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Abstract: Minimum spanning tree (MST)-based clustering algorithms are widely used to detect 
clusters with diverse densities and irregular shapes. However, most algorithms require the entire 
dataset to construct an MST, which leads to significant computational overhead. To alleviate this issue, 
our proposed algorithm R-MST utilizes representative points instead of all sample points for 
constructing MST. Additionally, based on the density and nearest neighbor distance, we improved the 
representative point selection strategy to enhance the uniform distribution of representative points in 
sparse areas, enabling the algorithm to perform well on datasets with varying densities. Furthermore, 
traditional methods for eliminating inconsistent edges generally require prior knowledge about the 
number of clusters, which is not always readily available in practical applications. Therefore, we 
propose an adaptive method that employs mutual neighbors to identify inconsistent edges and 
determine the optimal number of clusters automatically. The experimental results indicate that the R-
MST algorithm not only improves the efficiency of clustering but also enhances its accuracy. 
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1. Introduction 

The rapid development of big data technology has been driving research progress in fields such 
as biomedicine [1,2] and geography [3]. Clustering is an important tool for big data analysis, which 
can help researchers extract useful information from complex and massive data. The existing clustering 
algorithms can be broadly categorized into partitional clustering, hierarchical clustering, density-based 
clustering, deep clustering and so on [4]. Partitional clustering approaches optimize an objective 
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function by iteratively controlling the division of N data points into K clusters until the optimal solution 
is found or the termination condition is met, where K is much less than N [5]. While the partitional 
clustering algorithm performs well on datasets with spherical structures and has a linear time 
complexity, it is not suitable for non-convex datasets [6]. The hierarchical clustering and density-based 
clustering algorithms exhibit good performance when dealing with datasets that are non-convex in 
shape. Hierarchical clustering techniques cluster datasets through either aggregation or splitting [7]. 
Aggregation methods merge closely related data points in a tree structure until reaching a specific 
threshold of similarity between nodes [8]. Conversely, splitting methods recursively divide vast 
datasets based on the distinction between two groups of points according to certain thresholds [9]. 
Density-based noisy application space clustering (DBSCAN) is a classical clustering algorithm based 
on density that can cluster datasets of any shape effectively and detect noise points [10]. However, it 
depends on two input parameters, and its convergence time tends to be long when dealing with large 
dataset sizes [11]. Density Peak Clustering (DPC) is a density-based clustering algorithm that can 
quickly identify non-spherical clusters by estimating cluster centers based on the assumption that they 
are surrounded by neighboring points with low local densities and located in scattered distribution [12]. 
However, the quadratic time complexity of DPC is a drawback that renders it unsuitable for processing 
large-scale datasets. Sami and Pasi [13] proposed a fast density peaks algorithm, called FastDP, which 
utilizes an efficient and adaptable construction of an approximate k-nearest neighbor graph for swift 
density and increment computation. Utilizing this mechanism, FastDP addresses the quadratic time 
complexity limitation of DPC. Traditional clustering algorithms rely on geometric concepts such as 
distance or density. However, they are less effective in clustering non-linear high-dimensional data and 
identifying complex embedded features and hierarchical structures. This limitation has paved the way 
for the development of deep clustering algorithms [14]. Xie et al. [15] proposed deep embedded 
clustering (DEC) based on the automatic encoder, which is a commonly used technique in deep 
clustering algorithms. DEC enables joint unsupervised representation learning and clustering tasks, 
and it has exhibited improved clustering accuracy for large-scale high-dimensional datasets. However, 
the performance of this algorithm heavily relies on the quality of the learned representations via the 
automatic encoding process. To better extract structural and attribute information from graph data, 
there has been a surge of interest in researching Graph Neural Networks [16]. Wang et al. [17] proposed 
deep attentional embedded graph clustering (DAEGC), which uses the graph neural network to obtain 
the structure information of the graph data, adds the attribute information of the node in the input at 
the same time, fuses the node information and structure information for representation learning and 
uses the attention mechanism to more effectively aggregate the neighbor nodes of the node. 

Minimum spanning tree (MST) is a highly popular graph structure in graph theory and is 
extensively employed in clustering analysis owing to its ability to detect clusters with irregular 
boundaries [18]. Gower and Ross [19] introduced the MST to clustering algorithms in 1969, proposing 
a single linkage clustering analysis achieved by pruning the MST. This method initially constructs the 
MST and then removes the longest k-1 edges to obtain single linkage k-partitions. In 1971, Zahn [20] 
formally introduced a clustering algorithm based on MST, which constructs the MST and iteratively 
removes inconsistent edges according to the edge weight features. Grygorash et al. [21] proposed 
HEMST, which removes edges from MST to achieve a reduction in standard deviation of the best 
possible edge weights. Müller et al. [22] proposed the ITM algorithm, which employs an entropy-
based information-theoretical criterion to identify inconsistent edges, considering both cluster size and 
the average weight of intra-cluster edges. The Genie [23] is an example of a single linkage clustering 
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optimization variant, greedily optimizing the total edge length but only allowing the smallest clusters 
to merge under the constraint that the Gini index of cluster size is higher than a given threshold. The 
CTCEHC [24] constructs an initial partition based on vertex degree, and then merges clusters based 
on geodesic distance between cluster centroids. Mishra et al. [25] proposed a hybrid fast MST-based 
clustering method to improve efficiency. The method first divides the data into a large number of sub-
clusters based on discreteness, constructs an MST for sub-cluster centroids and identifies adjacent pairs 
and finally merges adjacent pairs based on their internal similarity and cohesion. A clustering algorithm 
based on MST and the Critical Distance Method (MST-CDC) [26] uses a critical distance value as a 
threshold, removing inconsistent edges from the MST to obtain sub-clusters. Subsequently, it employs 
shorter inter-cluster distances for merging these sub-clusters. Among these MST-based clustering 
algorithms, there are mostly two types of problems. First, the computational cost of constructing the 
MST is too high, especially when dealing with large data sets. The HEMST, ITM, Genie, CTCEHC 
and MST-CDC all need to construct an MST using a complete graph generated from the entire data set 
at the initial stage of the algorithm, which is a key factor that affects the low efficiency of the algorithm. 
The hybrid fast MST-based clustering method use a very small number of sub-cluster centroids to 
construct MST, so the efficiency of this algorithm is less affected by the construction of MST. The 
second problem is that identifying inconsistent edges is very challenging, which is the key to the 
quality of clustering. In the case of the single linkage scheme, the goal is to maximize the sum of the 
weights of the excised inconsistent edges. This method requires a specified number of clusters, is 
sensitive to noise and is extremely ineffective on datasets with large differences in density distribution. 
The MST-based clustering algorithm proposed by Zahn considers the weights of inconsistent edges to 
be significantly larger than the average weights of nearby edges. This method cannot easily control the 
number of inconsistent edges and may result in obtaining too many or too few clusters. The HEMST 
removes inconsistent edges based on the standard deviation of the edge weights, and this method also 
requires specifying the number of clusters. The ITM utilizes information theory based on entropy to 
accurately identify inconsistent edges, but it relies on knowing the number of clusters. The MST-CDC 
uses a critical distance value as a threshold to remove inconsistent edges and obtain sub-clusters, 
making the algorithm more robust in the presence of outliers. However, this method may overlook 
density changes within a region. The Genie, CTCEHC, and the hybrid fast MST-based clustering 
method do not require identifying inconsistent edges. The Genie adopts an agglomerative strategy, 
but the limitation is that finding a suitable threshold is difficult. The partitioning strategy of 
CTCEHC based on MST reduces the complexity of the merging process. However, the clustering 
results of the method based on mixed fast MST are easily influenced by initial partitioning. It is very 
valuable to research how to improve the efficiency of MST-based clustering algorithms while also 
achieving automatic identification of inconsistent edges without the need to specify the number of 
clusters beforehand. 

