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Abstract: We propose a deep feature-based sparse approximation classification technique for
classification of breast masses into benign and malignant categories in film screen mammographs.
This is a significant application as breast cancer is a leading cause of death in the modern world and
improvements in diagnosis may help to decrease rates of mortality for large populations. While deep
learning techniques have produced remarkable results in the field of computer-aided diagnosis of breast
cancer, there are several aspects of this field that remain under-studied. In this work, we investigate
the applicability of deep-feature-generated dictionaries to sparse approximation-based classification.
To this end we construct dictionaries from deep features and compute sparse approximations of
Regions Of Interest (ROIs) of breast masses for classification. Furthermore, we propose block
and patch decomposition methods to construct overcomplete dictionaries suitable for sparse coding.
The effectiveness of our deep feature spatially localized ensemble sparse analysis (DF-SLESA)
technique is evaluated on a merged dataset of mass ROIs from the CBIS-DDSM and MIAS datasets.
Experimental results indicate that dictionaries of deep features yield more discriminative sparse
approximations of mass characteristics than dictionaries of imaging patterns and dictionaries learned
by unsupervised machine learning techniques such as K-SVD. Of note is that the proposed block and
patch decomposition strategies may help to simplify the sparse coding problem and to find tractable
solutions. The proposed technique achieves competitive performances with state-of-the-art techniques
for benign/malignant breast mass classification, using 10-fold cross-validation in merged datasets of
film screen mammograms.
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1. Introduction

Cancer is one of the leading causes of death worldwide [1]. Among women, breast cancer is the
most commonly diagnosed type of cancer [2]. It is projected that about 12% of all women in the U.S.
will be diagnosed with breast cancer in their lifetime [3,4]. Mammography is one of the main imaging
modalities used initially to diagnose breast cancer and is a standard preventive measure [5]. However,
mammography examination by radiologists with variable clinical experience and training, poses the
issue of variability in radiologist interpretive performance [6]. Thus, an automated computer-aided
diagnosis (CAD) system would be a useful assistive tool in modern medicine and a second opinion for
medical professionals. Automated computer-aided diagnosis systems can ultimately improve diagnosis
accuracy, and reduce the time and expenses of diagnostic workflows.

Two important stages of conventional image classification systems are feature extraction and
implementation of a classifier. Feature extraction is a process by which image descriptors/features are
found, ideally, features that have the most discriminative power. CAD systems have used handcrafted
features, such as texture features and statistical features to train a classifier [7–10]. In [8], a statistical
t-test feature extraction and feature quantity optimization through thresholding method was used to
distinguish between benign and malignant tumors. The extracted image features were fed into a
support vector machine (SVM) classifier to perform class assignment.

Another category of techniques leverages the inherent sparsity of signals in nature to produce signal
representations suitable for coding, superresolution and classification [11–14]. These techniques aim to
approximate test signals by linear combinations of column vectors (or atoms) chosen from dictionary
matrices that minimize sparsity under residual approximation constraints. These matrices may be
directly sampled from the training set, or learned from it, using dictionary learning approaches typically
based on the K-SVD algorithm [11].

Furthermore, state-of-the-art machine learning systems, like deep neural networks, have shown
considerable applicability in medical imaging classification tasks. An ideal dataset of medical images
used in machine learning would have physician annotations and contain a sufficient number of data
samples (i.e., millions of medical images) [15]. However, medical image datasets with these ideal
components are not widely available yet. Considering the lack of sufficient data, several deep neural
network classification approaches apply pretrained networks to medical imaging data [16, 17].
Convolutional neural networks (CNNs), have achieved impressive performance in medical image
classification and recent work concentrates on mammography data [2, 18–26]. In [18], transfer
learning and data augmentation was used to overcome the challenge of limited mammography data.
They validated end-to-end CNN classification on a shallow CNN architecture and two early CNNs,
AlexNet and Googlenet. The authors in [23] proposed deep learning lesion detection and CNN
classification. They compared the performance of a basic CNN to a modified ResNet50 and
InceptionResNetV2 architecture for breast lesion classification. Their experimental results showed
that deep learning CAD systems achieved better accuracy performance than conventional systems
such as SVM. In [20], transfer learning and fine-tuning was applied to the AlexNet and Googlenet
architectures for breast mass classification. The authors observed that transfer learning outperformed
a shallow CNN trained from scratch. The feature extraction capacity of CNNs, combined with a
traditional classifier, is evaluated in [19]. The authors apply an ensemble classifier approach to
classify benign and malignant mass ROIs from full field digital mammograms. The ensemble
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classifier averaged the output of an SVM classifier trained on CNN features and an SVM classifier
trained on analytically extracted features. The ensemble classifier outperformed the individual SVM
classifiers.

