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Abstract: In this paper, the complete synchronization and Mittag-Leffler synchronization problems
of a kind of coupled fractional-order neural networks with time-varying delays are introduced and
studied. First, the sufficient conditions for a controlled system to reach complete synchronization
are established by using the Kronecker product technique and Lyapunov direct method under pinning
control. Here the pinning controller only needs to control part of the nodes, which can save more
resources. To make the system achieve complete synchronization, only the error system is stable. Next,
a new adaptive feedback controller is designed, which combines the Razumikhin-type method and
Mittag-Leffler stability theory to make the controlled system realize Mittag-Leffler synchronization.
The controller has time delays, and the calculation can be simplified by constructing an appropriate
auxiliary function. Finally, two numerical examples are given. The simulation process shows that
the conditions of the main theorems are not difficult to obtain, and the simulation results confirm the
feasibility of the theorems.
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1. Introduction

In the past decades, neural networks (NNs), as a kind of nonlinear network model similar to brain
intelligence, have been the focus of research because of their rich contents and wide applications [1–3].
As a famous physicist in the USA, Hopfield published two papers related to artificial NNs in the Pro-
ceedings of the National Academy of Sciences in 1982 and 1984 respectively, which caused a huge
response [4]. Subsequently, many researchers have conducted further analyses based on Hopfield’s
exploration. Since then, different types of NNs have been put forward, such as Hopfield NNs, bidirec-
tional associative memory NNs, fuzzy cell NNs, recurrent NNs and so on [5–11]. In particular, coupled
neural networks (CNNs) have attracted widespread attention, because the brain can be regarded as mul-
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tiple coupled neurons; so, the dynamic behaviors of CNNs are a vital step to further comprehend the
science of the human brain [12].

Fractional calculus began to appear in the 17th century, and its applications are very wide; not only
can it solve any order of differential problems, but it can also deal with any order of integral prob-
lems [13–16]. In fact, fractional-order calculus can be combined with NNs to form a new model called
fractional-order NNs (FONNs). When the order of FONNs is equal to 1, the FONNs can be trans-
formed into integer-order NNs. In particular, FONNs can solve more practical problems than integer-
order NNs because it has the special characteristics of heredity and infinite memory [17]. Hence,
FONNs are widely used in fluid mechanics, biological engineering, cell detection, signal processing,
etc. So, the dynamic behaviors of FONNs, such as chaos, different types of synchronization and sta-
bility have always been the focus of our discussion [18–22]. It is worth noting that many dynamic
analyses of coupled FONNs have been reported in recent years [13, 20, 23, 24]. A large number of
nodes interact with each other to form CFONNs, and each node can be regarded as a fractional-order
dynamic system. Therefore, the dynamic analysis of CFONNs is meaningful.

CFONNs are classically complex networks, and their synchronization phenomenon is the main
problem that has been explored by many researchers in the past decades [23]. There are many kinds
of synchronization, such as pinning synchronization, adaptive synchronization, finite time synchro-
nization, multi-quasi-synchronization and out lag synchronization and so on [13, 24–28]. On the one
hand, in [18] and [28], the stability and synchronization of FONNs with delay are studied. Adaptive
synchronization of CFONNs has been established based on ouput quantization control [25]. The sys-
tem studied by the authors of [10, 11] has no coupling term. On the other hand, in [29] the authors
discussed the Mittag-Leffler synchronization of FONNs. In [17], the Mittag-Leffler synchronization
of fractional-order memristive NNs with delays under linear and nonlinear adaptive control are stud-
ied respectively. Although the complete synchronization and Mittag-Leffler synchronization of NNs
have been discussed, these two types of synchronization for CFONNs with time-varying delays (CD-
FONNs) are rarely reported. In addition, because of the complexity of NNs, CNNs themselves may not
achieve synchronization; therefore, for the sake of solving the synchronization problem, many refer-
ences provide feasible control schemes [24, 28, 30–32]. For example, [24] provides pinning impulsive
control; in [28], a feedback control scheme is given; and, in [30], the authors offer a delay-dependent
distributed impulsive control scheme. And in order to choose fewer nodes to control, the related refer-
ences put forward pinning control schemes [3,26,33,34]. Inspired by these reports, this article analyzes
the complete synchronization of CFONNs under a pinning controller. But how many or which nodes
should be selected for control? Moreover, it is worth noting that most of the time the control parame-
ters play an important role in the controller. Hence, an adaptive control method with good performance
and self-adjusting control parameters has been reported [17, 35]. The design of adaptive control is
related to the construction of the Lyapunov function; so, we aimed to answer the questions of how to
design the controller and how to choose the appropriate Lyapunov function to make the neural network
synchronization faster. These are the difficulties of this paper.

