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Abstract: In this paper, we propose a modified Lotka-Volterra competition model under climate
change, which incorporates both spatial and temporal nonlocal effect. First, the theoretical analyses for
forced waves of the model are performed, and the existence of the forced waves is proved by using the
cross-iteration scheme combining with appropriate upper and lower solutions. Second, the asymptotic
behaviors of the forced waves are derived by using the linearization and limiting method, and we
find that the asymptotic behaviors of forced waves are mainly determined by the leading equations. In
addition, some typical numerical examples are provided to illustrate the analytical results. By choosing
three kinds of different kernel functions, it is found that the forced waves can be both monotonic and
non-monotonic.
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1. Introduction

Global climate change has caused the greater loss of sea ice, more intense drought, heat waves and
hurricanes and accelerated sea level rise. Scientists predicted that Arctic seemed to be a high proba-
bility of becoming ice-free in summer before mid-century [1]. Climate change has already resulted in
region shifting and then observable environmental heterogeneity, which is very unfavourable for the
world’s species of plants and animals to survive and spread. The topic studied here has provided some
insights into the effect of shifting heterogeneity on ecological species.

Reaction-diffusion models often incorporate both dispersal and local rates of change. From the view
of mathematical biology, reaction-diffusion models can help us to describe the population change and
derive the coexistence of interacting species [2–4]. For scalar reaction-diffusion equations modelling
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the single species in a shifting environment, one prominent work comes from Berestycki et al. [5].
Therein, the reaction-diffusion equation can be described as

∂tu(t, x) = d∂xxu(t, x) + g
(
x − ct, u(t, x)

)
, t > 0, x ∈ R, (1.1)

where u(t, x) represents the density of individuals at time t and position x, g denotes the effective rate
of reproduction and mortality, and d > 0 denotes the diffusion coefficient. In this model (1.1), it
is assumed that the favorable environment is moved forward at the speed c (per time step), and the
minimum favorable patch size for the persistence of species can be derived. Traveling wave solutions
can describe a species that distributed over some certain range would gradually expand its range to the
whole environment. If we seek for the solution of (1.1) in the form of u(t, x) = U(x − ct) with the
moving coordinate x − ct as the independent variable ξ := x − ct, i.e., the solution is traveling with
given forced speed c, then such special kind of solution is called the forced (traveling) waves. In brief,
the solution of (1.1) travels with the same speed as the environment changes. In order to gain more
insights into the genetic diversity under the shifting environment, Garnier and Lewis [6] investigated
the existence of the forced waves for equation (1.1). Later, Berestycki and Rossic [7,8] further extended
the results established in [5] by taking higher d−dimension space and general function g into account.
Vo [9] considered the analogous situations without the condition, as presented in [7], that the favorable
zone was compact. Biologically, it means that the environment is unfavorable outside a compact set
[0, L] and favorable inside. In favorable zone [0, L], species can disperse, grow or other activities,
while outside of which the species die at a given rate, with no reproduction. Very recently, Berestycki
and Fang [10] reconsidered the equation (1.1), where g(ξ, ·) was chosen to be asymptotically KPP type
as ξ → −∞, and they derived its existence, multiplicity and attractive property of forced waves. One
special form of (1.1) is written in the following equation by considering the Logistic growth

∂tu(t, x) = d∂xxu(t, x) + u(t, x)
(
r(x − ct) − u(t, x)), t > 0, x ∈ R. (1.2)

By assuming that r(x) ∈ C(R,R) is a nondecreasing function with −∞ < r(−∞) < 0 < r(∞) < ∞, Hu
and Zou [11] proved that the forced waves for (1.2) exist. As a further step, Fang, Lou and Wu [12]
derived the conditions of the existence and non-existence of the pulse forced waves for the limiting
equation (1.2), which originates from the typical susceptible-infective-susceptible epidemic model.