If the information of some key points in the dataset can reflect the overall structure of the dataset, 
then in some efficiency focused algorithms, these key points can be used to replace the entire dataset 
to complete the main work. This replacement idea can reduce the computational cost of the algorithm 
without significantly affecting the clustering quality. Motivated by this idea, we propose an algorithm 
that constructs the MST of representative points instead of all sample points. The proposed algorithm 
performs the following major steps and contributions. First, it divides the dataset into two categories, 
core points and noncore points. Second, it uses a novel selection strategy to pick a set of representative 
points from the core points. Third, it constructs an MST of representative points, and then uses adaptive 



15833 

Mathematical Biosciences and Engineering  Volume 20, Issue 9, 15830–15858. 

methods to identify and eliminate inconsistent edges. Finally, the algorithm first assigns each non-
representative point in the core point, and then assigns the non-core point. Experimental analyses were 
performed on eight synthetic datasets and twelve UCI datasets. The results show that the algorithm has 
relatively low execution time and significantly improved clustering quality. 

2. The MST-based clustering algorithm 

The most basic MST-based clustering algorithm consists of two steps. First, construct an MST on 
the complete graph of all points. Then, remove inconsistent edges from the MST to complete the 
clustering. Inconsistent edges are the longest edges under ideal conditions, where there are no outliers 
and the clusters are well separated. The MST-based clustering algorithm is usually divided into three 
phases: 1) constructing the MST; 2) eliminating inconsistent edges from the MST graph to create the set 
of connected components; 3) repeating phase 2 until the termination condition is satisfied. Figure 1 
shows the main steps of the MST-based clustering algorithm. Figure 1(a) is the initial graph of the 
spiral dataset. Figure 1(b) constructs a minimum spanning tree using all the points in the dataset. The 
black and yellow lines are the edges of MST, and the two yellow lines (E1 and E2) are the two longest 
edges of the minimum spanning tree. After cutting off these two longest edges, three subtrees are 
obtained, each representing a cluster. Figure 1(c) shows the final clustering result, which is divided 
into three clusters. 

 

            （a）                       (b)                        (c) 

Figure 1. The main steps of the MST-based clustering algorithm. (a)  Spiral dataset; (b) 
Constructing an MST using all points; (c) Final clustering results. 

However, in the presence of outliers in the dataset, the longest edge does not necessarily 
correspond to the inconsistent edge. Therefore, a drawback of this algorithm is its vulnerability to 
outliers. Figure 2 shows a simple example of the impact of outliers on the MST-based clustering 
algorithm. Figure 2(a) is the initial graph of the Flame dataset. Figure 2(b) constructs an MST using 
all the points in the dataset. The black lines, red lines and yellow lines are all edges of the MST. Among 
them, the red edge is the longest edge in the MST. If we cut off this longest edge, it is obvious that we 
will not obtain the correct clustering result. In this MST, we should remove the yellow edge to achieve 
the desired result, but this yellow edge is often difficult to find. To solve this problem, our algorithm 
first eliminates some noises and boundary point that are not conducive to finding inconsistent edges 
before constructing the minimum spanning tree, creating an ideal environment to alleviate the 
difficulty of finding inconsistent edges. 
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(a)                           (b) 

Figure 2. The impact of outliers on the MST-based clustering algorithm. (a) Flame dataset; (b) 
Constructing an MST using all points. 

For n data points, 𝑂 𝑛  is the total cost of constructing an MST. The key step of MST-based 
clustering algorithm is to construct an MST, which is the reason for the low efficiency of the MST-
based clustering algorithm. To address this issue, our proposed algorithm uses selected representative 
points to replace all points to construct an MST, significantly reducing data size without affecting 
clustering quality, thereby improving the efficiency of the MST-based clustering algorithm. 

3. The proposed algorithm 

 

 (a)                       (b)                       (c) 

 

(d)                       (e)                       (f) 

Figure 3. The major steps of the R-MST. (a) Dividing the dataset into core points and noncore 
points; (b) Selecting representative points from the core points; (c) Constructing an MST of 
representative points; (d) Cutting out inconsistent edges in MST; (e) Assigning nonrepresentative 
points from core points; (f) Assigning noncore points. 
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Most MST-based clustering algorithms use the entire dataset to construct the MST, which leads 
to high computational overhead and sensitivity to outliers. Therefore, we propose a clustering 
algorithm based on an MST of representative points (R-MST). A simple example is given in Figure 3. 
First, we find the core points, which are shown by the circular points (sky-blue points) in Figure 3(a). 
The square points (black points) in Figure 3(a) are noncore points. Second, we select representative 
points from the core points, which are shown by the star-shaped points (red points) in Figure 3(b). The 
circular points (sky-blue points) in Figure 3(b) are the nonrepresentative points from the core points. 
Third, we construct an MST of representative points, as shown in Figure 3(c). Then, the inconsistent 
edges in the MST are identified and cut off. Figure 3(d) shows two subtrees obtained by cutting off an 
inconsistent edge. Each subtree represents a cluster, and the representative points on the subtree belong 
to the same cluster. Finally, each nonrepresentative point from the core points is assigned to the cluster 
to which its representative point belongs, as shown in Figure 3(e). Each noncore point is assigned to 
the cluster to which the nearest core point belongs, as shown in Figure 3(f). The specific process of R-
MST is illustrated in Algorithm 4. 

3.1. Core points 

The MST-based clustering algorithm is difficult to find the correct inconsistent edges under the 
interference of some noises and boundary point. Therefore, we eliminate noise and boundary point 
before constructing MST and create a relatively ideal environment, which makes it easier for the 
algorithm to find inconsistent edges. As shown in Figure 2, the two clusters in the Flame dataset are 
tightly connected, making it difficult to find suitable inconsistent edges. By removing the noise and 
boundary point, the core points of the two clusters are clearly separated, which is very conducive to 
the subsequent search for inconsistent edges. In our algorithm, noise and boundary point are classified 
as noncore points, and all points except noise and boundary point are classified as core points. The 
subsequent steps are mainly completed at the core point, and the noncore point can be allocated nearby 
at the final stage of the algorithm. 

The reverse nearest neighbors of a point refer to the set of data objects in the dataset that consider 
this data point as one of their nearest neighbors. According to the concept of natural neighborhood, the 
number of reverse neighbors of noise and boundary point is relatively small, which means that there 
are fewer points around them. On the contrary, the core points have relatively many reverse neighbors, 
and the core points are closer to the points around them. Therefore, we screen the core points based on 
reverse nearest neighbor and critical distance. 

Let 𝑋 𝑥 ,𝑥 ,…,𝑥  be a data set containing n samples. For each point 𝑥 , 𝑁 𝑥  denotes the 
𝑘th point closest to the 𝑥 , 𝑑 𝑥 , 𝑥  is the Euclidean distance between the point 𝑥  and point 𝑥 . 
The set of k nearest neighbors to the 𝑥  , denoted by 𝐾𝑁 𝑥   [27], can be further expressed as 
Definition 1. If point 𝑥  is one of the neighbors of point 𝑥  in its 𝐾𝑁 𝑥 , then 𝑥  is a reverse 
neighbor of 𝑥 . The set of reverse nearest neighbors to point 𝑥 , denoted by 𝑅𝑁 𝑥  [27], can be 
further expressed as Definition 2. The sum of the distances from 𝑥  to the k nearest points is 𝐷𝑁 𝑥 , 
can be further expressed as Definition 3. 𝐿𝑅𝑁 𝑥   denotes the number of the reverse nearest 
neighbors of point 𝑥 , can be further expressed as Definition 4. 𝐿𝑅𝑁 _𝑚𝑒𝑑 denotes the median of the 
number of the reverse nearest neighbors of all points, can be further expressed as Definition 5. 
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Definition 1: (k nearest neighbors) 

        k i j i j i k iKN x x X | d x ,x d x ,N x    (1) 