In addition, time delays are inevitable in life, and they include constant delays, discrete delays,
mixed delays and time-varying delays, which are inevitable when a neuronal signal is transmitted. We
can see that the dynamic behaviors of NNs will be more complex and changeable due to the effect of
time delays [13,25,36–38]. In [36], the fractional-order complex network is composed of systems with
linear terms without delays and coupling terms with delays; then, the linear matrix inequality criterion
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is used to solve the synchronization problem of this network. As for the synchronization problem
of NNs with time delays, in [37] synchronization of NNs with time delays is discussed by using the
method of centralized data sampling. The highlight of [38] is that the system investigated has kernel
function, choosing an appropriate kernel function simplifies the calculation process and makes it easier
to achieve synchronization. Therefore, it is valuable to choose the NN with time delays for analysis.

From what has been discussed above, the primary contents of this article are a discussion of com-
plete synchronization under a pinning controller and a study of the Mittag-Leffler synchronization
under an adaptive controller of CDFONNs. This article has the following three highlights:

(1) The idea of pinning control is to control part of the nodes and make the error system achieve
stability so that the original system can attain synchronization. Compared to a normal linear controller
that controls all nodes, the resource cost of this method is lower, and it is more attractive and desirable
to choose fewer nodes to control the network.

(2) By designing a new adaptive controller, an important theorem is proposed to guarantee Mittag-
Leffler synchronization of CDFONNs. The application of the controller is clever.

(3) The results show that pinning control and adaptive control have positive effects on the syn-
chronization of CDFONNs. Under certain conditions, by controlling the gain coefficient and coupling
strength, the synchronization speed will change accordingly.

Here is the framework of the remaining sections: Section 1 ends with the basic notations to be used
in this paper. Section 2 not only gives the preparatory knowledge of fractional calculus, but it also pro-
vides the relevant definitions and lemmas, as well as the hypothesis required for the discussion in this
paper. In Section 3, two controllers are designed to obtain theorems about two types of synchroniza-
tion. In Section 4, two examples and simulation results verify the feasibility of the theorems. Finally,
Section 5 provides a summary.

Notations: For the rest of this article, we present the following notation descriptions. Z+ is the set
of positive integers, R and Rn are the sets of real numbers and the n-dimensional real Euclidean space,
respectively, and Rn×n denotes the set of n × n real matrices. L1[a, b] is the set of absolute integrable
functions on [a, b]. Denote Cℓ([t0,+∞),R) as the space of continuous and differentiable functions of
ℓ-order from [t0,+∞) to R. The transpose of Λ is denoted by ΛT. Λ1 ⊗ Λ2 denotes the Kronecker
product of matrices Λ1 and Λ2. For the matrix Λ ∈ Rn×n, the minimum eigenvalue of Λ is represented
by λmin(Λ), and similarly, λmax(Λ) denotes the maximum eigenvalue. T = {1, 2, · · ·,N}. Im is the m×m
identity matrix. || · || is the Euclidean norm.

2. Preliminaries and model

2.1. Preliminaries

The fractional integral of order q for a function F(t) ∈ L1[t0, b] with t ≥ t0 is defined by

RL
t0 D−qt F(t) =

1
Γ(q)

∫ t

t0
F(s)(t − s)q−1ds,

where q > 0, Γ(q) =
∫ ∞

0
tq−1e−tdt and Γ(q) is a gamma function.

The q-order Caputo fractional derivative of the function F(t) ∈ Cı+1([t0,+∞),R) is defined as

Dqt0F(t) =
1

Γ(ı − q)

∫ t

t0
(t − s)ı−q−1

F
(ı)(s)ds,
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where t ≥ t0 > 0 and ı ∈ Z+ such that ı − 1 ≤ q < ı.
In this paper, we apply Caputo’s fractional derivative; because the initial value in the sense of Caputo

is of the integer order, the initial value of the derivative of the integer order is easy to obtain and the
meaning is relatively clear, which is convenient for practical application modeling. More information
about fractional derivatives can be found in [24, 37, 39].

2.2. Model

CNNs have strong applicability and have been widely used to describe physical models in the fields
of natural science and bioengineering; coupling between nodes can be used to express the connections
and influences between some things. Compared with integer-order NNs, FONNs can more accurately
describe the changing process of a system because of their characteristics. And in real life, many
activities or things are affected by the time delays, so it is essential to consider the time delays. So it is
valuable to investigate the synchronization of CDFONNs.

