

models (Figure 5(B)), the best accuracy was obtained when the Swin transformer and BERT were 

combined. The maximum accuracy of the combination of Swin transformer-BERT is 8.55 and 9.8% higher 

than that of the Swin transformer and BERT models, respectively. 
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(A)                             (B) 

Figure 5. Comparing different (A) image- and (B) text-classification models using Mann-

Whitney U test. 

Table 6. The maximum accuracy and model evaluation parameters obtained for different 

models for the PAN-18 dataset. 

 Model Class Accuracy Precision Recall F1-score 

Image-

classification 

models 

ViT 
Female 

80.82 
81.46 78.75 80.8 

Male 79.11 82.27 80.65 

LeViT 
Female 

74.22 
73.76 75.53 74.63 

Male 74.89 73.11 73.99 

Swin 

Transformer 

Female 
82.21 

83.70 80 81.81 

Male 80.84 84.42 82.59 

Text-

classification 

models 

BERT 
Female 

81.27 
79.98 83.71 81.80 

Male 83.08 79.05 81.02 

RoBERTa 
Female 

81.89 
80.54 84.11 82.29 

Male 83.37 79.68 81.48 

ELECTRA 
Female 

81.42 
79.24 85.16 82.09 

Male 83.96 77.68 80.7 

Table 7. The maximum accuracy and model evaluation parameters of the multimodal 

techniques for the PAN-18 dataset. 

Vision NLP Class Accuracy Precision Recall F1-score 

ViT 

BERT 
Female 

86.79 
87.01 86.92 86.97 

Male 85.63 87.12 86.37 

RoBERTa 
Female 

85.39 
83.82 88.06 85.89 

Male 87.34 83.24 85.24 

ELECTRA 
Female 

85.48 
83.03 87.74 85.32 

Male 88.31 82.96 85.55 

Continue to next page 
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Vision NLP Class Accuracy Precision Recall F1-score 

LeViT 

BERT 
Female 

76.87 
78.41 74.21 76.25 

Male 74.88 79.09 76.92 

RoBERTa 
Female 

79.42 
82.41 78.12 80.21 

Male 77.33 81.17 79.2 

ELECTRA 
Female 

78.91 
80.89 77.64 79.23 

Male 76.43 79.14 77.76 

Swin 

Transformer 

BERT 
Female 

89.24 
91.27 88.12 89.66 

Male 87.49 90.95 89.18 

RoBERTa 
Female 

88.36 
90.13 86.97 88.52 

Male 86.73 89.86 88.26 

ELECTRA 
Female 

88.22 
89.93 86.92 88.4 

Male 87.01 89.14 88.06 

4.3. Comparing with other models 

Table 8 compares the RoBERTa text-based model with the work done in [56] for the Kaggle 

dataset, and the RoBERTa text-based model and the Swin transformer-BERT multimodal with the 

works done in [15,43,60], which had the first, second, and third ranks in the PAN author profiling 

competition of 2018, for the PAN-18 dataset. 

Authors in [56] have used the Kaggle dataset to build a text-based gender recognition model. After 

retrieving additional tweets for the female and male users, the tweets were cleaned and vectorized using a 

number of methods, namely, BOW, TF-IDF, Word2vec, GLObal VEctor for word representation (GLOVE) 

and BERT tokenization. Different machine learning algorithms were used to build a gender recognition 

model. Best results were obtained using GLOVE and random forest (RF) and GLOVE and SVM. We 

applied the GLOVE-RF and GLOVE-SVM models on our dataset and compared it with the RoBERTa 

text-classification model for only male and female classes (Table 8). Authors in [15] have used bidirectional 

GRU for text classification and CNN based on VGG16 for image classification parts. Then, the image and 

text classification parts are combined using fusion component which includes direct multiplication of text 

and image feature components. In [60], authors classified Twitter users using only text. They applied TF-

IDF and singular value decomposition (SVD) on the tweets to extract the semantics. Then they applied 

latent semantic analysis (LSA) to extract the semantic topics and fed them into an SVM with linear kernel 

for gender classification. Authors in [43] proposed an approach for gender identification of PAN-18 dataset 

using text and image. They applied TF-IDF and then SVD to extract the semantics and use them for gender 

classification using linear-SVM. For image classification, they stacked three different classification layers. 