Despite the significant progress in this field, there is still a need for effective and interpretable
classification models that may use the representation capacity of deep learning and be trainable on
small-sized datasets. In this work, we leverage the strengths of inductive representation capacity of
features computed by deep convolutional networks to form dictionaries for sparse
approximation-based classification of breast masses in mammograms. An original contribution of this
work is that it investigates the suitability of deep feature maps as dictionaries to be used for sparse
approximations. In addition, the sparse coding module can be used for visualization and
interpretability of deep learning. For example, we can display the atoms/training samples that best
approximate an unknown sample. Furthermore, we develop and evaluate block and patch selection,
reconstruction and decision fusion techniques to increase the number and diversity of dictionary
atoms for sparse analysis. We apply our deep feature spatially localized sparse analysis method
(DF-SLESA) on a merged dataset of breast mass regions of interest (ROIs) from mammograms for
separation of benign and malignant masses. We compare this technique to fully-sparse-based
classifiers, and to end-to-end CNN classification. Experimental results suggest that deep
feature-based dictionaries yield more discriminant sparse approximations of mass characteristics than
pixel intensity-based dictionaries and K-SVD learned dictionaries [11], and improve classification
performance.

2. Methods

In this section, we first describe the CNN architectures that will be interfaced with the sparse
approximation stage. We then detail our Deep Feature-Spatially Localized Ensemble Sparse Analysis
(DF-SLESA) technique.

2.1. Convolutional neural network descriptions

2.1.1. Googlenet

The Googlenet introduced a network architecture that utilizes the Inception module. The
Googlenet made its debut as a submission in the ILSVRC14 competition and outperformed in
accuracy performance over the revolutionary network, Alexnet, with 10 times fewer parameters. It
was designed with practical use and computational expense in mind. This network first employs two
convolutional layers, each followed by max pooling. Next, the architecture includes 3 stages of
Inception modules each followed by max pooling. The final Inception module is followed by an
average pooling layer. Googlenet introduces a 1 × 1 convolutional kernel that computes reductions
before convolutions in the Inception module to reduce computational expense. Convolution kernels of
size 1 × 1, 3 × 3, and 5 × 5 are employed within an Inception module and the outputs of all
convolutions are concatenated to produce the final feature map. To tackle the gradient vanishing
problem during training, auxiliary classifiers are added to intermediate layers. A linear layer with a
softmax loss is used as the classifier [27].
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2.1.2. InceptionV3

InceptionV3 shares similarities with the Googlenet as it includes a sequence of convolutional layers
followed by Inception modules and a linear softmax classifier. Some of the unique properties of the
InceptionV3 network are the factorization into smaller convolutions using 3 × 3 kernels, asymmetric
convolutions to reduce the number of parameters, and batch normalization in the fully connected layer
of the auxiliary classifier. InceptionV3 produced the lowest Top-1 and Top-5 errors on the ImageNet
dataset at the time it was published [28].

2.1.3. ResNet architectures

In 2015, a new network architecture known as Residual Network or ResNet, emerged in deep
learning and introduced residual connections, which were beneficial for training deeper networks.
The main concept is that shortcut connections (or skip connections) can be added to a plain network
to facilitate learning of the deeper layers. Skip connections essentially allow activations from a layer
to be fed to a layer deeper in the network. The ResNet family of CNNs follows a structure of an initial
convolution stage without skip connections, followed by multiple stages of convolutional layers with
residual connections, average pooling, and ending with a fully connected layer. In [29], deeper
ResNets such as ResNet50 and ResNet101 yielded significantly better classification accuracy than the
baseline ResNet18 and ResNet34 models.

2.1.4. DenseNet

Recent studies have shown that shorter connections between layers near the input and near the
output produce greater training efficiency, accuracy improvement, and support increased network
depth. The authors in [30] proposed a densely connected convolutional neural network, DenseNet,
that has L(L+1)

2 direct connections, unlike traditional L-layer CNNs that have L connections. DenseNets
use a simple layer connection where all layers are connected directly to each other. The feed forward
nature is maintained by ensuring every layer receives additional inputs from previous layers and
passes them on as feature maps. Features are combined through concatenation (unlike summation as
in ResNets) before passing on to subsequent layers. An important difference between DenseNet and
other networks is that DenseNet can have very narrow layers using a growth rate hyperparameter.