Throughout this paper, consider a class of CDFONNs composed of N nodes governed by

Dqt0xi(t) = −Pxi(t) +QF̆ (xi(t)) + RF̆ (xi(t − ϱ(t))) + σ
N∑

j=1

ĝi jΓx j(t) + J, (2.1)

where i ∈ T and N ≥ 2 is the number of subnetworks. xi(t) = (xi1(t), · · ·, xin(t))T ∈ Rn denotes the
ith state vector of the NN, P = diag( p̂1, p̂2, · · ·, p̂n) > 0 represents the self-feedback term of the jth
neuron and F̆ (xi(t)) = (F̆1(xi1(t)), · · ·, F̆n(xin(t)))T ∈ Rn is the activation function. Q = (q̂i j)n×n is the
connection weight matrix and R = (r̂i j)n×n is the delayed connection matrix; ϱ(t) = (ϱ1(t), · · ·, ϱn(t))T

is the transmission delay vector with 0 ≤ ϱ1(t), · · ·, ϱn(t) ≤ ϱ, σ > 0 is the coupling coefficient and the
coupling matrix Ĝ = (ĝi j)N×N , where ĝi j > 0 (i , j) if there are direct connections from node j to i,
otherwise, ĝi j = 0. Γ ∈ Rn×n is a diagonal matrix denoting the inner connecting matrix, and its diagonal
elements are γ1, γ2, · · ·, γn; J represents the external inputs.

The initial conditions of CFONN (2.1) are described by

xi(s) = ϖi(s − t0), s ∈ [t0 − ϱ, t0], i ∈ T . (2.2)

The isolated node of CFONN (2.1) satisfies the following equation:

Dqt0 z̈(t) = −Pz̈(t) +QF̆ (z̈(t)) + RF̆ (z̈(t − ϱ(t))) + J, (2.3)

where z̈(t) = (z̈1(t), z̈2, · · ·, z̈n(t))T represents the state target trajectory.
Correspondingly, the controlled network-related system (2.1) is given by

Dqt0xi(t) = −Pxi(t) +QF̆ (xi(t)) + RF̆ (xi(t − ϱ(t))) + σ
N∑

j=1

ĝi jΓx j(t) + J + Ui(t), i ∈ T , (2.4)

where Ui(t) is a controller that needs to be designed later in this article.
Define d̆i(t) = xi(t) − z̈(t); one has d̆i(t − ϱ(t)) = xi(t − ϱ(t)) − z̈(t − ϱ(t)).
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Combining (2.3) and (2.4), we can describe the error system as follows:

Dqt0 d̆i(t) = −Pd̆i(t) +QF̆ (xi(t)) −QF̆ (z̈(t)) + RF̆ (xi(t − ϱ(t))) − RF̆ (z̈(t − ϱ(t))) + σ
N∑

j=1

ĝi jΓd̆ j(t) + Ui(t),

(2.5)

where i ∈ T .

2.3. Definitions and properties

First, several lemmas are introduced; then, some definitions of synchronization are given, and finally
we present the hypothesis that we will need later in the discussion.

Lemma 1 [39]. Let Λ(t) ∈ Rn be a derivable vector; then, for any positive matrix Σ, the following
formula is correct:

Dqt0Λ
T(t)ΣΛ(t) ≤ 2ΛT(t)ΣDqt0Λ(t), q ∈ (0, 1].

Lemma 2 [39]. For any Λ1,Λ2 ∈ R
n and ε > 0, there exists a positive matrix Q ∈ Rn×n that makes the

following inequality true:

ΛT
1Λ2 ≤

ε

2
ΛT

1QΛ1 +
1
2ε
ΛT

2Q
−1Λ2.

Lemma 3 [19]. Suppose that we have a system

Dqt0ℵ(t) = F(t,ℵ(t),ℵ(t − ϱ(t))), ℵ ∈ Rn, 0 < q < 1.

This is a Caputo fractional differential system. Let w1 and w2 be two continuous non-decreasing func-
tions; w1(s) and w2(s) are positive for s > 0, and w1(0) = w2(0) = 0. w2 is strictly increasing. If there
is a continuously differentiable function W : R×Rn → R that makes w1(||ℵ||) ≤ W(t,ℵ) ≤ w2(||ℵ||), for
t ∈ R,ℵ ∈ Rn. Besides, there exist ς1 > ς2 > 0 such that

Dqt0W(t,ℵ(t)) ≤ −ς1W(t,ℵ(t)) + ς2 sup
−ϱ≤θ≤0

W(t + θ,ℵ(t + θ))

for t ≥ t0; then, the given Caputo system is globally uniformly asymptotically stable.

Lemma 4 [17]. Define two continuous non-negative functions g(t) and h(t), and one has

Dqt0(g(t) + h(t)) ≤ −ŷg(t), q ∈ (0, 1)

where ŷ is a positive number. Then there exists a T > 0 and any positive constant ℓ such that

g(t) ≤ (g(t0) + h(t0) + ℓ)Eq(−ŷ(t − t0)q), t ≥ t0 + T.