Definition 2: (Reverse nearest neighbors) 

     |k i m i k mRN x x X x KN x    (2) 

Definition 3: (The sum of the distances from 𝒙𝒊 to the k nearest points) 

     
1

,
k

k i i j i
j

DN x d x N x


  (3) 

Definition 4: (The number of the reverse nearest neighbors of point 𝒙𝒊) 

    k i k iLRN x | RN x |  (4) 

Definition 5: (The median of the number of the reverse nearest neighbors of all points) 

    k k i iLRN _ med Median LRN x | x X   (5) 

Definition 6: (Core point) For any point 𝑥 ∈ 𝐷, 𝐷 𝑥 ,𝑥 ,…,𝑥  denotes the initial dataset 
comprising n samples. If a point satisfies Condition 1 or Condition 2, it is considered a core point. 
Additionally, if a point satisfies neither Condition 1 nor Condition 2, it is considered as a noncore point. 
Condition 1 is to discover the core point from the perspective of reverse nearest neighbors, which is 
specifically represented as the number of the reverse nearest neighbors of point 𝑥  is not less than the 
median of the reverse nearest neighbors of all points. Condition 2 is to discover the core point from 
the perspective of distance, which is specifically represented as the 𝐷𝑁 𝑥  is not greater than the 
average of the sum of the distances of all points to their nearest 𝑘  neighbors. The parameter 𝑘  
refers to the value of the number of nearest neighbors in the initial dataset (𝐷). 

Condition 1: 

  
1 1

_k i kLRN x LRN med  (6) 

Condition 2: 

    
1 1

1

/
n

k i k j
j

ND x ND x n

  (7) 

Let 𝐶 𝑐 , 𝑐 , … , 𝑐  denote the set of core points, where m denotes the number of core points. 
The algorithm for dividing the dataset into core points and noncore points is shown in Algorithm 1. 
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Algorithm 1: Dividing the dataset into core points and noncore points 

Input: Dataset 𝐷= 𝑥 , 𝑥 , 𝑥 , … 𝑥 , 𝑘  
Output: The set of core points 𝐶 𝑐 , 𝑐 , 𝑐 , … 𝑐 , the set of noncore points 𝑂

𝑜 , 𝑜 , 𝑜 , … 𝑜  
/* Obtain 𝑘  nearest neighbors for each point in the initial dataset. */ 
For each 𝑥  in 𝐷 do 

Calculate 𝐾𝑁 𝑥  
End for 
/* Obtain reverse neighbors for each point in the initial dataset. */ 
For each 𝑥  in 𝐷 do 

Calculate 𝑅𝑁 𝑥  
End for  
Create 𝐶 ∅, 𝑂 ∅ 
/*Determine whether each point is a core point or a noncore point sequentially. */ 
For each 𝑥  in 𝐷 do 

If 𝑥  meets Condition 1 or Condition 2 then 
        𝐶 ← 𝐶 ∪ 𝑥  

Else 
        𝑂 ← 𝑂 ∪ 𝑥  
    End if 
End for 

3.2. Representative points 

Representative points can be seen as an important subset of a dataset, as they often have higher 
information value or representativeness, allowing for a reduction in computational and storage costs 
without sacrificing accuracy. When selecting representative points, it is important to consider factors 
such as the distribution, data density and distance measurement of the dataset to ensure an effective 
representation of its diversity. In addition, the number of representative points should be significantly 
smaller than the size of the original dataset. Inspired by the concept of representative points, 
Chowdhury et al. treat each representative point found as a subcluster, and they then complete the 
clustering by merging the subclusters [27]. The method they proposed for selecting representative 
points is to find the point with the highest density within a neighborhood of a point as its representative 
point. This method is effective for datasets with relatively uniform density distributions. However, in 
datasets with varying densities, it may lead to the scarcity and dispersion of representative points within 
clusters composed of low-density points. Therefore, we propose an improved strategy for selecting 
representative points, aiming to achieve a more uniform distribution of representative points within 
clusters composed of low-density points. 

Our improved selection strategy for representative points considers both density and nearest 
neighbor distance. Based on the strategy of selecting the highest density points in the neighborhood as 
representative points, an additional criterion is added to allow some points with low density and a large 
average distance between them and their surrounding neighbors to select themselves as representative 
points. If any point chooses the point with the highest density within its nearest neighbor range as the 
representative point, it may result in abnormally large distances between adjacent representative points. 
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For example, the adjacent representative points v3 and v4 in Figure 5(d). If point v0 between points 
v3 and v4 is chosen as the representative point, this problem can be avoided, as shown in Figure 5(b). 
The characteristics of key points like v0 are low density and large average distance from surrounding 
neighbors. They play a very important role in sparse areas. If these points are lost, it will damage the 
overall structure of the sparse area, causing abnormal long edges to be generated inside the sparse 
cluster during MST construction, which may result in incorrect clustering results when a sparse cluster 
is divided into multiple clusters. Therefore, selecting such points as representative points will greatly 
improve the distribution uniformity of representative points in sparse areas. In addition, our improved 
strategy has almost no impact on the selection of representative points for dense regions, because the 
point density in this region is generally high, so it does not meet our additional criteria. The flow 
diagram illustrating our improved method for selecting representative points is shown in Figure 4. 
Algorithm 2 shows the details of selecting representative points. 

 

Figure 4. Flow diagram for selecting representative points. 
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Algorithm 2: Selecting representative points 

Input: The set of core points C 𝑐 , 𝑐 , 𝑐 , … 𝑐 , 𝑘  
Output: The set of representative points 𝐷𝑅𝐸𝑃 𝑑𝑟𝑒𝑝 , 𝑑𝑟𝑒𝑝 , . . . , 𝑑𝑟𝑒𝑝  , the set of 

nonrepresentative points 𝑁𝐷𝑅𝐸𝑃 𝑛𝑑𝑟𝑒𝑝 , 𝑛𝑑𝑟𝑒𝑝 , . . . , 𝑛𝑑𝑟𝑒𝑝  
/* Obtain the 𝑘  nearest neighbors for each core point in the set C. */ 
For 𝑐  in C do 

Calculate 𝐾𝑁 𝑐   
End for 
/* Obtain the reverse neighbors for each core point in the set C. */ 
/* Obtain the sum of distances between each core point and its 𝑘  nearest neighbors within the 

set C. */ 
For 𝑐  in C do 

Calculate 𝑅𝑁 𝑐  
Calculate 𝐷𝑁 𝑐  

End for 
/* Obtain the density of each core point*/ 
For 𝑐  in C do 

Calculate 𝜌 𝑐  
End for 
Calculate 𝜌 𝑚𝑒𝑑，𝑚𝑎𝑥 𝑑，𝑚𝑒𝑎𝑛 𝑑 
/* The set REP stores the representative points corresponding to each core point. */ 
Create a set 𝑅𝐸𝑃 ∅ 
For 𝑐  in C do 

If 𝑐  meets Condition 3 then  /*Scenario (1) for selecting representative points. */ 
                           𝑅 𝑐 𝑐  

Else if 𝑐  meets Condition 4 then /*Scenario (2) for selecting representative points. */ 
   𝑅 𝑐 𝑐  

Else  /*Scenario (3) for selecting representative points. */ 
          Calculate 𝑅 𝑐  according to Eq (9)  
        End if 
    End if 

/*Add the representative point corresponding to core point to the REP. */ 
    𝑅𝐸𝑃 ← 𝑅𝐸𝑃 ∪ 𝑅 𝑐  
End for 
Remove duplicate elements from REP to obtain the final representative point set DREP. 
Obtain the set of nonrepresentative points NDREP according to Eq (16). 