2.1.5. InceptionResNetV2

The InceptionResNetV2 [31] network is an extension of the InceptionV3 network.
InceptionResNetV2 incorporates residual connections into the Inception architecture. The
experimental results presented in [31], show that the use of residual connections in the Inception
architecture accelerates training. The InceptionResNetV2 architecture begins with a stem block that
has a series of 3 × 3 and 1 × 1 convolutions of different strides, filter concatenation and max pooling.
Subsequently, this design employs multiple InceptionResNet1-A modules followed by a reduction
layer, and multiple InceptionResNet1-B modules also followed by a reduction layer. The network
architecture ends with multiple InceptionResNet1-C modules, average pooling and a softmax layer
for classification.
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2.1.6. Xception

The Xception (or Extreme Inception) network proposed in [32], applies depthwise separable
convolution layers. The Xception network architecture has a three stage model that consists of an
entry flow, middle flow and exit flow. In the entry flow, two initial convolution layers perform 3 × 3
convolutions, each followed by a ReLU layer. Subsequently, three separable convolution blocks
follow and the entry flow outputs 728 feature maps of size 19 × 19. The middle flow has one
separable convolutional block that is repeated 8 times. The exit flow takes as input the output of the
middle flow, performs additional separable convolutions, global average pooling, and lastly logistic
regression. The depthwise separable convolutional layers function like Inception modules.
Experimental results reported in [32] show that when residual connections are added to the Xception
architecture there is a significant boost in accuracy.

2.2. Deep feature-spatially localized ensemble sparse analysis

We combine localized sparse approximations and the feature extraction capabilities of convolutional
neural networks to classify breast masses into malignant or benign states. The DF-SLESA method
workflow has three major stages, namely, deep feature extraction, deep dictionary construction and
ensemble classification and decision making [33]. Further details of the DF-SLESA method and its
main stages are given in the following sections.

2.2.1. Deep feature extraction

For a L layer deep CNN, a recursive nonlinear activation function ς(.) is used to compute activations
y(L)

m produced by the training sample y(0)
m . This process can be expressed mathematically as

y(L)
m = ς

N(L−1)∑
n=1

w(L−1)
nm ∗ y(L−1)

m + b(L−1)
m

 , (2.1)

where L is the layer number, N(L−1) represents the number of kernels at the L − 1 layer, m represents
the sample id, w is the weight kernel, b is the bias and ‘∗’ denotes convolution.

Deep features for each ROI were extracted from the layer that precedes the first fully connected
layer. Average pooling (AP) is applied to reduce the deep feature vector length to l. Once all training
mass ROIs undergo deep feature extraction, together they form a deep feature dictionary specific to the
employed convolutional neural network.

2.2.2. Deep dictionary construction using BlockBoosting

BlockBoost decomposition constructs dictionaries of spatial information from specific regions of
the training feature vectors. Each training feature is divided into blocks –that is, spatially localized
patches– of length s. Combining all blocks with spatial index i from the training features generates a
block-specific dictionary of the form Di = [di

1, d
i
2, ..., d

i
k], where k is the number of training samples.

Sparse representations of each block yi
j of a test sample y j are computed by optimizing the following

objective function given a noise margin ϵ:

x̂i
j = arg min ||xi

j||1 subject to ||yi
j − Dixi

j||2 < ϵ, (2.2)
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where j represents the test sample id.

In this manner, sparse representation classification for each test sample is achieved using the
corresponding block dictionary from the training set. We denote the number of patches per sample as
np = floor(l/s). Therefore, np unique sparse coders are applied to make a classification decision for a
single test sample as shown in Figure 1.

Figure 1. Class prediction flow diagram for BlockBoost decomposition. S Ci corresponds to
the sparse coder specific to block i.

2.2.3. Deep dictionary construction using PatchSampling

PatchSampling decomposition begins in a similar fashion to BlockBoosting by dividing the deep
feature vectors into 1-D blocks of length s. The major difference in this decomposition method is that it
forms a single deep feature dictionary that is composed from all training patches. A test sample block
feature yi

j is classified by finding sparse solutions, given the deep features dictionary. A dictionary of
this form is not index specific, therefore, it contains many more atoms than the block specific dictionary
Di. The PatchSampled dictionary is defined as D = [d1

1, d
2
1, . . . , d

np
1 , d

1
2, d

2
2, . . . , d

np
2 , . . . , d

1
k , . . . d

np
k ],

where np = floor(l/s) represents the number of feature patches per subject. The following objective
function is optimized to find sparse solutions x̂i

j:

x̂i
j = arg min ||xi

j||1 subject to ||yi
j − Dxi

j||2 < ϵ. (2.3)

We illustrate in Figure 2, the class prediction flowchart of a single test sample when PatchSample
decomposition is applied. In contrast to BlockBoosting, the PatchSampled deep dictionary D requires
just a single sparse coder to approximate each test patch. However, the same number of patch decision
scores with BlockBoosting are combined to make a classification decision.
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Figure 2. Class prediction flow diagram for PatchSample decomposition.