Definition 1 [24]. System (2.4) is said to obtain synchronization if the following condition is satisfied

lim
t→∞
||xi(t) − z̈(t)|| = 0, i ∈ T .
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Definition 2 [26]. Define the Mittag-Leffler function with two parameters Eq,q(·) as follows:

Eq,q(s) =
∞∑

k=0

sk

Γ(qk + q)
,

where q > 0, q > 0 and s is a complex number.
In particular, if q = 1, then the Mittag-Leffler function with one parameter is denoted by

Eq,1(s) = Eq(s) =
∞∑

k=0

sk

Γ(qk + 1)
.

Definition 3 [17]. The controlled system (2.4) is said to be Mittag-Leffler synchronized for any γ > 0
if there areM(γ) > 0, ||ϖ|| ≤ γ, ℓ > 0 and T > 0 such that

||d̆(t)|| ≤
{
M(γ)Eq(−ŷ(t − t0)q)

}d , t ≥ t0 + T,

where d > 0 and q ∈ (0, 1).
For generality, the assumption required in this paper is given as follows:

Assumption (A1) The activation functions F̆i(·) in the NN are continuous and satisfy

F̆i(ð̂) − F̆i(ð̌) ≤ wi(ð̂ − ð̌), i ∈ T

for any ð̂, ð̌ ∈ R, where wi > 0 is the Lipschitz constant. Let L = diag{w1,w2, · · ·,wN}.
For convenience, the following definitions are given

Φ = QP +
QQP−1QTQT

2
+
QRP−1RTQT

2
,

Λ = σĜ ⊗ QΓ + H ⊗ Q +
LTL ⊗ P

2
.

3. Main results

Here, we will introduce several conditions to ensure the complete synchronization of system (2.4)
under a pinning controller. First of all, the pinning controller is designed as follows:

Ui(t) = −hi(xi(t) − z̈(t)), i ∈ T (3.1)

where hi is the control gain; if node i is selected to be pinned, then hi > 0, if not, hi = 0. Let
H = diag{h1, h2, · · ·, hN}.

For a complex dynamic network, it is a challenge to choose what kind of pinning scheme is required
to achieve synchronization and how many nodes need to be controlled. For this paper, we referred
to [40] and [41] and selected nodes whose out-degree is bigger than the in-degree as pinned nodes.

Next, from the above controller (3.1), we get the important theorem as below.

Theorem 1. Under Assumption (A1) and controller (3.1), if there is a diagonally positive definite
matrix Q ∈ Rn×n such that

IN ⊗ Φ + Λ > 0,
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LTL ⊗ P
2

> 0,

λmin(IN ⊗ Φ + Λ)
λmax(Q)

>
λmax(LTL ⊗ P)

2λmin(Q)
> 0,

where P ∈ Rn×n is a positive diagonal matrix, then the CDFONN (2.4) is synchronized under controller
(3.1).
Proof. First, consider the following Lyapunov function:

V(t) =
1
2

N∑
i=1

d̆
T
i (t)Qd̆i(t). (3.2)

From (2.5) and Lemma 2 we can simplify (3.2) as follows

Dqt0V(t) =
N∑

i=1

d̆
T
i (t)QDqt0 d̆i(t)

≤

N∑
i=1

d̆
T
i (t)Q[−Pd̆i(t) +Q(F̆ (xi(t))) −Q(F̆ (z̈(t))) + R(F̆ (xi(t − ϱ(t))))

− R(F̆ (z̈(t − ϱ(t)))) + σ
N∑

j=1

ĝi jΓd̆ j(t) − δid̆i(t)]

≤ −

N∑
i=1

d̆
T
i (t)QPd̆i(t) +

N∑
i=1

d̆
T
i (t)QQ(F̆ (xi(t)) − F̆ (z̈(t)))

+

N∑
i=1

d̆
T
i (t)QR(F̆ (xi(t − ϱ(t))) − F̆ (z̈(t − ϱ(t))))

+ σ

N∑
i=1

d̆
T
i (t)Q

N∑
j=1

ĝi jΓd̆ j(t) −
N∑

i=1

d̆
T
i (t)Qhid̆i(t).

(3.3)

On the one hand, from Assumption (A1) and Lemma 2, there is a diagonal positive definite matrix
P that yields

N∑
i=1

d̆
T
i (t)QQ(F̆ (xi(t)) − F̆ (z̈(t)))

≤
1
2
d̆

T (t)(IN ⊗ QQ)(IN ⊗ P
−1)(IN ⊗ (QQ)T)d̆(t)

+
1
2

(F̆ (xi(t)) − F̆ (z̈(t)))T(IN ⊗ P)(F̆ (xi(t)) − F̆ (z̈(t)))

≤
1
2
d̆

T (t)(IN ⊗ QQP
−1
Q

TQT)d̆(t) +
1
2
d̆

T (t)(LTL ⊗ P)d̆(t),

(3.4)

and
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N∑
i=1

d̆
T
i (t)QR(F̆ (xi(t − ϱ(t))) − F̆ (z̈(t − ϱ(t))))