Notice that the species do not live isolated, interspecies interaction always exists. Cooperation,
competition and predater-prey relations are three common interspecies interactions [13]. For the two
species reaction-diffusion models under climate change, several works have explored the interplay
between species and dynamical characteristics. For instance, Yang et al. [14] derived the existence
and asymptotic behaviors of forced waves of a cooperative Lotka-Volterra model. Dong et al. [15]
investigated several kinds of forced waves, which connect different steady states to a competitive Lotka-
Volterra model. Especially, Wang et al. [16] discussed the uniqueness and the stability of forced waves
in a competitive Lotka-Volterra model. Choi et al. [17] studied the existence of forced waves in a
predator-prey model. For a general cooperative model, Wu and Xu [18] established the existence of
forced waves, and then derived its uniqueness and stability of the forced waves.

Spatio-temporal nonlocal effect first introduced by Britton [19], which is beyond the limit of time
delay and the scope of spatial location, is attracting more and more attentions [20–22]. As an example,
Banerjee and Volpert [23] showed that the nonlocal consumption for the prey species has often led to
stationary inhomogeneous space solutions while the classical and local version was unable to produce
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them. Hutchinson and Williams [24] pointed out that the nonlocal structured assemblage processes
seem to be more important when compared to the local processes on Hong Kong shores. Song and
Yang [25] demonstrated that the joint interaction of the nonlocal spatial averaging and delay caused
the appearance of spatio-temporal patterns. For early works, readers can refer to the references [26–28].

Motivated by these works, we discuss the following Lotka-Volterra competition model under the
climate change and spatio-temporal nonlocal effect

∂tu(t, x) = d1∂xxu(t, x) + u(t, x)[r1(x − ct) − u(t, x)]

− a1u(t, x)
∫ ∞

0

∫
R

J1(s, y)v(t − s, x − y)dyds,

∂tv(t, x) = d2∂xxv(t, x) + v(t, x)[r2(x − ct) − v(t, x)]

− a2v(t, x)
∫ ∞

0

∫
R

J2(s, y)u(t − s, x − y)dyds,

(1.3)

where d1, d2 > 0 are the diffusion rates, a1, a2 > 0 are interspecies effect and c > 0 is the rightward
shifting speed. The model (1.3) is a generized two-species competition model. Every species follows
the inhomogeneous Logistic growth, and sustains interspecific competition. What is noteworthy is that
the interspecific competition term is a spatio-temporal average weighted toward the current time and
position, which can cover a series of models by choosing some special kernels. We assume for i = 1, 2,

(A1) Ji(·, ·) ∈ C(R+ × R,R+), Ji(s,−y) = Ji(s, y),
∫ ∞

0

∫
R

Ji(s, y)dyds = 1, and there exists some α∗ > 0
such that

∫ ∞
0

∫
R

eα(y−cs)Ji(s, y)dyds < ∞ for any α ∈ (0, α∗] and c > 0;
(A2) ri(·) ∈ C(R,R) is nondecreasing with −∞ < ri(−∞) < 0 < ri(∞) < ∞;
(A3) a1 <

r1(∞)
r2(∞) <

1
a2

;
(A4) there exist positive numbers ki, νi such that

lim
x→∞

ri(∞) − ri(x)
e−νi x

= ki.

It is noted that there is a positive equilibria E∗(u∗, v∗) in the reaction system corresponding to (1.3)
when the growth function ri(x − ct) is replaced by ri(∞), where

u∗ =
r1(∞) − a1r2(∞)

1 − a1a2
, v∗ =

r2(∞) − a2r1(∞)
1 − a1a2

.