2.2.4. Ensemble classification

Our approach uses a block-based log-likelihood decision score to make an ensemble classification
decision. The log-likelihood approximation decision function is defined as,

LLS (x̂i
j) = − log

rm(x̂i
j)

rn(x̂i
j)
= −
[
log rm(x̂i

j) − log rn(x̂i
j)
]
, (2.4)

where rm(x̂i
j) and rn(x̂i

j) are the approximation residuals using the mth and nth class-specific atoms
respectively. For example, rm(x̂i

j) = ∥y
i
j − Dixi

jm∥2 is the residual of approximation using dictionary
atoms and solution coefficients xi

jm from the mth class only.
To estimate the ensemble score ELLS (x̂ j), we average the individual scores,

ELLS (x̂ j) = −
1

np

np∑
i

[
log rm(x̂i

j) − log rn(x̂i
j)
]
. (2.5)

We employ the sign function to determine the class prediction ω̂c, that is

ω̂c = sgn
(
ELLS (x̂i

j)
)
. (2.6)

3. Experiments

We utilized 10-fold cross-validation to evaluate the performance of our DF-SLESA method for
classification of breast masses as benign or malignant. For comparison, we performed conventional
sparse representation classification (SRC), spatially localized ensemble sparse analysis (SLESA) [34,
35], label-specific dictionary learning SLESA (LS-SLESA) [36] and the aforementioned end-to-end
CNNs on the MergedBreast dataset. In conventional SRC experiments, when no block decomposition
is applied, we apply dimensionality reduction via principal component analysis (PCA). Table 1 details
the deep feature length of the extracted features by convolutional neural network.
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Table 1. Dimensionality of extracted deep features by convolutional neural network.

Neural network Deep feature length (l)
Googlenet 832
InceptionV3 1280
ResNet18 512
ResNet50 2048
ResNet101 2048
Densenet201 1920
InceptionResNetV2 1536
Xception 2048

3.1. Evaluation measures

There are several common performance measures used to assess a classifier, such as precision,
recall, accuracy, and area under the ROC curve. In this work, we measure the classification
performance by calculating the true positive rate (TPR), true negative rate (TNR), classification
accuracy (ACC), and area under the receiver operating characteristic curve (AUC).

Classification accuracy indicates how well a classifier makes a correct prediction. Accuracy is
determined using the following equation:

ACC =
T P + T N

T P + T N + FP + FN
, (3.1)

where T P,T N, FP, and FN represent the number of true positives, trues negatives, false positives, and
false negatives respectively. The true positive rate (TPR) (or recall/sensitivity) is an indication of how
well our classifier correctly predicts malignancy,

TPR =
T P

T P + FN
. (3.2)

Similarly, the true negative rate (TNR) indicates how well our classifier correctly classifies benign
masses,

TNR =
T N

T N + FP
. (3.3)

The AUC is the area under the receiver operating characteristic (ROC) curve. The ROC curve
graphs TPR versus FPR.

3.2. Data description

We formed a merged dataset, which we refer to as MergedBreast, by combining benign and
malignant masses ROIs from two publicly available datasets, Mammographic Imaging Analysis
Society (MIAS) [37, 38] and the Curated Breast Imaging Subset of DDSM (CBIS-DDSM) [39]. The
Mammographic Imaging Analysis Society (MIAS) dataset contains 322 MLO view mammograms
from a total of 161 patients. The centroid and radius of each mass is provided from radiologist
examination readings, and these values are used to generate a bounding box for cropping regions of
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interest (ROIs). The CBIS-DDSM an updated version of the Digital Database for Screening
Mammography (DDSM) dataset that contains 10,239 mammogram images from 1,566 patients. This
dataset provides cranial caudal (CC) and MLO mammogram views of breast masses and calcifications
with verified pathology. The CBIS-DDSM dataset is considered a standardized version of DDSM as
questionable cases were removed, along with other image processing enhancements such as image
decompression, noise reduction, and image cropping. The CBIS-DDSM dataset provides ROIs that
were cropped by a bounding box about the center of each abnormality. The experimental procedures
involving human subjects were approved by the Institutional Review Boards of the institutions, where
the data were acquired.

We combined the mass ROIs from the MLO view images from the mass training subset of CBIS-
DDSM and ROIs from MIAS to form the MergedBreast dataset. A total of 388 malignant masses and
434 benign masses were considered to form the MergedBreast dataset. The number of malignant and
benign samples from both datasets are introduced in Table 2. To prepare the MergedBreast data ROIs
for DF-SLESA, SRC and other SLESA methods, the ROIs are downsampled or oversampled to a fixed
size.

Table 2. Number of malignant and benign samples from both datasets.