≤
1
2
d̆

T (t)(IN ⊗ QR)(IN ⊗ P
−1)(IN ⊗ (QR)T)d̆(t)

+
1
2

(F̆ (xi(t − ϱ(t))) − F̆ (z̈(t − ϱ(t))))T(IN ⊗ P)(F̆ (xi(t − ϱ(t))) − F̆ (z̈(t − ϱ(t))))

≤
1
2
d̆

T (t)(IN ⊗ QR)(IN ⊗ P
−1)(IN ⊗ (QR)T)d̆(t)

+
1
2
d̆

T (t − ϱ(t))(L ⊗ In)T(IN ⊗ P)(L ⊗ In)d̆(t − ϱ(t))

≤
1
2
d̆

T (t)(IN ⊗ QRP
−1
R

TQT)d̆(t) +
1
2
d̆

T (t − ϱ(t))(LTL ⊗ P)d̆(t − ϱ(t)).

(3.5)

On the other hand, from the Kronecker product we can get the following two equations:

σ

N∑
i=1

d̆
T
i (t)Q

N∑
j=1

ĝi jΓd̆(t) = σd̆T (t)(Ĝ ⊗ QΓ)d̆(t), (3.6)

N∑
i=1

d̆
T
i (t)hiQd̆i(t) = d̆T (t)(H ⊗ Q)d̆(t). (3.7)

From (3.4)–(3.7), we know that (3.3) can be reduced as below:

Dqt0V(t) ≤ −
N∑

i=1

d̆
T
i (t)QPd̆i(t) + d̆T (t)(δ̂ ⊗ Q)d̆(t) + σd̆T (t)(Ĝ ⊗ QΓ)d̆(t)

+
1
2
d̆

T (t)(IN ⊗ QQP
−1
Q

TQT)d̆(t) +
1
2
d̆

T (t)(LTL ⊗ P)d̆(t)

+
1
2
d̆

T (t)(IN ⊗ QRP
−1
R

TQT)d̆(t) +
1
2
d̆

T (t − ϱ(t))(LTL ⊗ P)d̆(t − ϱ(t))

= −d̆T (t)(IN ⊗ Φ + Λ)d̆(t) + d̆T (t − ϱ(t))
(

LTL ⊗ P
2

)
d̆(t − ϱ(t))

≤ −λ̂1||d̆(t)||2 + λ̂2||d̆(t − ϱ(t))||2,

where
λ̂1 = λmin(IN ⊗ Φ + Λ) > 0,

λ̂2 = λmax

(
LTL ⊗ P

2

)
> 0.

So

λ̂1||d̆(t)||2 ≥
2λ̂1

λmax(Q)
V(t),

λ̂2||d̆(t − ϱ(t))||2 ≤
2λ̂2

λmin(Q)
V(t − ϱ(t)).
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Let λ1 =
2λ̂1
λmax(Q) , λ2 =

2λ̂2
λmin(Q) ; then,

Dqt0V(t) ≤ −λ1V(t) + λ2V(t − ϱ(t)).

From the above inequality, using Lemma 3, we can know that system (2.5) is globally asymptoti-
cally stable; so, d̆(t) converges asymptotically to 0. That is, under the controller (3.1), system (2.4) can
achieve synchronization, and this completes the proof.

Remark 1. Looking at Theorem 1, we used pinning control; only some nodes need to be controlled
to reach synchronization. Choosing some nodes for control can reduce resource waste compared with
controlling all nodes. In [38, 42], the controller considered for the system with time delays needs
to control all nodes to realize synchronization. In [25] and [33], the synchronization of CFONNs is
discussed, but the system under study has no time delays. In [34], the synchronization of FONNs with a
delayed memristive network under pinning control is investigated. In contrast, the NN discussed in this
paper is fractional, with both time delays and coupling terms. In addition, the control node selection
scheme is different. In [26, 43], the graph is divided into several subgraphs by using the pinned node
selection scheme, and then the nodes control are selected. The aim of pinned nodes in Theorem 1 is to
choose the nodes whose out-degree is bigger than the in-degree. Hence, the conclusions discussed in
this paper under controller (3.1) for systems with time-varying delays are more widely applied.

Remark 2. If fractional-order q = 1, model (2.1) can be written as ẋi(t) = −Pxi(t) + QF̆ (xi(t)) +
RF̆ (xi(t − ϱ(t))) + σ

∑N
j=1 ĝi jΓx j(t) + J; [3] and [30] discuss the synchronization of NNs under pinning

control. Therefore, the result of Theorem 1 can be generalized to the corresponding integer-based NNs;
then, the synchronization criteria are available. In addition, the coupling matrix in this article is not
necessarily symmetric, irreducible or Laplace transformed. Therefore, the conditions in this paper are
more favorable.