We specify the representative points for each core point in three different scenarios. Scenario (1): 
if the density of a point is low and it is far from its neighbors, its representative point is also itself. 
Scenario (2): if a point does not satisfy scenario (1), but its density is higher than the density of any 
point within its 𝑘  nearest neighbor range, its representative point remains itself. Scenario (3): if a 
point does not satisfy scenarios (1) and (2), its representative point is chosen as the neighbor within 
the 𝑘  nearest neighbor range with the highest density. The density is represented by Definition 7. 
The representative point is described as shown in Definition 8. Algorithm 2 shows the details of 
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selecting a representative point. For any point 𝑐 ∈ 𝐶, 𝐶 𝑐 ,𝑐 ,…,𝑐  denotes the core point set 
comprising m core points. The parameter 𝑘  refers to the value of the number of nearest neighbors 
in the core point set (𝐶). 

Definition 7: (Density) The traditional radius-based density estimation method is difficult to 
accurately evaluate the density level of each data point. Therefore, in order to better adapt to the dataset 
with different densities, the nearest neighbor characteristics of adjacent points around each point are 
comprehensively considered when evaluating the density of each point. If the number of the reverse 
nearest neighbors of the point is greater than 0, the density is the number of the reverse nearest neighbors 
of this point plus the number of the reverse nearest neighbors for each of its reverse nearest neighbors. 
If the number of the reverse nearest neighbors of the point is 0, the density of the point is 0. 𝜌 𝑐  
represents the density of point 𝑐 . 

  
   

 
 

 

2 2 2

2

2

, 0

0 , 0
j k i

k i k j k i
c RN c

i

k i

LRN c LRN c LRN c
c

LRN c



  
 
 


  (8) 

Definition 8: (Representative points) ∀ 𝑐  ∈ 𝐶, 𝑅 𝑐  represents the representative point of 𝑐 . 
If 𝑐   satisfies Condition 3, then 𝑅 𝑐 𝑐  . If 𝑐   does not satisfy Condition 3, but satisfies 
Condition 4, then 𝑅 𝑐 𝑐 . If 𝑐  does not satisfy Condition 3 and does not satisfy Condition 4, then  

  
 

 
2j k i

i j
c KN c

R c arg max c


   (9) 

Condition 3: 

  ic _med   (10) 

 And  
2 2k i

max_ d mean _ d
DN c mean _ d

   
 

 (11) 

Condition 4: 

      
2j k i i jc KN c , c c     (12) 

where the constant 2 in Eq (11) was obtained based on a large number of experiments. 𝜌 𝑚𝑒𝑑 is the 
median of the density of all points in the core point set C. 𝑚𝑎𝑥 𝑑 is the maximum value of the sum 
of distances between a point in the core point set C and the points within its 𝑘  nearest neighbor range. 
𝑚𝑒𝑎𝑛 𝑑 is the average of the sum of distances between all core points and points within their 𝑘  
nearest neighbor range. 

    i i_ med Median c | c C    (13) 

  
2

j
k j

c C
max_ d max DN c


  (14) 
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2

1

m

k i
i

mean _ d DN c / m


   (15) 

Get a set of representative points 𝑅𝐸𝑃 𝑅 𝑐 , 𝑅 𝑐 , . . . , 𝑅 𝑐  until the end of the election. 
Some points with higher density may serve as representative points for multiple points, as shown in 
Figure 5. Therefore, the number of representative points is much smaller than the number of sample 
points. By removing redundant duplicate elements from the REP, we can obtain the final set of 
representative points, denoted as 𝐷𝑅𝐸𝑃 𝑑𝑟𝑒𝑝 , 𝑑𝑟𝑒𝑝 , . . . , 𝑑𝑟𝑒𝑝 , where 𝑛𝑟𝑒𝑝 is the number 
of representative points. In the set 𝐶, all nonrepresentative points are considered as the set 𝑁𝐷𝑅𝐸𝑃, 
which is denoted as: 

  i iNDREP c C c DREP     (16) 

        

(a)                                          (b) 

        

(c)                                          (d) 

Figure 5. The selection result of the representative point. (a) The selection results of our improved 
representative point selection method; (b) Construct an MST using the representative points from 
Figure 5(a); (c) The selection results of the representative point method based solely on density. 
(d) Construct an MST using the representative points from Figure 5(c). 
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In Figure 5(a),(c), the black lines with arrows point to the representative points of each point. If 
a point is not pointing to any other point, it means that it has chosen itself as the representative point. 
All selected representative points are denoted by red star-shaped points, while nonrepresentative points 
are represented by blue circular points. In Figure 5(b), the yellow edge connecting vertex v1 and vertex 
v2 is the longest edge on MST, and in Figure 5(d), the yellow edge connecting vertex v3 and vertex 
v4 is the longest edge on MST. 

3.3. Constructing an MST of representative points and identifying inconsistent edges 

We use the selected representative points to construct the MST. The MST of representative points 
is described by Definition 9. The specific algorithm for constructing MST adopts Prim [28] algorithm, 
which is an algorithm based on greedy strategy to obtain the MST in a weighted connected graph. The 
basic flow of the algorithm includes the following steps: randomly select a node from the graph as the 
starting point, add it to the minimum spanning tree and then add the node connected with the edge with 
the minimum weight among the adjacent nodes to the minimum spanning tree, and repeat this process 
until the minimum spanning tree contains all nodes. 

Definition 9: (The MST of representative points) Assume that 𝐺 𝑋 𝑉, 𝐸   denotes a 

weighted undirected connected graph with edge set 𝐸 𝑒 𝑥 , 𝑥 |𝑥 , 𝑥 ∈ 𝐷𝑅𝐸𝑃, 𝑖 𝑗 , point 

set 𝑉 𝐷𝑅𝐸𝑃, the weight of each edge 𝑒  in graph 𝐺 𝑋  is denoted as 𝑤 𝑥 , 𝑥 . The MST of the 

graph 𝐺 𝑋   is denoted by 𝑊 𝑀𝑆𝑇 𝑚𝑖𝑛 ∑ 𝑤 𝑥 , 𝑥, ∈ , ∈  , defined as a subset of 𝐸 , 

connecting all vertices in 𝑉 with minimum total weight and without cycles. 
In most MST-based clustering algorithms, it is often necessary to provide the number of clusters 

or a distance threshold when cutting inconsistent edges. However, in reality, we may not know the 
number of clusters in advance and find it difficult to find a suitable distance threshold. Therefore, the 
current challenge is how to adaptively identify inconsistent edges. As we mentioned earlier, before 
building the minimum spanning tree, after removing the noise and some boundary point, the core 
points of two adjacent clusters are obviously separated, which creates favorable conditions for 
identifying inconsistent edges. At this point, we can easily achieve adaptive recognition of 
inconsistent edges using the nearest neighbor method, without the need to provide the number of 
clusters and distance thresholds. The main steps of our proposed adaptive recognition of inconsistent 
edges include: 1) Arranging all edges in MST in descending order of edge length. 2) Starting from the 
longest edge, determine whether the condition for inconsistent edges is met. 3) Determine the 
remaining edges in the order sorted by their length until the first time an edge does not meet the 
condition for inconsistent edges, and then end the search for inconsistent edges. After the search for 
inconsistent edges ends, the number of clusters will be automatically obtained. We set the initial cluster 
number to 1, and each time an inconsistent edge is cut, the number of clusters will increase by 1. 
Therefore, the number of clusters equals to the number of inconsistent edges plus 1. The specific 
algorithm process is shown in Algorithm 3. 