Dataset Number of Malignant Masses Number of Benign Masses Total
CBIS-DDSM 341 370 711
MIAS 47 64 111
Total 388 434 822

3.3. Pre-processing

(a) Benign mass (b) Malignant mass

(c) Benign mass (d) Malignant mass

Figure 3. Examples of pre-processing enhancement on benign and malignant mass ROIs. (a)
a benign mass ROI before and after enhancement (left-to-right) from the MIAS dataset, (b) a
malignant mass ROI before and after enhancement (left-to-right) from the MIAS dataset, (c) a
benign mass ROI before and after enhancement (left-to-right) from the CBIS-DDSM dataset,
(d) a malignant mass ROI before and after enhancement (left-to-right) from the CBIS-DDSM
dataset.
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To improve the contrast between the masses and their surrounding tissues and reduce the noise
level, we applied image enhancement techniques to the complete mammographs and then cropped the
mass ROIs. The mammogram image enhancement pipeline begins with median filtering and artifact
removal (i.e., removal of label annotations). It then applies unsharp masking, Gaussian filtering and
morphological edge enhancement. It finally employs wavelet frames for reconstruction [40], and
CLAHE to increase the image contrast.

4. Results

In Figure 4 (first row) and Table A1 we report the classification performance of conventional SRC
and SRC with dictionary learning (LS-SRC) on the MergedBreast dataset. No block decomposition is
applied in these experiments, thus providing a baseline for BlockBoosting and PatchSampling
performance. We performed resizing to dimensions of 128 × 128, 64 × 64 and 32 × 32 pixels in this
set of experiments. We then vectorized the ROIs and applied PCA for dimensionality reduction. The
classification rates indicate that dictionary learning and a resizing to dimension of 32 × 32 produces
the best classification accuracy. In general, the use of dictionary learning through KSVD [12] slightly
improves the ACC and AUC rates.

Figure 4. Classification accuracy and area under the ROC curve of SRC and LS-SRC (first
row) and SLESA and LS-SLESA (second row).

BlockBoosting and PatchSampling SLESA methods do not improve performance when compared
to SRC as shown in Figure 4 (second row) and Table A2. The significant disparity between TPR
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and TNR is a consistent trend in BlockBoosting and more so in PatchSampling SLESA. Dictionary
learning through KSVD improves TPR rates in all PatchSample SLESA experiments, thus providing a
better balance between TPR and TNR performances.

As a baseline comparison for our DF-SLESA experiments, we also evaluated the end-to-end
classification performances of the same CNNs that we used in DF-SLESA. We applied fine-tuning to
networks that were pre-trained on Imagenet. We employed Bayesian optimization to tune the
minibatch size (8 to 128) and number of epochs (2 to 80). Geometric transforms, such as rotation and
random horizontal and vertical reflection, were used for data augmentation. The network weights
were updated in the training stage of CNN classification using Adam optimization with initial
learning rate of 10−3, learning rate drop factor of 0.95 per epoch, momentum of 0.9 and ℓ2
regularization of 10−4.

Table 3. Convolutional neural network and deep feature SRC classification performance.

Method TPR (%) TNR (%) ACC (%) AUC (%)
End-to-End CNN

Googlenet 68.81 52.06 60.44 64.55

InceptionV3 56.19 73.71 64.95 68.96

ResNet18 59.28 64.18 61.73 65.14

ResNet50 53.09 72.94 63.02 67.82

ResNet101 56.44 79.64 68.04 72.05

Densenet201 62.37 82.22 72.29 77.51
InceptionResNetV2 60.31 65.98 63.14 67.03

Xception 54.90 82.73 68.81 72.69
DF-SRC

Googlenet-SRC 61.24 61.89 61.59 63.93

InceptionV3-SRC 66.41 72.52 69.63 75.23

ResNet18-SRC 67.47 67.21 64.27 67.47

ResNet50-SRC 62.27 68.13 65.37 69.16

ResNet101-SRC 62.79 73.21 68.29 72.45

Densenet201-SRC 65.12 71.13 68.29 72.30

InceptionResNetV2-SRC 67.70 72.75 70.37 72.58
Xception-SRC 59.43 70.67 65.37 67.67

In our DF-SLESA experiments, we tested block lengths of 512, 256 and 128 in block
decomposition. Since ResNet18 deep features have a dimensionality of 512, block decomposition is
not possible for block division of block length 512. In Table 3, we report the performance of SRC
using deep features. Before block decomposition, we see that deep features improve SRC
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Figure 5. Classification accuracy and area under the ROC curve of DF-SLESA methods
using BlockBoosting and PatchSampling.

classification performance significantly, by approximately 10%. Block decomposition further
improves classification performance as seen in Tables A3 and A4. We denote the DF-SLESA method
by the convolutional neural network name followed by -SLESA. Furthermore, Figure 5 provides a
summary of classification accuracy and area under the ROC curve of DF-SLESA methods using
BlockBoosting and PatchSampling.