Remark 3. Assumption (A1) is commonly used in many studies in which the Lipschitz constant is
always positive [25, 37, 38]. In fact, Assumption (A1) can be generalized as follows, namely Assump-
tion (A2):

w̆
−
i ≤
F̆i(ð̂) − F̆i(ð̌)

ð̂ − ð̌
≤ w̆+i , ð̂ , ð̌,

where w̆−i and w̆+i can be negative, zero or positive. In this case, letting w̆
′

i denote the maximum values
of |w̆−i | and |w̆+i | and L′ be a diagonal matrix whose elements w̆

′

i > 0, i ∈ T , then

Λ′ = σĜ ⊗ QΓ + H ⊗ Q +
L′TL′ ⊗ P

2
.

From Assumption (A2), we quickly arrive at the following conclusion.
Corollary 1. Under Assumption (A2) and controller (3.1), if there exists an n × n positive definite
matrix Q satisfying the following conditions:

IN ⊗ Φ + Λ
′ > 0,

L′TL′ ⊗ P
2

> 0,

λmin(IN ⊗ Φ + Λ
′)

λmax(Q)
>
λmax(L′TL′ ⊗ P)

2λmin(Q)
> 0,
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where P is a positive diagonal matrix and P ∈ Rn×n, then the controlled system (2.4) is synchronized
under controller (3.1).

Now, we shall discuss Mittag-Leffler synchronization for CDFONNs. An adaptive-type feedback
controller Ui(t) is described below:

Ui(t) = −σki(t)Γd̆i(t − ϱ(t)) − σmi(t)Γd̆i(t), i ∈ T ,

Dqt0ki(t) = ηd̆
T
i (t)QΓd̆i(t − ϱ(t)),

Dqt0mi(t) = hd̆Ti (t)QΓd̆i(t),

(3.8)

where η and h are arbitrary positive constants.

Theorem 2. Under Assumption (A1) and controller (3.8), if there are two positive definite diagonal
matrices P,Q ∈ Rn×n such that

Ω = IN ⊗

(
−QP +

QQP−1QTQ

2

)
+

LTL ⊗ P
2

< 0,

then the CDFONN (2.4) is Mittag-Leffler synchronized under controller (3.8).
Proof. Consider an auxiliary function as below:

W(t) = V(t) +
N∑

i=1

σ

2η
(ki(t) − k∗i )2 +

N∑
i=1

σ

2h

mi(t) −
N∑

i=1

ĝi j

2

. (3.9)

Then

Dqt0W(t) ≤
N∑

i=1

d̆
T
i (t)QDqt0 d̆i(t) +

N∑
i=1

σ

η
(ki(t) − k∗i )Dqt0ki(t) +

N∑
i=1

σ

h

mi(t) −
N∑

i=1

ĝi j

 Dqt0mi(t)

≤ −

N∑
i=1

d̆
T
i (t)QPd̆i(t) +

N∑
i=1

d̆
T
i (t)QQ(F̆ (xi(t)) − F̆ (z̈(t)))

+

N∑
i=1

d̆
T
i (t)QR(F̆ (xi(t − ϱ(t))) − F̆ (z̈(t − ϱ(t))))

+ σ

N∑
i=1

d̆
T
i (t)Q

N∑
j=1

ĝi jΓd̆ j(t) − σ
N∑

i=1

d̆
T
i (t)Qki(t)Γd̆i(t − ϱ(t)) − σ

N∑
i=1

d̆
T
i (t)Qmi(t)Γd̆i(t)

+ σ

N∑
i=1

ki(t)d̆Ti (t)QΓd̆i(t − ϱ(t)) − σ
N∑

i=1

k
∗
i d̆

T
i (t)QΓd̆i(t − ϱ(t))

+ σ

N∑
i=1

mi(t)d̆Ti (t)QΓd̆i(t) − σ
N∑

i=1

N∑
i=1

ĝi jd̆
T
i (t)QΓd̆i(t)

≤ −

N∑
i=1

d̆
T
i (t)QPd̆i(t) +

1
2
d̆

T (t)(IN ⊗ QQP
−1
Q

TQ)d̆(t) +
1
2
d̆

T (t)(LTL ⊗ P)d̆(t)

+

N∑
i=1

(||Q|| ||R|| ||L|| − σk∗||Q|| ||Γ||) |d̆Ti (t)| |d̆i(t − ϱ(t))|,
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where k∗ = min1≤i≤N k
∗
i ; now, choose an appropriate constant k∗i such that σk∗||Γ|| ≥ ||R|| ||L||; thus,

N∑
i=1

(||Q|| ||R|| ||L|| − σk∗||Q|| ||Γ||)|d̆Ti (t)| |d̆i(t − ϱ(t))| ≤ 0.