Definition 10: (mutual k nearest neighbor) 

∃ 𝑝𝑜𝑖𝑛𝑡 𝑐 , 𝑝𝑜𝑖𝑛𝑡 𝑐 , 𝑖𝑓 𝑐 ∈ 𝐾𝑁 𝑐 ∧  𝑐 ∈ 𝐾𝑁 𝑐  , then 𝑐   and 𝑐   are mutual 𝑘  nearest 

neighbors. 
The condition for determining inconsistent edges: As shown in Figure 6, assuming that two 

vertices connecting an edge are 𝑝  and 𝑝 , 𝑝  and its affiliated points (a point whose representative 
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point is 𝑝  is called an affiliated point of 𝑝 , such as 𝑝 , 𝑝 , 𝑝 , 𝑝  in Figure 6) form the set 𝑆1, 
and 𝑝  and its affiliated points (a point whose representative point is 𝑝  is called an affiliated point 
of 𝑝 , such as 𝑝 , 𝑝 , 𝑝  in Figure 6) form the set 𝑆2. If any point in the set 𝑆1 has no mutual 𝑘  
neighbor relationship with any point in set 𝑆2, then the edge is inconsistent. As long as there is a point 
in set 𝑆1 and any point in set 𝑆2 that have a mutual 𝑘  neighbor relationship, then that edge is not 
an inconsistent edge. Mutual k nearest neighbor [29] is represented by definition 10. 

Algorithm 3: Identifying inconsistent edges 

Input: An MST of representative points, 𝑘  

Output: The set of inconsistent edges 𝑆, the number of clusters 𝑛𝑐 

/*E denotes the set of edges of the MST, 𝑒 𝑑𝑟𝑒𝑝 , 𝑑𝑟𝑒𝑝 ∈ 𝐸 and 𝑤 𝑑𝑟𝑒𝑝 , 𝑑𝑟𝑒𝑝  is the 

weight corresponding to 𝑒 𝑑𝑟𝑒𝑝 , 𝑑𝑟𝑒𝑝 */ 

Sort all MST edges in descending order by weight size to get a weight list 𝑤  

Create 𝑆 ∅, 𝑆1 ∅, 𝑆2 ∅, 𝑛𝑐 1 

For 𝑤 𝑑𝑟𝑒𝑝 , 𝑑𝑟𝑒𝑝  in 𝑤  do 

    /*The edge 𝑒 𝑑𝑟𝑒𝑝 , 𝑑𝑟𝑒𝑝   associated with weight 𝑤 𝑑𝑟𝑒𝑝 , 𝑑𝑟𝑒𝑝  , connects two 

representative points 𝑑𝑟𝑒𝑝  and 𝑑𝑟𝑒𝑝 , which are subsequently added to the empty sets S1 and S2, 

respectively. */ 

    𝑆1 ← 𝑆1 ∪ 𝑑𝑟𝑒𝑝  

    𝑆2 ← 𝑆2 ∪  𝑑𝑟𝑒𝑝  

    Add all the points in the core point set whose representative point is 𝑑𝑟𝑒𝑝  to S1. 

    Add all the points in the core point set whose representative point is 𝑑𝑟𝑒𝑝  to S2. 

/*When an edge is not found to be inconsistent for the first time, the iteration is halted, 

marking the conclusion of the process of identifying inconsistent edges. */ 

If exists 𝑐 ∈  𝑆1, 𝑐 ∈  𝑆2, 𝑐 ∈ 𝐾𝑁 𝑐 ∧  𝑐 ∈ 𝐾𝑁 𝑐  then 

        break 

Else  

    /*The identified inconsistent edges are added to the set S of inconsistent edges. */ 

        𝑆 ← 𝑆 ∪  𝑒 𝑑𝑟𝑒𝑝 , 𝑑𝑟𝑒𝑝  

        /*S1 and S2 are emptied to be used for the next iteration. */ 

        𝑆1 ∅ 

        𝑆2 ∅ 

        /*Each time an inconsistent edge is detected, the number of clusters increases by 1. */ 

        𝑛𝑐 𝑛𝑐 1 

    End if 

End for 
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Figure 6. Identify inconsistent edges. 

3.4. Assigning nonrepresentative points and noncore points 

Assuming that the number of inconsistent edges is m, then m + 1 subtrees are obtained by cutting 
these inconsistent edges from the MST. Each subtree represents a cluster, so the number of clusters is 
also m + 1. Representative points on the same subtree belong to a cluster, and representative points on 
different subtrees are not in a cluster. The next step is to assign each nonrepresentative point to the 
cluster to which their representative points belong. If point 𝑥   is a nonrepresentative point, its 
representative point is 𝑥 , that is, 𝑅 𝑥 𝑥 . If 𝑥  belongs to cluster c, then 𝑥  will join c. The last 
step is to assign noncore points (noise and some boundary points). For the processing of such points, 
we adopt the measure of assigning them to the cluster where the nearest core point belongs. If point 
𝑥  is a noncore point, the closest core point to it is 𝑥 . If 𝑥  belongs to cluster c, then 𝑥  will join c. 
After introducing all the steps, we provide Algorithm 4 to describe the entire process of R-MST. 

Algorithm 4: R-MST: fast clustering algorithm based on MST of representative points 
Input: Dataset 𝐷= 𝑥 , 𝑥 , 𝑥 , … 𝑥 , 𝑘 , 𝑘  
Output: Clustering results of dataset D 
Step1: According to Algorithm 1, the points in the dataset D are divided into core points and 

noncore points. 
/* At the end of step 1, the set of core points 𝐶 𝑐 , 𝑐 , 𝑐 , … 𝑐  and the set of noncore points 

𝑂 𝑜 , 𝑜 , 𝑜 , … 𝑜  are obtained, where m is the number of core points and n-m is the number of 
noncore points. */ 

Step2: According to Algorithm 2, the representative points for each core point are selected. 
/*At the end of step 2, the set of representative points 𝐷𝑅𝐸𝑃 𝑑𝑟𝑒𝑝 , 𝑑𝑟𝑒𝑝 , . . . , 𝑑𝑟𝑒𝑝  and 

the set of nonrepresentative points 𝑁𝐷𝑅𝐸𝑃 𝑛𝑑𝑟𝑒𝑝 , 𝑛𝑑𝑟𝑒𝑝 , . . . , 𝑛𝑑𝑟𝑒𝑝  are obtained, where 
nrep is the number of representative points and m-nrep is the number of nonrepresentative points. */ 

Step3: Constructing an MST using the Prime algorithm on the complete graph generated by the 
representative points. 

Step4: Identifying inconsistent edges in MST according to Algorithm 3, and then remove all 
inconsistent edges. 

/* At the end of step 4, the clustering results of the representative points are obtained. */ 
Step5: Assigning each nonrepresentative point. 
/* At the end of step 5, the clustering results of the core points are obtained. */ 
Step6: Assigning each noncore point. 
/* At the end of step 6, the clustering results of dataset D are obtained. */ 
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3.5. Time complexity analysis 

For a dataset containing n sample points, the time overhead of the R-MST to complete the clustering 
is mainly in the following aspects: 1) The time complexity of finding core points is 0 𝑛 . 2) The time 
complexity of selecting representative points is 0 𝑚 , where m is the number of core points and m is 
less than n. 3) The time complexity of constructing an MST of representative points is 0 𝑛𝑟𝑒𝑝 , 
where 𝑛𝑟𝑒𝑝 is the number of representative points and 𝑛𝑟𝑒𝑝 is much smaller than n. 4) The time 
complexity of identifying inconsistent edges is 0 𝑛𝑟𝑒𝑝  . 5) The time complexity of assigning 
nonrepresentative points is 0 𝑚 . 6) The time complexity of assigning noncore points is less than 0 𝑛 . 
In summary, the time complexity of the R-MST is approximated as 0 𝑛𝑟𝑒𝑝 . 