5. Discussion

Table 4 provides a comparison summary of the top performances of all methods. Considering the
high level of difficulty of benign and malignant mass separation in mammograms, our DF-SLESA
methods achieved promising classification performance. The InceptionV3 deep features in
conjunction with our SLESA model produce the best performance with the use of block
decomposition. InceptionV3-SLESA with PatchSampling with average pooling 256 and block length
of 128 produced the best classification performance of 72.31% ACC and 77.04% AUC.
InceptionResNetV2-SLESA with BlockBoosting is the second top performing DF-SLESA method.
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Given that deep features are extracted after 94 convolutional layers in the InceptionV3 network and
after 244 convolutional layers in the InceptionResnetV2 network, we note that the number of
convolutional layers plays a major role in the quality of the deep features produced.

Table 4. Comparison summary of top performances of all methods.

Method TPR (%) TNR (%) ACC (%) AUC (%)
SRC (64) 68.48 50.58 59.02 59.53
LS-SRC (32) 70.54 50.58 60.00 62.78
SLESA (BB-64) 46.51 70.00 58.90 58.93
LS-SLESA (BB-64) 51.68 64.90 58.66 59.69
CNN (Densenet201) 62.37 82.22 72.29 77.51
DF-SRC 67.70 72.75 70.37 72.58
InceptionV3-SLESA (PS-512) 65.12 77.14 71.46 76.46
InceptionV3-SLESA (AP-256, BB-128) 64.34 79.45 72.31 77.04

*Notes: BB-# : BlockBoosting with block size #; PS-# : PatchSampling with block size #; AP-# : average pooling with block size #

BlockBoosting and PatchSampling performance in DF-SLESA experiments indicates the limited
scalability of sparse classifiers. As the number of training samples increase through block
decomposition of smaller lengths, the performance of PatchSampling generally declines.
Dimensionality reduction by block decomposition is seemingly most efficient with a reasonable
training set size for sparse solvers. While BlockBoosting uses block specific sparse coders and
PatchSampling uses a single sparse coder for all test patches, the size of the dictionary seems to have
a greater impact on performances than the number of sparse coders used in representation.
Convolutional neural networks on the other hand thrive with larger amounts of data, thus having
greater scalability.

Comparing end-to-end CNN classification rates (Table 3) with DF-SLESA classification
performance (Figure 5, and Tables A3 and A4) indicates that our sparse ensemble classifier
outperforms the neural network classifiers for the majority of CNNs. For instance, SLESA with
PatchSample decomposition on InceptionV3 deep features significantly outperforms end-to-end
classification using InceptionV3 solely. Densenet201 end-to-end classification produced the top
accuracy performance among end-to-end CNN classifiers, achieving an ACC of 72.29% and AUC of
77.51%. However, DF-SLESA produces competitive rates with CNNs. DF-SLESA methods
outperform CNN classification for Googlenet, InceptionV3, ResNet50, ResNet101 and
InceptionResNetV2 features. Overall, the use of block decomposition yields improvement in
DF-SLESA performance for most network deep features, as it reduces the dimensionality of the
approximation problem. In addition, the InceptionV3-SLESA method achieved the highest ACC of
72.31% and second best AUC of 77.04%. Figure 6 displays the ACC, AUC, TPR and TNR measures
produced by DF-SLESA with average pooling of 256 and BlockBoosting with block length 128
corresponding to the top InceptionV3-SLESA performer.

Furthermore, comparisons with related work may not be straightforward as the reported results of
mammography classification seem to be highly heterogeneous. The major factors that may cause the
variability of results are the type of mammograms (digital or film screen) and views (MLO and/or
CC), the classification task (normal versus abnormal tissue, benign versus malignant, masses and/or
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Figure 6. Individual DF-SLESA (BB) performances using a fixed average pooling length of
256 and block length of 128.

calcifications), and the use of ROIs versus complete mammograms [2,21,22]. In a directly comparable
work published in [41], the authors employ an ad hoc CNN architecture for classification of benign
and malignant masses from the CBIS-DDSM dataset and achieved 71.19% ACC. In [42], the authors
performed a similar task of benign versus malignant mass classification using sparse representation
classification on the DDSM dataset. Their patch ROI characterization and classification strategy was
assessed on 80 masses with various mass margins and obtained 70.00% classification accuracy.

System interpretability. The subject of system interpretability becomes increasingly important as
machine learning is employed in multiple domains [43]. In clinical applications, interpretability may
help to increase the level of confidence in the applicability of a system. A strength of sparse
approximation-based approaches is their interpretability as it is possible to monitor the sparse
solutions, the approximations, and the residuals.