The first layer, low classifier, consisted of four different classifiers, object recognition, facial recognition, 

color histogram and local binary patterns. They all used linear-SVC except for color histogram that used 

multinomial naïve bayes (NB). The second classifier layer, meta-classifier used linear-SVC to combined 

the results of the four classifiers of the previous layer. The third classifier layer, aggregation classifier, 

combined the meta-classifier results of the ten different images of a user using MultinomialNB. Finally, 

they combined their text and image classifiers using linear-SVC. Table 2 shows that our multimodal method 

is superior to all the above models in terms of accuracy. 
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Table 8. Comparing the Swin Transformer-BERT model with other methods in terms of 

accuracy. 

  Text-based Image-based Overall 

The Kaggle 

dataset 

Text-based with RF [56] 71.22% - - 

Text-based with SVM [56] 69.14% - - 

Our Model (RoBERTa) 84.09% - - 

The PAN-18 

dataset 

Multimodal [44] 79.68% 81.63% 85.84% 

Text-based [60] 82.21% - - 

Multimodal [43] 80.74% 69.63% 81.32% 

Our Model (RoBERTa) 81.89% - - 

Our Model (Swin Transformer-BERT) 81.27% 82.21% 89.24% 

5. Discussion 

Previously, some works have used profile images of social media users and some other have used 

their image contents posted on social media for gender recognition. In this work, we have implemented 

a transformer-based model for both of the methods. We extended a publicly available dataset for gender 

recognition with profile images and used the PAN-18 dataset for gender recognition with image content 

posted on social media. Our results show that using the image content posted by users on social media 

a higher accuracy is obtained. 

To further improve the accuracy of our model, the image-classification model was combined with a 

text-classification. Different transformer-based image classification models, namely, ViT, LeViT and Swin 

transformer and text classification models, i.e. BERT, RoBERTa and ELECTRA were explored. Swin 

transformer dominantly performed better than other vision models for both of the datasets. In contrast, 

LeViT had a lower accuracy compared to other models on our dataset. This shows that models built solely 

on transformers have a higher accuracy compared to models enhanced with CNN for our datasets. 

RoBERTa had a significantly higher accuracy compared to BERT for both of the datasets. However, BERT 

performed better when combined with Swin transformer. BERT and Swin transformer complemented each 

other very well and provided the best accuracy of 88.11% and 89.24% for the Kaggle and PAN-18 datasets. 

One limitation to our work was lack of suitable dataset. To remove this barrier, we have completed 

the publicly available dataset on Kaggle and provided approximately 100 tweet IDs for female, male 

and brand classes that future studies could build up on. 

6. Conclusions and future work 

Demographics of social media users are beneficial for research and applications in health, socio-

economic inequalities and gender vulnerability. However, such information is not usually and freely 

available. During periods of upheaval, women are usually at greater risk from the adverse effects and 

potential losses incurred by these external stressors. They are also the slowest to recover from such 

emergencies. Integrating governance at widening levels and mitigating the limited economic options 

of women, are two examples of systemic challenges which require attention for human futurity. 

However, in many cases, even the data required to document and understand these challenges is not 

available. This paper addresses these systemic imperatives by providing a framework that can help us 
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to identify the elements of promising emergent governance frameworks to address local and global-

scale socio-economic challenges that disproportionately impact women. 

In this work we have designed a model based on transformers to detect the gender of Twitter users 

using both text and image. We have implemented and compared our multimodal method using several 

transformer models and found that the combination of Swin transformer and BERT complement each 

other better provides the best accuracy for our datasets. 

Future studies could build on our work by using other user information such as descriptions, 

media posts, comments and likes. Moreover, recognizing other user demographics such as age and 

ethnicity using transformers could be further investigated. In addition, heuristic methods for 

identifying user demographics when images are blurry, have low quality, are partially viewed or when 

people are wearing masks or sunglasses can be studied for higher accuracy and better performance. 
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