The assumptions (A1)-(A4) have some ecological meanings. In (A1), the even assumption ensures
the spatio-temporal weights depend on distances from the original position. The normalisation as-
sumption guarantees that the kernel will not affect the spatially uniform steady state solutions of (1.3)
when the growth function ri(x− ct) replaced by ri(∞), i.e., (0, 0) and (u∗, v∗). (A2) tells us each species
is befitting far to the right (corresponding to the North). As time goes, then the inappropriate environ-
ment {x ∈ R : ri(x− ct) < 0} for each species is moving along the real axis from left to right. Therewith
the appropriate environment {x ∈ R : ri(x − ct) > 0} is rightward shrinking. The edge of the proper
environment is shifting at a speed c. (A3) is equivalent to r1(∞)−a1r2(∞) > 0 and r2(∞)−a2r1(∞) > 0.
It shows that two competing species are able to coexist near∞. In (A4), the exponential decay of ri(x)
for x sufficiently large is used in the construction of the lower solution. Biologically, the species cannot
spread to infinity, so we assume the growth rate of species near the infinity will decline rapidly as time
goes by.
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The remaining sections of this paper are organized as follows. Motivated by the recent work of [15],
in Section 2, we first construct the appropriate upper and lower bounds of solutions to (1.3), and then
obtain the existence of forced waves through the cross-iteration method on the basis of the derived
solutions. In Section 3, the asymptotic properties of forced waves along two tails are studied by the
linearization techniques. Finally, in Section 4, three different numerical examples are provided to
confirm the obtained analytical results.

2. Solutions of modified Lotka-Volterra model and appearance of forced waves

In this section, we will obtain the existence of forced waves to (1.3). The method is to construct
a pair of proper upper and lower solutions and employing the cross-iteration to reach a fixed point in
corresponding integral equations. Remembering the moving coordinate x−ct and setting u(t, x) = U(ξ)
and v(t, x) = V(ξ) with ξ = x − ct, then (1.3) becomes

d1U′′(ξ) + cU′(ξ) + U(ξ)
[
r1(ξ) − U(ξ)

]
− a1U(ξ)

∫ ∞

0

∫
R

J1(s, y)V(ξ − y + cs)dyds = 0,

d2V ′′(ξ) + cV ′(ξ) + V(ξ)
[
r2(ξ) − V(ξ)

]
− a2V(ξ)

∫ ∞

0

∫
R

J2(s, y)U(ξ − y + cs)dyds = 0.

(2.1)

Next, we will consider the solution to (2.1) satisfying the following asymptotic boundary conditions:

lim
ξ→−∞

(U(ξ),V(ξ)) = (0, 0), lim
ξ→∞

(U(ξ),V(ξ)) = (u∗, v∗). (2.2)

For ξ ∈ R, denote

U(ξ) = min{r1(∞), u∗ + β1u∗e−αξ}, U(ξ) = max{0, u∗ − β3u∗e−αξ},

V(ξ) = min{r2(∞), v∗ + β2v∗e−αξ}, V(ξ) = max{0, v∗ − β4v∗e−αξ},

where α > 0 to be determined later, β1, β2 > 0, β3, β4 > 1 satisfy

a1 max
{
β4

β1
,
β2

β3

}
<

r1(∞) − a1r2(∞)
r2(∞) − a2r1(∞)

<
1
a2

min
{
β4

β1
,
β2

β3

}
. (2.3)

Lemma 2.1. Assume that the inequality (2.3) holds. Then there exist sufficiently small parameters
α1 > 0 and α2 > 0 such that

∆1(α) := a1β4v∗

∫ ∞

0

∫
R

J1(s, y)eα(y−cs)dyds − β1u∗ ≤ 0,

∆2(α) := a2β3u∗

∫ ∞

0

∫
R

J2(s, y)eα(y−cs)dyds − β2v∗ ≤ 0,

for α ∈ (0, α1] and

∆3(α) := −2k1β
α−ν1
α

3 + β3u∗ − a1β2v∗

∫ ∞

0

∫
R

J1(s, y)eα(y−cs)dyds ≥ 0,

∆4(α) := −2k2β
α−ν2
α

4 + β4v∗ − a2β1u∗

∫ ∞

0

∫
R

J2(s, y)eα(y−cs)dyds ≥ 0,

for α ∈ (0, α2].
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Proof. By (2.3), we follow that

∆1(0) = a1β4v∗ − β1u∗ = β1v∗

[
a1
β4

β1
−

r1(∞) − a1r2(∞)
r2(∞) − a2r1(∞)

]
< 0,

∆2(0) = a2β3u∗ − β2v∗ = a2β3v∗

[
r1(∞) − a1r2(∞)
r2(∞) − a2r1(∞)

−
1
a2

β2

β3

]
< 0,

and ∆1(α),∆2(α) are continuous functions in α, then there exists some small α1 > 0 such that ∆1(α) ≤ 0
and ∆2(α) ≤ 0 for α ∈ (0, α1].