We first aim to obtain insight into the deep dictionaries that we use for sparse approximations. In
Figure 7, we display t-SNE clustering plots using 5-D embeddings of InceptionV3 deep feature data.
We observe, through the single feature histograms and pair-wise scatterplots, significant similarity of
benign and malignant deep features for the complete feature vector and for the first block features.
However, some feature components show greater separability, such as the second component of the
complete InceptionV3 feature data. We computed the Kullback-Leibler (KL) divergence to measure
the class discrimination for each feature component. The greatest KL divergence measure for the
complete feature vector data, 0.3304, is produced by component two. The greatest KL divergence
measure for the first block feature data, 0.1843, is produced by component two.

Next, we explore the decision function of DF-SLESA techniques defined in (2.4) that uses log ratios
of residuals by displaying histograms of the decision scores. We calculated the histogram of scores for
a single test fold in 10-fold cross-validation. We used InceptionV3-SLESA to explore the cases of a
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Figure 7. t-SNE clustering plots with 5-D embedding of InceptionV3 deep features produced
by DF-SRC (top) and DF-SLESA with BlockBoosting (bottom). The greatest KL divergence
measure for DF-SRC, 0.3304, is produced by component two. The greatest KL divergence
measure for DF-SLESA(BB), 0.1843, is produced by component two.
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single block, PatchSampling, and BlockBoosting. Figure 8 displays the histograms of decision scores
for each case. We observe that the scores approximately form two distributions that correspond to
each mass type. We note that the scores of malignant masses are more dispersed than those of the
benign masses. This explains the lower true positive rate in our results. In addition, the probability of
error generally decreases as the score magnitude increases. This indicates that ELLS values could be
used to produce heat maps, or to provide a level of confidence that could help to make a decision in a
diagnostic workflow.

(a) DF-SRC (b) DF-SLESA(PS)

(c) DF-SLESA(BB) - Block 1 (d) DF-SLESA(BB) - Block 2

(e) DF-SLESA(BB) - All Blocks

Figure 8. Decision scores for a single test fold in 10 CV by class using InceptionV3 deep
features using (a) no block decomposition, (b) PatchSampling with block length of 512,
(c)–(d) BlockBoosting with a block length of 512, (e) combined scores for both blocks for
BlockBoosting with a block length of 512.
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6. Conclusions

Benign and malignant mass separation is considered a more challenging task in machine learning
than natural image classification. In this work, we combine the inductive representation capacity of
CNNs to form dictionaries for sparse approximation-based classification of mass ROIs in a merged
mammography dataset. Our aim is to show that this approach yields an effective and interpretable
classification technique. Our results indicate that deep features produce numerically feasible sparse
approximations, which ultimately improves the performance of our sparse analysis methods. The
proposed DF-SLESA approach produces competitive results with contemporary machine learning and
deep learning techniques of the literature.
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Appendix

Appendix tables that list numeric values of performance measures from the experiments of Sections
4 and 5. These results support our research findings.

• Table A1: performance of SRC and LS-SRC using ROI resizing of 128 × 128, 64 × 64, and 32 ×
32.
• Table A2: performance of SLESA and LS-SLESA with BlockBoosting and PatchSampling using

block sizes of 64 × 64, 32 × 32, 16 × 16, and 8 × 8.
• Table A3: performance of DF-SLESA with BlockBoosting using block lengths of 512, 256, 128
• Table A4: performance of DF-SLESA with PatchSampling using block lengths of 512, 256, 128

Table A1. Performance of conventional sparse representation classification (SRC), and SRC
with dictionary learning (LS-SRC).

Method ROI Size TPR (%) TNR (%) ACC (%) AUC (%)

SRC 128 × 128 71.06 48.04 58.90 59.69

SRC 64 × 64 68.48 50.58 59.02 59.53

SRC 32 × 32 70.54 58.27 58.78 59.93
LS-SRC 128 × 128 68.22 51.27 59.27 60.36

LS-SRC 64 × 64 68.99 51.50 59.76 61.57

LS-SRC 32 × 32 70.54 50.58 60.00 62.78
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Table A2. Breast mass classification using SLESA and LS-SLESA by BlockBoosting and
PatchSampling (ROI Size: 128 × 128).

BlockBoosting

Method Block Size TPR (%) TNR (%) ACC (%) AUC (%)

SLESA 64 × 64 46.51 70.00 58.90 58.93
SLESA 32 × 32 39.53 72.29 56.83 57.70

SLESA 16 × 16 49.10 66.28 58.17 60.64

SLESA 8 × 8 29.72 80.00 56.34 57.47

LS-SLESA 64 × 64 51.68 64.90 58.66 59.69
LS-SLESA 32 × 32 45.74 67.21 57.07 59.74

LS-SLESA 16 × 16 42.89 68.59 56.46 57.04

LS-SLESA 8 × 8 27.65 79.45 55.00 57.99
PatchSampling

Method Block Size TPR (%) TNR (%) ACC (%) AUC (%)

SLESA 64 × 64 38.50 72.58 56.52 55.78

SLESA 32 × 32 10.05 91.01 52.80 54.65

SLESA 16 × 16 10.31 96.08 55.60 56.47
SLESA 8 × 8 2.84 97.93 53.04 55.25

LS-SLESA 64 × 64 49.35 60.37 55.18 57.51

LS-SLESA 32 × 32 46.13 61.98 54.50 54.67

LS-SLESA 16 × 16 42.01 71.20 57.42 58.12
LS-SLESA 8 × 8 28.35 80.65 55.96 55.03
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Table A3. BlockBoosted deep feature classification.