Based on the experimental analysis that follows, in an ideal state, the number of representative 
points is approximately 1/20 of the entire dataset. That is, 𝑛𝑟𝑒𝑝: 𝑛 1: 20, so 0 𝑛𝑟𝑒𝑝 0 𝑛 /400. 
Although the R-MST is relatively efficient, the number of representative points also increases 
proportionally as the dataset grows, which limits the application of the algorithm on extremely large-
scale datasets. To alleviate this constraint, we will investigate in our future work how to reduce the 
dependency of the number of representative points on dataset size, such that the number of 
representative points can be kept very low even for very large datasets. Additionally, it is crucial to 
avoid the quadratic time complexity of constructing minimum spanning trees, and this future work 
will be discussed in detail in the conclusion. 

4. Experimental result and analysis 

4.1. Experiment preparation 

For the experiment, we tested the R-MST on synthetic datasets and UCI datasets. The comparison 
algorithms included DPC [12], FastDP [13], DBSCAN [10] and MST-CDC [26]. These four 
comparison algorithms are all very distinctive and can be compared with our proposed algorithm (R-
MST) in a comprehensive manner from different perspectives. The advantage of the DPC is its ability 
to handle non-spherical, complexly distributed data sets and does not require an artificially set number 
of clusters. The FastDP is an optimization method based on the DPC and has the advantage of being 
able to handle large data sets quickly and efficiently. The advantage of DBSCAN clustering algorithm 
is that it can automatically handle clusters of arbitrary shape and size, and can efficiently handle noisy 
data points. MST-CDC can also identify inconsistent edges on data sets containing noisy points to 
obtain optimal clusters. 

It is difficult to comprehensively assess the merits of clustering results with a single clustering 
metric. Different clustering metrics focusing on different aspects can help us understand the clustering 
results from different perspectives and help to better evaluate the effectiveness of clustering algorithms. 
Therefore, we used three metrics. These evaluation metrics included the adjusted rand index (ARI) [30], 
normalized mutual information (NMI) [31] and homogeneity (Homo) [32]. ARI is a metric used to 
compare the similarity between the clustering algorithm results and the true clustering labels. When 
comparing the clustering algorithm results, the ARI metric takes into account the different 
arrangements of clustering labels, and thus can reflect the similarity between clustering results more 
accurately. Furthermore, the ARI metric also considers the metric error due to random chance, which 
improves the reliability of the comparison results. The NMI clustering metric calculates a score by 
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measuring the similarity between two clustering results. It uses normalized mutual information from 
information theory, which treats clustering results as random variables, and is used to represent the 
mutual information between different clustering results on the same data set. Usually, higher NMI 
values indicate higher quality of clustering results. The measurement goal of Homo is the score when 
each cluster contains only a single sample category. This indicator calculates the proportion that all 
samples in each real category belong to the same cluster, and averages the values of all real categories. 
Simply put, the higher the Homo, the higher the probability that each cluster represents the clustering 
result only contains one category, and the more accurate and feasible the clustering result is. 

Table 1. Synthetic datasets. 

Dataset Number of instances Dimension Number of categories 

ED-Hexagon 361 2 2 
Jain 373 2 2 

Three-circles 299 2 3 

Heart-shaped 213 2 3 

Ls3 1735 2 6 

D31 3100 2 31 

2d-20c-no0 1517 2 20 

T7 8000 2 9 

Table 2. UCI datasets. 

Dataset Number of instances Dimension Number of categories 

Zoo 101 16 7 
Cancer 683 9 2 

Seeds 210 7 3 

WBC 683 9 2 

Wine 178 13 3 

Ecoli 336 8 8 

Iris 150 4 3 

Vote 435 16 2 

Vowel 871 3 6 

WDBC 569 30 2 

Dermatology 358 34 6 

Pendigits 3498 16 10 

We used datasets of different sizes and dimensions to examine the performances of our algorithms. 
The eight synthetic datasets contain ED-Hexagon [33], Jain [34], Three-circles [34], Heart-shaped [33], 
Ls3 [34], D31 [34], 2d-20c-no0 [34] and T7 [34]. The details of these synthetic datasets are shown in 
Table 1. The twelve UCI datasets [35] contain Zoo, Cancer, Seeds, WBC, Wine, Ecoli, Vote, Vowel, 
WDBC, Dermatology and Pendigits. The details of these UCI datasets are shown in Table 2. In addition, 
in the efficiency test, we generated moons datasets with 2000, 4000, 6000, 8000, 10,000, 12,000 
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sample points using the program. In discussing the effect of the parameter 𝑘   on the number of 
representative points and the running time of the algorithm, we generated a dataset with 10,000 sample 
points for testing. 

The experiments were conducted on a PC with an Intel Core i5 3.6 GHZ with 4 GB RAM, 
Windows 10 and Python 3.7. 

4.2. Experimental results on synthetic datasets 

In this paper, we have chosen eight synthetic datasets to validate the clustering quality of R-MST 
and four other algorithms. These eight datasets cover different types of datasets, including varying 
density, rich noise interference, as well as datasets with diverse linearity, circularity and sphericity. 
Such datasets can effectively simulate complex distribution scenarios in real-world settings, 
facilitating the validation of algorithm generalizability. Additionally, in the presence of significant 
noise, the robustness of the algorithm can be tested as well. The key information for these datasets is 
shown in Table 1. The optimal parameters of the five algorithms for the eight synthetic datasets are 
shown in Table 3. 

Figure 7 shows the clustering result of ED-Hexagon. The ED-Hexagon dataset contains a convex 
cluster and a non-convex cluster. The density distribution of this dataset is relatively uniform. Both the 
R-MST and DBSCAN identified the appropriate clusters, while the DPC, FastDP and MST-CDC 
produced incorrect clustering results. 

Figure 8 shows the clustering results of Jain. Jain is composed of two clusters with large 
differences in density distribution. The R-MST was able to correctly identify the clusters on this dataset. 
The other four algorithms produced incorrect results. 

Figure 9 shows the clustering results of Three-circles. Three-circles consist of two rings and one 
solid circle. The R-MST and DBSCAN produced acceptable clustering results. The DPC, FastDP and 
MST-CDC produced incorrect results. The concentration of multiple high-density points in a cluster 
can easily lead to the biased selection of cluster centers, which, in turn, can lead to the incorrect 
distribution of the noncentral points. MST-CDC cuts off too many inconsistent edges, which results in 
the generation of multiple subtrees by the outermost circle points, and the merging process does not 
merge all the outermost circle subtrees. 

Figure 10 shows the clustering results of Heart-shaped. Heart-shaped consists of three heart 
shapes with a large difference in density distribution. The R-MST, DPC, FastDP and DBSCAN 
produced satisfactory clustering results on this dataset. The MST-CDC produced incorrect results 
because it identified two normal points as noise. 

Figure 11 shows the clustering results of Ls3. The Ls3 dataset contains four spherical clusters and 
two linear clusters. Except for the DPC and FastDP, the other three algorithms obtained correct results. 
Because the DPC could not choose the clustering centers reasonably, it produced incorrect results. 

Figure 12 shows the clustering results of D31. The R-MST, DPC and FastDP produced 
satisfactory clustering results on this dataset. DBSCAN identifies the noise, and the clustering results 
are relatively good. The MST-CDC causes unsatisfactory results due to excessive noise interference.  

Figure 13 shows the clustering results of 2d-20c-no0. 2d-20c-no0 is composed of a number of 
linear clusters and blocky clusters. The DPC, FastDP and R-MST all obtained correct clustering results. 
DBSCAN identified one of the clusters as noise and identified some close clusters as one cluster, but 
the overall clustering results were relatively good. The MST-CDC produced incorrect clustering results. 
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Figure 14 shows the clustering results of T7. T7 consists of 9 clusters of different shapes and 
some noise. DBSCAN and R-MST achieved relatively good clustering results, while the other three 
algorithms showed unsatisfactory clustering results. The clustering centers of DPC and FastDP were 
selected incorrectly. MST-CDC identified the noise, but the clustering results were poor. 