Starting from (2.3), we also have

lim
α→0+

∆3(α) = β3u∗ − a1β2v∗ = β3v∗

[
r1(∞) − a1r2(∞)
r2(∞) − a2r1(∞)

− a1
β2

β3

]
> 0,

lim
α→0+

∆4(α) = β4v∗ − a2β1u∗ = a2β1v∗

[
1
a2

β4

β1
−

r1(∞) − a1r2(∞)
r2(∞) − a2r1(∞)

]
> 0,

and ∆3(α),∆4(α) are continuous functions in α, then there exists some small α2 > 0 such that ∆3(α) ≥ 0
and ∆4(α) ≥ 0 for α ∈ (0, α2].

�

Lemma 2.2. Let c > 0 and 0 < α < min{ c
d1
, c

d2
, α1, α2, ν1, ν2} be sufficiently small. Then

(
U(ξ),V(ξ)

)
and

(
U(ξ),V(ξ)

)
are the upper and lower solutions of (2.1), respectively.

Proof. The proof of upper solution. For ξ > 1
α

ln β1u∗
r1(∞)−u∗

, then U(ξ) = u∗ + β1u∗e−αξ. Note that
V(ξ) ≥ v∗ − β4v∗e−αξ for any ξ ∈ R. As r1(ξ) ≤ r1(∞), we have

d1U
′′

(ξ) + cU
′
(ξ) + U(ξ)

[
r1(ξ) − U(ξ)

]
− a1U(ξ)

∫ ∞

0

∫
R

J1(s, y)V(ξ − y + cs)dyds

≤β1u∗e−αξα(d1α − c) + u∗e−αξ(1 + β1e−αξ)

×

[
a1β4v∗

∫ ∞

0

∫
R

J1(s, y)eαy−αcsdyds − β1u∗

]
≤u∗e−αξ(1 + β1e−αξ)

[
a1β4v∗

∫ ∞

0

∫
R

J1(s, y)eα(y−cs)dyds − β1u∗

]
.

(2.4)

By (2.4) and Lemma 2.1, we have

d1U
′′

(ξ) + cU
′
(ξ) + U(ξ)

[
r1(ξ) − U(ξ)

]
− a1U(ξ)

∫ ∞

0

∫
R

J1(s, y)V(ξ − y + cs)dyds

≤u∗e−αξ(1 + β1e−αξ)∆1(α) ≤ 0.

(2.5)

For ξ < 1
α

ln β1u∗
r1(∞)−u∗

, then U(ξ) = r1(∞). It needs to be noted that V(ξ) ≥ 0 for any ξ ∈ R. According to
r1(ξ) ≤ r1(∞), we have

d1U
′′

(ξ) + cU
′
(ξ) + U(ξ)

[
r1(ξ) − U(ξ)

]
− a1U(ξ)

∫ ∞

0

∫
R

J1(s, y)V(ξ − y + cs)dyds

≤r1(∞)
[
r1(ξ) − r1(∞)

]
≤ 0.

(2.6)
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By (2.5) and (2.6), we have shown that

d1U
′′

(ξ) + cU
′
(ξ) + U(ξ)

[
r1(ξ) − U(ξ)

]
− a1U(ξ)

∫ ∞

0

∫
R

J1(s, y)V(ξ − y + cs)dyds ≤ 0,
(2.7)

for ξ , 1
α

ln β1u∗
r1(∞)−u∗

. Similarly, for ξ > 1
α

ln β2v∗
r2(∞)−v∗

, by Lemma 2.1, then

d2V
′′

(ξ) + cV
′
(ξ) + V(ξ)

[
r2(ξ) − V(ξ)

]
− a2V(ξ)

∫ ∞

0

∫
R

J2(s, y)U(ξ − y + cs)dyds

≤v∗e−αξ(1 + β2e−αξ)∆2(α) ≤ 0.