Therefore

Dqt0W(t) ≤ d̆T (t)
[
IN ⊗

(
−QP +

QQP−1QTQ

2

)
+

LTL ⊗ P
2

]
d̆(t)

≤ −λ̂3||d̆(t)||2,

where
λ̂3 = λmin(−Ω);

so

λ̂3||d̆(t)||2 ≥
2λ̂3

λmax(Q)
V(t);

let λ3 =
2λ̂3
λmax(Q) ; then,

Dqt0W(t) ≤ −λ3V(t). (3.10)

From Lemma 4 and (3.10) we know that for any ℓ > 0, there is T > 0 which gives

λmin(Q)
2
||d̆(t)||2 ≤ (W(t0) + ℓ)Eq(−λ3(t − t0)q)

≤ M(γ)Eq(−λ3(t − t0)q);

so

||d̆(t)|| ≤
{

2
λmin(Q)

M(γ)Eq(−λ3(t − t0)q)
} 1

2

for t ≥ t0 + T when ||ϖ|| ≤ γ, where

M(γ) = ℓ +
1
2

Nγ2||Q|| +

N∑
i=1

σ

2η
(ki(t0) − k∗i )2 +

N∑
i=1

σ

2h

mi(t0) −
N∑

i=1

ĝi j

2

.

Thus, according to Definition 3, the controlled system (2.4) can realize Mittag-Leffler synchroniza-
tion under controller (3.8); this completes the proof.

Remark 4. Adaptive control means that the controller can adjust its own parameters to adapt to the
controlled network itself, or that the controlled network is affected by the environmental disturbance.
From Theorem 2 we can see that the choice of Lyapunov function is related to the adaptive controller;
the CFONNs can realize Mittag-Leffler synchronization by adjusting the control gain and coupling
strength coefficient and using Razumikhin-type theory. In [17], an adaptive linear controller is setup to
discuss the Mittag-Leffler synchronization of FONNs. The NN studied in this paper has coupling terms.
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Figure 1. The topological structure of NN (2.1).

And when model (2.1) is converted into an integral order model, we modify the adaptive controller;
then, 

Ui(t) = −σki(t)Γd̆i(t − ϱ(t)) − σmi(t)Γd̆i(t), i ∈ T ,

k̇i(t) = ηd̆Ti (t)QΓd̆i(t − ϱ(t)),

ṁi(t) = hd̆Ti (t)QΓd̆i(t).

After computing Ẇ(t), we can still get the same conclusion by using a similar derivation of Theorem
2.

Remark 5. In Theorem 2, the controller we choose is linear. Note that in [17], the synchronous use
of nonlinear controllers for FONNs is explored. However, the system studied in this article contains
coupling, so we consider whether the system (2.5) can still achieve Mittag-Leffler synchronization if
a nonlinear adaptive controller is used. The following is a description of this nonlinear-type adaptive
discontinuous controller.

Ui(t) = −σki(t)Γ
∑N

j=1 d̆ j(t − ϱ(t)) − σmi(t)Γd̆i(t), i ∈ T ,

Dqt0ki(t) = ηd̆
T
i (t)QΓ

∑N
j=1 d̆ j(t − ϱ(t)),

Dqt0mi(t) = hd̆Ti (t)QΓd̆i(t).

In our opinion, the nonlinear controller is more difficult than the linear controller, so it is more
complicated to discuss the synchronization of system (2.5) under the nonlinear controller, which needs
to be investigated more carefully in future research.

Remark 6. In [26], the authors point out that when the CFONN has no delay, and under the pinning
controller, the CFONN has Mittag-Leffler synchronization. But when the CFONN has delays, it cannot
guarantee Mittag-Leffler synchronization. This means that time delay affects the synchronization speed
of CFONNs. Thus, we designed a linear adaptive controller, which allows CDFONNs to achieve
Mittag-Leffler synchronization.
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4. Numerical examples

In this section, two examples are provided to illustrate the feasibility of our theoretical conclusion.
And in the simulation process, we can see that the conditions of the main theorems are not difficult to
obtain.

Example 1. Consider a 3-dimensional delayed NN given by (2.1)

Dqt0xi(t) = −Pxi(t) +QF̆ (xi(t)) + RF̆ (xi(t − ϱ(t))) + σ
3∑

j=1

ĝi jΓx j(t) + J

where i = 1, 2, 3, ϱ(t) = 1, q = 0.99, P = diag{1, 2, 3} and F̆ j(·) = 0.02tanh(·). Let Γ = diag{1, 1, 1};
the connection weight matrices are as below:

Q =


−0.2 1 −0.2
−0.1 −0.1 0.2
0.4 0.2 −0.1

 , R =

0.02 −0.1 0.2
−0.1 0.1 −0.1
0.3 −0.6 0.1

 ,
the external input J = (0, 0, 0)T, and the coupling matrix is taken as

Ĝ =


−0.3 0.3 0
0.2 −0.2 0
1 0 −1

 .
The topological structure of NN (2.1) is depicted in Figure 1 .