The performance of R-MST in clustering is demonstrated as excellent across these 8 different 
types of datasets, exhibiting the capability to detect and aggregate clusters of diverse shapes and 
densities. Additionally, R-MST shows remarkable results in complex datasets like T7, which contain 
a considerable amount of noise, thereby highlighting the strong robustness of the algorithm. 

Table 3. Optimal parameters of 5 algorithms on 8 synthetic datasets. 

Algorithm 

Parameters 

DPC FastDP DBSCAN MST-CDC R-MST 

dc k Eps/MinPts None 𝑘 /𝑘  

ED-Hexagon 15 18 20/4 --- 2/6 

Jain 4.65 18 3.1/8 --- 2/9 

Threecircles 0.08 18 0.06/4 --- 1/6 

Heart-shaped 18 18 20/4 --- 9/6 

Ls3 10.28 18 10/8 --- 1/7 

D31 1.27 18 0.5/6 --- 15/5 

2d-20c-no0 1.19 18 1.2/20 --- 10/20 

T7 29.17 18 10/12 --- 80/9 

 

(a)              (b)              (c)             (d)             (e) 

Figure 7. The result of ED-Hexagon. (a) DPC; (b) FastDP; (c) DBSCAN; (d) MST-CDC; (e) R-MST. 

 

(a)              (b)              (c)             (d)             (e) 

Figure 8. The result of Jain. (a) DPC; (b) FastDP; (c) DBSCAN; (d) MST-CDC; (e) R-MST. 
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(a)              (b)              (c)             (d)             (e) 

Figure 9. The result of Three-circles. (a) DPC; (b) FastDP; (c) DBSCAN; (d) MST-CDC; (e) R-MST. 

 

(a)              (b)              (c)             (d)             (e) 

Figure 10. The result of Heart-shaped. (a) DPC; (b) FastDP; (c) DBSCAN; (d) MST-CDC; (e) R-MST. 

 

(a)              (b)              (c)             (d)             (e) 

Figure 11. The result of Ls3. (a) DPC; (b) FastDP; (c) DBSCAN; (d) MST-CDC; (e) R-MST. 

 

(a)              (b)              (c)             (d)             (e) 

Figure 12. The result of D31. (a) DPC; (b) FastDP; (c) DBSCAN; (d) MST-CDC; (e) R-MST. 
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(a)              (b)              (c)             (d)             (e) 

Figure 13. The result of 2d-20c-no0. (a) DPC; (b) FastDP; (c) DBSCAN; (d) MST-CDC; (e) R-MST. 

 

(a)              (b)              (c)             (d)             (e) 

Figure 14. The result of T7. (a) DPC; (b) FastDP; (c) DBSCAN; (d) MST-CDC; (e) R-MST. 

 

Figure 15. The moons dataset. 

It is necessary to test the efficiency of clustering algorithms, as the efficiency of the algorithm 
directly affects its usability and practicality. In the efficiency test, we tested the runtime of R-MST and 
four comparative algorithms on datasets with varying numbers of data points. To ensure fairness, we 
generated moons datasets with 2000, 4000, 6000, 8000, 10,000 and 12,000 sample points. The five 
algorithms achieved correct clustering results on different numbers of moons datasets. Figure 15 shows 
the moons dataset. Table 4 shows the running times of the algorithms on the different numbers of 
moons datasets. From Table 4, we can see that the fastest running algorithm is FastDP, because this 
algorithm eliminates the quadratic time complexity limitation of DPC. The second fastest algorithm is 
our proposed R-MST, which uses representative points instead of all points to construct the MST, 
reducing the computational overhead to a certain extent. The time efficiency of the R-MST is not as 
fast as FastDP, but the clustering quality is better than FastDP. The third fastest algorithm is DPC. The 
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relatively slower algorithm is DBSCAN. The slowest algorithm is MST-CDC. As the number of 
sample points gradually increases, the running time of all five algorithms increases to different degrees. 
However, FastDP and R-MST change relatively slowly, while the other three algorithms change more 
rapidly. In summary, R-MST has high efficiency and is capable of handling large datasets. 

Table 4. Running time of 5 algorithms on moons datasets (s). 

Algorithm 2000 4000 6000 8000 10,000 12,000 

DPC 9 36 84 154 312 603 

FastDP 0.1 0.4 0.7 0.9 1.3 1.6 

DBSCAN 27 112 249 442 902 1872 

MST-CDC 54 201 460 802 1532 3553 

R-MST 2 6 14 24 54 89 

As shown in Figure 16, we used the program to generate a 10-blobs (number of 10-blobs = 10,000) 
for testing the effect of the parameter 𝑘  on the number of representative points, and on the running 
time of the algorithm. These experiments were carried out with constant parameter 𝑘 . Figure 17 
demonstrates the change in the number of representative points as 𝑘   is increased. Figure 18 
demonstrates the change in algorithm running time as 𝑘  is increased. 

 

Figure 16. The 10-blobs dataset. 

As shown in Figure 17, when 𝑘  gradually increases, the number of representative points 
initially decreases, reaching a critical value (when 𝑘 150) and maintaining a relatively stable state. 
Finally, reaching another critical value (when 𝑘 400), the number of representative points begins 
to gradually increase. When the number of representative points reaches a stable state, its ratio to the 
number of all points in the dataset is approximately 1:20. We know that the time complexity of 
constructing MST for all points in the dataset using the Prime algorithm is 𝑂 𝑛 , where n represents 
the number of all points in the dataset. So, the time complexity of constructing MST for representative 
points is 𝑂 𝑛/20 . Therefore, the performance of R-MST has been significantly improved. 
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As shown in Figure 18, when 𝑘  gradually increases, the running time of the algorithm is kept 
in a stable range at first, and after the critical value of 𝑘 450, the running time begins to increase 
significantly. When 𝑘 50 and 𝑘 100, the number of representative points is relatively large, 
but the running time of the algorithm is less, because when 𝑘  becomes smaller, the time spent 
calculating 𝑘  neighbors decreases, so the overall time changes little. When 𝑘 450, the number 
of representative points increases, and the time spent calculating 𝑘  neighbors also increases, so the 
overall time will increase significantly. Therefore, the optimal range for parameter 𝑘  is 
approximately 𝑛/200 𝑘 𝑛/25, where 𝑛 represents the size of the original dataset. Within this 
range, changes in the value of 𝑘  have a relatively minor impact on the efficiency of the algorithm. 

 

Figure 17. The influence of the value of 𝑘  on the number of representative points. 

 

Figure 18. The Influence of 𝑘  value on Running Time. 

4.3. Experimental results on UCI datasets 

In this study, we conducted comparative experiments on 12 real high-dimensional UCI datasets 
to verify the effectiveness of the R-MST algorithm on high-dimensional datasets. These datasets are 
sourced from various real-world domains, including healthcare, biology, finance and others. As a result, 
the dimensions and characteristics of the data are highly diverse, making them suitable for testing the 
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generalizability of clustering algorithms. Additionally, UCI datasets often exhibit issues such as 
outliers, missing values and duplicates, which provide opportunities to evaluate and assess the 
robustness and resilience of clustering algorithms. The comparative algorithms involved in the 
experiment include DPC, DBSCAN and MST-CDC. The FastDP aims to improve the efficiency of 
DPC, and there is no significant change in clustering quality compared to DPC. Therefore, we did not 
use it for clustering quality comparison in the UCI datasets. The basic information of the experimental 
test dataset is shown in Table 2. The optimal parameters of the four algorithms on 12 UCI datasets are 
shown in Table 5, and the specific clustering performance is shown in Table 6. The results of the four 
algorithms based on measurements from the UCI dataset indicate that, except for the cancer and WBC 
datasets, the three indicators of the algorithm proposed in this paper are superior to the other three 
comparative algorithms on other datasets. For the Cancer and WBC datasets, the R-MST algorithm 
achieved the highest ARI and NMI values, followed by the HOMO values. In summary, the R-MST 
performs exceptionally well on UCI datasets, exhibiting better generalizability and robustness in 
practical applications. 