(2.8)

For ξ < 1
α

ln β2v∗
r2(∞)−v∗

, then we have

d2V
′′

(ξ) + cV
′
(ξ) + V(ξ)

[
r2(ξ) − V(ξ)

]
− a2V(ξ)

∫ ∞

0

∫
R

J2(s, y)U(ξ − y + cs)dyds

≤r2(∞)
[
r2(ξ) − r2(∞)

]
≤ 0.

(2.9)

Based on (2.8) and (2.9), we have shown that

d2V
′′

(ξ) + cV
′
(ξ) + V(ξ)

[
r2(ξ) − V(ξ)

]
− a2V(ξ)

∫ ∞

0

∫
R

J2(s, y)U(ξ − y + cs)dyds ≤ 0,

for ξ , 1
α

ln β2v∗
r2(∞)−v∗

.
The proof of lower solution. For ξ > 1

α
ln β3 > 0, then U(ξ) = u∗ − β3u∗e−αξ. Note that V(ξ) ≤

v∗ + β2v∗e−αξ for any ξ ∈ R. Let α > 0 be sufficiently small such that 1
α

ln β3,
1
α

ln β4 are sufficiently
large. By (A4), we get

ri(∞) − ri(ξ) ≤ 2kie−νiξ, ξ ≥
1
α

ln βi+2, i = 1, 2. (2.10)

Now recalling r1(∞) = u∗ + a1v∗ and in view of (2.10) and Lemma 2.1, we obtain

d1U′′(ξ) + cU′(ξ) + U(ξ)
[
r1(ξ) − U(ξ)

]
− a1U(ξ)

∫ ∞

0

∫
R

J1(s, y)V(ξ − y + cs)dyds

≥β3u∗e−αξα(c − d1α) + u∗e−αξ(1 − β3e−αξ)

×

[
(r1(ξ) − r1(∞))eαξ + β3u∗ − a1β2v∗

∫ ∞

0

∫
R

J1(s, y)eα(y−cs)dyds
]

≥u∗e−αξ(1 − β3e−αξ)

×

[
−2k1e

α−ν1
α ln β3 + β3u∗ − a1β2v∗

∫ ∞

0

∫
R

J1(s, y)eα(y−cs)dyds
]

=u∗e−αξ(1 − β3e−αξ)∆3(α) ≥ 0.

(2.11)
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For ξ < 1
α

ln β3, then U(ξ) = 0. Hence,

d1U′′(ξ) + cU′(ξ) + U(ξ)
[
r1(ξ) − U(ξ)

]
− a1U(ξ)

∫ ∞

0

∫
R

J1(s, y)V(ξ − y + cs)dyds = 0.
(2.12)

By (2.11) and (2.12), we have shown that

d1U′′(ξ) + cU′(ξ) + U(ξ)
[
r1(ξ) − U(ξ)

]
− a1U(ξ)

∫ ∞

0

∫
R

J1(s, y)V(ξ − y + cs)dyds ≥ 0.
(2.13)

for ξ , 1
α

ln β3. Similarly, we can show that

d2V ′′(ξ) + cV ′(ξ) + V(ξ)
[
r2(ξ) − V(ξ)

]
− a2V(ξ)

∫ ∞

0

∫
R

J2(s, y)U(ξ − y + cs)dyds ≥ 0.

for ξ , 1
α

ln β4. �

Assume BC to be L∞(R) ∩ C(R), where L∞(R) means the collection of all bounded functions
and C(R) denotes the set of all continuous and real functions, which are mapped from R to R. Let
Y = BC × BC. For u = (u1, u2) ∈ Y, based on the definition of norm ‖u‖Y=‖u1‖BC+‖u2‖BC with
‖ui‖BC= supx∈R|ui(x)|, and we can introduce the following functional space

Γ :=
{
(U,V) ∈ Y : U ≤ U ≤ U,V ≤ V ≤ V on R

}
.