Method DF Length Block Length TPR (%) TNR (%) ACC (%) AUC (%)
(Block Length 512)

Googlenet-SLESA 832 512 60.98 61.66 61.34 64.32

InceptionV3-SLESA 1280 512 65.89 73.21 69.76 75.63

ResNet50-SLESA 2048 512 61.50 67.44 64.63 69.59

ResNet101-SLESA 2048 512 61.50 72.75 67.44 71.31

Densenet201-SLESA 1920 512 64.34 70.90 67.81 71.37

InceptionResNetV2-SLESA 1536 512 65.89 72.52 69.39 73.29

Xception-SLESA 2048 512 62.53 67.44 65.12 69.19
(Block Length 256)

Googlenet-SLESA 832 256 60.21 63.05 61.71 65.42

InceptionV3-SLESA 1280 256 66.15 72.75 69.63 74.49

ResNet18-SLESA 512 256 59.43 67.90 63.90 67.64

ResNet50-SLESA 2048 256 60.98 68.36 64.88 69.28

ResNet101-SLESA 2048 256 62.02 71.82 67.20 71.09

Densenet201-SLESA 1920 256 64.86 69.28 67.20 71.05

InceptionResNetV2-SLESA 1536 256 65.12 72.29 68.90 73.10

Xception-SLESA 2048 256 57.62 72.75 65.61 69.12
(Block Length 128)

Googlenet-SLESA 832 128 60.21 62.82 61.59 64.66

InceptionV3-SLESA 1280 128 66.41 72.52 69.63 75.67
ResNet18-SLESA 512 128 59.17 67.67 63.66 68.54

ResNet50-SLESA 2048 128 59.17 73.21 66.59 70.96

ResNet101-SLESA 2048 128 61.24 71.59 66.71 71.28

Densenet201-SLESA 1920 128 61.76 71.82 67.07 71.86

InceptionResNetV2-SLESA 1536 128 62.79 73.67 68.54 71.27

Xception-SLESA 2048 128 56.85 74.13 65.98 69.54
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Table A4. PatchSampled deep feature classification.

Method DF Length Patch Length TPR (%) TNR (%) ACC (%) AUC (%)
(Patch Length 512)

Googlenet-SLESA 832 512 60.21 60.51 60.37 63.82

InceptionV3-SLESA 1280 512 65.12 77.14 71.46 76.46
ResNet50-SLESA 2048 512 57.88 73.04 65.90 70.68

ResNet101-SLESA 2048 512 60.47 75.81 68.57 71.83

Densenet201-SLESA 1920 512 62.02 70.90 66.71 69.64

InceptionResNetV2-SLESA 1536 512 65.63 73.67 69.88 73.18

Xception-SLESA 2048 512 57.62 70.97 64.68 68.49
(Patch Length 256)

Googlenet-SLESA 832 256 55.30 64.90 60.37 63.49

InceptionV3-SLESA 1280 256 53.09 82.03 68.37 74.18

ResNet18-SLESA 512 256 61.76 69.52 65.85 69.96

ResNet50-SLESA 2048 256 50.52 73.44 62.61 66.75

ResNet101-SLESA 2048 256 60.05 71.82 66.26 70.71

Densenet201-SLESA 1920 256 61.76 69.52 65.85 69.14

InceptionResNetV2-SLESA 1536 256 62.02 73.50 68.09 71.76

Xception-SLESA 2048 256 60.05 66.05 63.22 66.87
(Patch Length 128)

Googlenet-SLESA 832 128 53.75 63.13 58.71 62.19

InceptionV3-SLESA 1280 128 61.60 74.19 68.25 73.52

ResNet18-SLESA 512 128 57.88 68.66 63.58 68.27

ResNet50-SLESA 2048 128 60.05 71.43 66.06 69.20

ResNet101-SLESA 2048 128 57.47 70.28 64.23 70.24

Densenet201-SLESA 1920 128 54.90 69.82 62.78 65.62

InceptionResNetV2-SLESA 1536 128 65.72 62.90 64.23 69.63

Xception-SLESA 2048 128 55.41 75.58 66.06 69.34
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