Table 5. Optimal parameters of 4 algorithms on 12 UCI datasets. 

Algorithm DPC DBSCAN MST-CDC R-MST 

Parameters dc Eps/MinPts None 𝑘 /𝑘  

Zoo 0.82 1.2/4 --- 16/3 

Cancer 0.98 0.4/6 --- 10/19 

Seeds 0.08 0.2/9 --- 5/16 

WBC 1.01 0.4/6 --- 10/19 

Wine 0.42 0.5/6 --- 7/6 

Ecoil 0.48 0.2/10 --- 5/2 

Iris 0.17 0.4/3 --- 9/6 

Vote 0.03 0.9/10 --- 24/17 

Vowel 0.15 0.1/10 --- 23/8 

WDBC 0.08 0.4/20 --- 26/14 

Dermatology 0.16 1.4/19 --- 20/4 

Pendigits 0.28 0.3/5 --- 23/2 

5. Discussion 

This paper proposes a fast-clustering algorithm based on MST of representative points. The 
algorithm replaces all points in the dataset with representative points to construct an MST, reducing a 
significant amount of computational overhead. In addition, we propose an adaptive method to identify 
inconsistent edges in the MST. After removing these inconsistent edges, the number of clusters can be 
effectively obtained. Experimental results demonstrate that this algorithm has high efficiency and 
clustering quality. However, as the amount of data increases, the number of representative points will 
also increase. This is unfavorable for handling large-scale datasets. 
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Table 6. Clustering performance of 4 algorithms on 12 UCI datasets. 

Dataset Algorithm ARI NMI Homo 

Zoo 

DPC 0.4972 0.7224 0.7490 
DBSCAN 0.9326 0.8968 0.8978 
MST-CDC 0 0 0 
R-MST 0.9515 0.9137 0.9109 

Cancer 

DPC 0.4934 0.4404 0.3964 
DBSCAN 0.8362 0.7456 0.7537 
MST-CDC 0.0050 0.0271 0.0048 
R-MST 0.8522 0.7530 0.7530 

Seeds 

DPC 0.7448 0.7194 0.7169 
DBSCAN 0.3693 0.5062 0.5788 
MST-CDC 0 0.0233 0.0061 
R-MST 0.8109 0.7707 0.7702 

WBC 

DPC 0.4934 0.4404 0.3964 
DBSCAN 0.8362 0.7456 0.7537 
MST-CDC 0.0050 0.0271 0.0048 
R-MST 0.8522 0.7530 0.7530 

Wine 

DPC 0.6724 0.7104 0.7096 
DBSCAN 0.4264 0.5266 0.4978 
MST-CDC -0.0087 0.0881 0.0344 
R-MST 0.7847 0.7872 0.7896 

Ecoli 

DPC 0.5618 0.5761 0.5017 
DBSCAN 0.4999 0.5109 0.4104 
MST-CDC 0.0610 0.1849 0.0796 
R-MST 0.7691 0.7279 0.7048 

Iris 

DPC 0.8857 0.8642 0.8640 
DBSCAN 0.5681 0.7337 0.5794 
MST-CDC 0.5681 0.7337 0.5794 
R-MST 0.9222 0.9011 0.9009 

Vote 

DPC 0.5921 0.5150 0.5241 
DBSCAN 0.4481 0.3977 0.5035 
MST-CDC 0.0746 0.0951 0.0349 
R-MST 0.6353 0.5438 0.5520 

Vowel 

DPC 0.4596 0.5658 0.5564 
DBSCAN 0.0076 0.0187 0.0105 
MST-CDC 0.2487 0.4717 0.5834 
R-MST 0.5132 0.6030 0.6603 

WDBC 

DPC 0.4964 0.4822 0.4374 
DBSCAN 0.4515 0.3560 0.3622 
MST-CDC 0.0048 0.0102 0.0053 
R-MST 0.6879 0.5828 0.5680 

Dermatology 

DPC 0.5293 0.6851 0.5531 
DBSCAN 0.4639 0.6522 0.5661 
MST-CDC 0.2048 0.4514 0.2959 
R-MST 0.7756 0.8484 0.8122 

Pendigits 

DPC 0.6478 0.7776 0.7630 
DBSCAN 0.5633 0.7384 0.7922 
MST-CDC 0.2053 0.0951 0.0349 
R-MST 0.7356 0.8323 0.9020 
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We have found that only a few edges in the complete graph play a role in constructing the MST, 
and these useful edges mostly connect vertices and their neighbors. This gives us some ideas, and we 
will try to construct a graph based on the neighbor relationship that can connect all vertices but has 
very few edges. The number of edges in this graph is only a few times the number of vertices, and then 
we will use the Kruskal algorithm [36] on this graph to obtain the minimum spanning tree. This will 
reduce the time complexity of our algorithm to 0 𝑛𝑙𝑜𝑔𝑛  and break the quadratic time complexity 
limitation of constructing MST in clustering algorithms. Because the time complexity of Kruskal 
algorithm is 0 𝑒𝑙𝑜𝑔𝑒 , where e is the number of edges in the graph, this algorithm is particularly suitable 
for finding the minimum spanning tree of graphs with sparse edges. The reason why Kruskal algorithm 
is not used in complete graphs is that the number of edges in a complete graph is 𝑛 𝑛 1 /2, which 
would make the overall time complexity of clustering algorithms become 0 𝑛 𝑙𝑜𝑔𝑛 . Furthermore, 
preserving a small set of representative points for extremely large datasets poses a challenge. In our 
future work, we plan to alleviate this problem by employing grid-based techniques. First, we divide 
the data space into regular grid cells. Then, based on characteristics such as the data volume and density 
within the grid cell, along with the features of adjacent grids, we select one or more suitable 
representative points from each grid. We can efficiently control the number of representative points by 
flexibly adjusting the grid size according to our needs. For instance, if we want to reduce the number 
of representative points, we can achieve this by enlarging the grid. The trade-off between grid size and 
accuracy is a challenge. On the one hand, a smaller grid size can provide more detailed information, 
but it may increase computational complexity and memory requirements. On the other hand, larger 
mesh sizes may sacrifice accuracy or fail to capture local changes. Finally, we will promote the 
combination of “selecting core points + selecting representative points” to more clustering algorithms 
to improve their performance. The essence of selecting core points is to roughly remove noise and 
boundary points from the dataset, as these points can have a significant impact on the effectiveness of 
clustering. Then, selecting representative points from the core points allows for reducing the data size 
while preserving the characteristics of the clusters. This combination can be seen as a preprocessing 
step for clustering algorithms, which not only mitigates the interference of noise and boundary points 
on the algorithm but also improves clustering efficiency to some extent. However, this combination 
also faces some challenges. First, the definition criteria for noise and boundary points may need to be 
determined based on specific application scenarios and requirements, which can lead to unstable 
selection of core points. For example, determining noise points and boundary points by setting distance 
thresholds. In density-based clustering algorithm DBSCAN, if the number of points in the 
neighborhood of a point is less than a certain threshold, the point is considered a noise point or 
boundary point. The selection criteria for noise points and boundary points can also be defined based 
on specialized knowledge in specific fields. For example, in image processing, changes in pixel 
intensity or texture continuity can be considered to determine noise points and boundary points. Second, 
selecting representative points requires balancing the preservation of key cluster features with the goal 
of compressing data to avoid information loss. This may necessitate the adoption of different strategies 
and metrics for selecting representative points. For example, spectral clustering can select nodes in 
each partition that are highly connected to other partitions as representative points. These nodes cannot 
only represent the characteristics of the partition they belong to, but also have some differences. The 
density peak clustering selects the center point of each cluster as a representative point to better 
represent the characteristics of the cluster. 
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