For (U,V) ∈ Γ, picking ρ1 ≥ −r1(−∞) + 2r1(∞) + a1r2(∞) and ρ2 ≥ −r2(−∞) + 2r2(∞) + a2r1(∞),
denote

F1(U,V)(ξ) = ρ1U(ξ) + U(ξ)
[
r1(ξ) − U(ξ)

]
− a1U(ξ)

∫ ∞

0

∫
R

J1(s, y)V(ξ − y + cs)dyds,

F2(U,V)(ξ) = ρ2V(ξ) + V(ξ)
[
r2(ξ) − V(ξ)

]
− a2V(ξ)

∫ ∞

0

∫
R

J2(s, y)U(ξ − y + cs)dyds.

(2.14)

Then, F1 is nondecreasing in U ∈ [0, r1(∞)] and F2 is nondecreasing in V ∈ [0, r2(∞)]. Rewrite the
system (2.1) as

d1U′′(ξ) + cU′(ξ) − ρ1U(ξ) + F1(U,V)(ξ) = 0,
d2V ′′(ξ) + cV ′(ξ) − ρ2V(ξ) + F2(U,V)(ξ) = 0.

(2.15)

It is clearly shown that the entire solution (U,V) of (2.15) is bounded if and only if (U,V) = Q(U,V)
is continuous , and Q = (Q1,Q2) can be computed as follows,

Qi(U,V)(ξ) =
1

di(λi2 − λi1)

∫ ∞

−∞

χi(ξ − s)Fi(U,V)(s)ds,

where

χi(ξ) =

eλi2ξ, ξ ≤ 0,
eλi1ξ, ξ > 0,

λi j =
−c + (−1) j

√
c2 + 4diρi

2di
, i, j = 1, 2. (2.16)
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Lemma 2.3. The operators Q1 and Q2 are non-decreasing and non-increasing in U, respectively.
Meanwhile, Q1 and Q2 are non-increasing and non-decreasing in V. Moreover, Q maps Γ into Γ.

Proof. For any (U1,V1), (U2,V2) ∈ Γ with U1 ≥ U2 and V1 ≤ V2, recalling 0 ≤ Ui ≤ r1(∞), 0 ≤ Vi ≤

r2(∞), we obtain

F1(U1,V1)(ξ) − F1(U2,V2)(ξ)
=[ρ1 + r1(ξ) − U1(ξ) − U2(ξ)][U1(ξ) − U2(ξ)]

− a1

∫ ∞

0

∫
R

J1(s, y)
[
U1(ξ)V1(ξ − y + cs) − U2(ξ)V2(ξ − y + cs)

]
dyds

=

[
ρ1 + r1(ξ) − U1(ξ) − U2(ξ) − a1

∫ ∞

0

∫
R

J1(s, y)V1(ξ − y + cs)dyds
]

× [U1(ξ) − U2(ξ)]

− a1

∫ ∞

0

∫
R

J1(s, y)
[
V1(ξ − y + cs) − V2(ξ − y + cs)

]
U2(ξ)dyds ≥ 0.

In a similar way, we can show that F2(U,V) is nondecreasing in V and nonincreasing in U. If U1 ≥ U2

and V1 ≤ V2, then we have

Q1(U1,V1)(ξ) − Q1(U2,V2)(ξ)

=
1

d1(λ12 − λ11)

∫ ∞

−∞

χ1(ξ − s)
[
F1(U1,V1)(s) − F1(U2,V2)(s)

]
ds ≥ 0,

and

Q2(U1,V1)(ξ) − Q2(U2,V2)(ξ)

=
1

d2(λ22 − λ21)

∫ ∞

−∞

χ2(ξ − s)
[
F2(U1,V1)(s) − F2(U2,V2)(s)

]
ds ≤ 0,

since χi ≥ 0 in (2.16). The above inequality implies that

Q1(U,V)(ξ) ≤ Q1(U,V)(ξ) ≤ Q1(U,V)(ξ),

Q2(U,V)(ξ) ≤ Q2(U,V)(ξ) ≤ Q2(U,V)(ξ),
(2.17)

which means the existence of the upper and lower bounds for Q1 and Q2 in the entire space of
(U,V) ∈ Γ and ξ ∈ R.