Virtually, F̆ j(·) ( j = 1, 2, 3) satisfies Assumption (A1) and wi = 0.02, so the matrix L =
0.02 0 0

0 0.02 0
0 0 0.02

 . In what follows, the dynamics of the system in Example 1 are discussed for a

pinning controller. Select nodes 1 and 2 whose out-degrees are bigger than the in-degrees as con-
trolled; let h1 = h2 = 0.1 and h3 = 0, so H = diag{0.1, 0.1, 0}. Choose the coupling strength σ = 2.
Then through the use of the MATLAB LMI toolbox, we found that the matrices Q and P satisfy

Q =


3.0374 2.1361 6.2041
3.0283 1.0012 8.0605
4.6029 2.2.12 7.0815

 , P =

0.6420 0 0

0 0.3231 0
0 0 0.2732

 .
By simple calculation, we obtain IN ⊗Φ+Λ > 0, LTL⊗P

2 > 0 and λmin(IN⊗Φ+Λ)
λmax(Q) = 0.0251 > λmax(LTL⊗P)

2λmin(Q) =

9.934 × 10−6 > 0. From Theorem 1 and the above calculation, one can accurately obtain that system
(2.4) is synchronized. And Figure 2 displays the simulation results of Example 1.

Example 2. We discuss the CDFONNs with n = 2 and q = 0.99, that is

D0.99
t0 xi(t) = −Pxi(t) +QF̆ (xi(t)) + RF̆ (xi(t − ϱ(t))) + σ

2∑
j=1

ĝi jΓx j(t) + J

where i = 1, 2, F̆ j(·) = 0.01tanh(·), ϱ(t) = 1 and P = diag{1, 1}. And the connection weight matrices
are as follows:

Q =

(
0.2 −0.01
−1.3 1

)
, R =

(
−1.5 0.1
−0.2 −1

)
.
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Figure 2. Trajectories of synchronization errors of the system in Example 1 under the pinning
controller.
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Figure 3. Trajectories of synchronization errors of the system in Example 2 under the adap-
tive controller.

Virtually, F̆ j(·) ( j = 1, 2) satisfies Assumption (A1) and wi = 0.01, so the matrix L =
(
0.01 0

0 0.01

)
, let

Γ = diag{1, 1}, the external input J = (0, 0)T and the coupling matrix be described as

Ĝ =

(
−5 5
1 −1

)
.

In what follows, the dynamics of the system in Example 2 are discussed for an adaptive controller
with time delays. Select the coupling strength σ = 0.1 and control parameters η = 0.001, h = 0.001.
Through the use of the MATLAB LMI toolbox, the solutions can be derived as follows:

Q =

(
0.0061 0

0 0.1123

)
, P =

(
0.1523 0

0 0.0708

)
.

In view of Theorem 2, we can calculate that Ω < 0. So from the above, it can be obtained that
the error system is Mittag-Leffler synchronized under an adaptive controller with time delays. And
Figure 3 shows the simulation results of Example 2. The initial conditions k1(t) = 0.2, k2(t) = 0.4,
m1(t) = 0.2 and m2(t) = 0.2; then, the adaptive feedback gains ki(t) and mi(t) are given in Figure 4,
respectively.

5. Conclusions

In this article, the two types of synchronization of CDFONNs are introduced based on a pinning
controller and an adaptive controller. First, the Kronecker product and Lyapunov direct method were
used to get some sufficient conditions for complete synchronization of the CDFONNs in which the
pinning controller only needs to control part of the nodes to make the system achieve synchronization.
Second, by designing a new adaptive controller, CDFONNs can achieve Mittag-Leffler synchronization
using the Razumikhin-type method and Mittag-Leffler stability theory. In fact, many phenomena in
life can be explained by complete synchronization and Mittag-Leffler synchronization. For example,
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Figure 4. Time evolution of the adaptive feedback gains ki and mi.

to study the situation of water pollution spreading along rivers and causing pollution to surrounding
cities, urban water pollution can be abstracted as nodes, which can form a network. If certain levels
of pollution are synchronized, then a study of pollution in one city shows that similar levels are found
in cities around a river. For another example, the urban transport network can be seen as a dynamic
complex network, which is affected by the traffic behavior of its participants. Our results extend those
of the available literature.

It is worth noting that the synchronization of integer order NNs has been introduced by many schol-
ars, who showed that the adaptive controller without delays can achieve synchronization for the system.
However, there is no relevant literature to show that these results and methods can be generalized to
fractional order. Hence, it is still possible to design an adaptive controller without delays to make
CDFONNs realize Mittag-Leffler synchronization. This will be one of our important research topics in
the future.
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