Next, it will be proved that Q is mapped from Γ to Γ. Let ξ0 = 1
α

ln β3. For ξ , ξ0, we can assume
that ξ < ξ0 without lacking the generality. After that, in accordance with (2.13) and (2.14), it can be
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followed that

Q1(U,V)(ξ)

=
1

d1(λ12 − λ11)

[∫ ξ

−∞

eλ11(ξ−s)F1(U,V)(s)ds +

∫ ∞

ξ

eλ12(ξ−s)F1(U,V)(s)ds
]

≥
1

d1(λ12 − λ11)

(∫ ξ

−∞

eλ11(ξ−s) +

∫ ξ0

ξ

eλ12(ξ−s) +

∫ ∞

ξ0

eλ12(ξ−s)
)

×
[
−d1U′′(s) − cU′(s) + ρ1U(s)

]
ds

=
1

d1(λ12 − λ11)

{
d1(λ12 − λ11)U(ξ) + d1eλ12(ξ−ξ0)[U′(ξ0 + 0) − U′(ξ0 − 0)]

+ (d1λ12 + c)eλ12(ξ−ξ0)[U(ξ0 + 0) − U(ξ0 − 0)]
}
.

For ξ > ξ0, we get

Q1(U,V)(ξ)

≥
1

d1(λ12 − λ11)

(∫ ξ0

−∞

eλ11(ξ−s) +

∫ ξ

ξ0

eλ11(ξ−s) +

∫ ∞

ξ

eλ12(ξ−s)
)

×
[
−d1U′′(s) − cU′(s) + ρ1U(s)

]
ds

=
1

d1(λ12 − λ11)

{
d1(λ12 − λ11)U(ξ) + d1eλ11(ξ−ξ0)[U′(ξ0 + 0) − U′(ξ0 − 0)]

+ (d1λ11 + c)eλ11(ξ−ξ0)[U(ξ0 + 0) − U(ξ0 − 0)]
}
.

Note that U(ξ0 + 0) = U(ξ0 − 0) and U′(ξ0 + 0) ≥ U′(ξ0 − 0). Hence, according to the aforementioned
inequalities in (2.17), we have Q1(U,V)(ξ) ≥ U(ξ) for ξ , ξ0. By the continuity, Q1(U,V)(ξ) ≥ U(ξ)
for all ξ.

Similarly, let ξ1 = 1
α

ln β1u∗
r1(∞)−u∗

. If ξ < ξ1, by using (2.7), we also obtain

Q1(U,V)(ξ)

=
1

d1(λ12 − λ11)

[∫ ξ

−∞

eλ11(ξ−s)F1(U,V)(s)ds +

∫ ∞

ξ

eλ12(ξ−s)F1(U,V)(s)ds
]

≤
1

d1(λ12 − λ11)

(∫ ξ

−∞

eλ11(ξ−s) +

∫ ξ1

ξ

eλ12(ξ−s) +

∫ ∞

ξ1

eλ12(ξ−s)
)

×
[
−d1U

′′
(s) − cU

′
(s) + ρ1U(s)

]
ds

=
1

d1(λ12 − λ11)

{
d1(λ12 − λ11)U(ξ) + d1eλ12(ξ−ξ1)[U

′
(ξ1 + 0) − U

′
(ξ1 − 0)]

+ (d1λ12 + c)eλ12(ξ−ξ1)[U(ξ1 + 0) − U(ξ1 − 0)]
}
.
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For ξ > ξ1, we get

Q1(U,V)(ξ)

≤
1

d1(λ12 − λ11)

(∫ ξ1

−∞

eλ11(ξ−s) +

∫ ξ

ξ1

eλ11(ξ−s) +

∫ ∞

ξ

eλ12(ξ−s)
)

×
[
−d1U

′′
(s) − cU

′
(s) + ρ1U(s)

]
ds

=
1

d1(λ12 − λ11)

{
d1(λ12 − λ11)U(ξ) + d1eλ11(ξ−ξ1)[U

′
(ξ1 + 0) − U

′
(ξ1 − 0)]

+ (d1λ11 + c)eλ11(ξ−ξ1)[U(ξ1 + 0) − U(ξ1 − 0)]
}
.

Note that U(ξ1 + 0) = U(ξ1 − 0) and U
′
(ξ1 + 0) ≤ U

′
(ξ1 − 0). Hence, based on (2.17), it can be derived

that Q1(U,V)(ξ) ≤ U(ξ) for ξ , ξ1. Thanks to the continuity, Q1(U,V)(ξ) ≤ U(ξ) for all ξ.
Then, combined with (2.17), it can be obtained that

U(ξ) ≤ Q1(U,V)(ξ) ≤ U(ξ), (2.18)

Similarly, we can obtain the following inequality

V(ξ) ≤ Q2(U,V)(ξ) ≤ V(ξ). (2.19)

Therefore, it can be proved that Q is mapped from Γ into Γ. �

Theorem 2.1. Assume (A1)-(A4) hold. Then, (1.3) will generate a forced wave (u(t, x), v(t, x)) =

(U(ξ),V(ξ)) connecting (0, 0) and (u∗, v∗).

Proof. Define the following cross-iteration:

U1 = Q1(U,V), V1 = Q2(U,V),
Uk+1 = Q1

(
Uk,Vk

)
, Vk+1 = Q2

(
Uk,Vk

)
, k ≥ 1.

In terms of (2.17), (2.18) and (2.19), we see that

U ≤ U1 = Q1(U,V) ≤ U, V ≤ V1 = Q2(U,V) ≤ V .

Then (U1,V1) ∈ Γ and by Lemma 2.3,

U ≥ U2 = Q1
(
U1,V1

)
≥ Q1(U,V) = U1 ≥ U,

V ≤ V2 = Q2
(
U1,V1

)
≤ Q2(U,V) = V1 ≤ V .

Assume (Uk,Vk) ∈ Γ with Uk ≥ Uk−1 and Vk ≤ Vk−1. Then it follows that

U ≥ Q1
(
Uk,Vk

)
≥ Q1(Uk−1,Vk−1) = Uk ≥ U,

V ≤ Q2
(
Uk,Vk

)
≤ Q2(Uk−1,Vk−1) = Vk ≤ V .

Hence, the induction implies (Uk+1 = Q1
(
Uk,Vk

)
,Vk+1 = Q2

(
Uk,Vk

)
) ∈ Γ and Uk is increasing in k

while Vk is decreasing in k. Then there exist U and V such that Uk → U and Vk → V pointwisely as
k → ∞.
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Obviously, it can be shown that (U,V) is a fixed-point of Q = (Q1,Q2). It is easily known that
Fi

(
Uk,Vk

)
converges to Fi(U,V) pointwise when Fi is continuous. Since Fi

(
Uk,Vk

)
is uniform and

bounded, by the Lebesgue’s dominated convergence theorem it follows,

U(ξ) = lim
k→∞

Uk+1(ξ)

= lim
k→∞

Q1
(
Uk,Vk

)
(ξ)

= lim
k→∞

1
d1(λ12 − λ11)

∫ ∞

−∞

χ1(ξ − s)F1
(
Uk,Vk

)
(s)ds

=
1

d1(λ12 − λ11)

∫ ∞

−∞

χ1(ξ − s)F1(U,V)(s)ds = Q1(U,V)(ξ).

and
V(ξ) = lim

k→∞
Vk+1(ξ)

= lim
k→∞

Q2
(
Uk,Vk

)
(ξ)

= lim
k→∞

1
d2(λ22 − λ21)

∫ ∞

−∞

χ2(ξ − s)F2
(
Uk,Vk

)
(s)ds

=
1

d2(λ22 − λ21)

∫ ∞

−∞

χ2(ξ − s)F2(U,V)(s)ds = Q2(U,V)(ξ).

Henceforth, (U,V) ∈ Γ satisfies (2.1). Next, it will be easily proved that (U,V) follows the boundary
conditions (2.2). Since (U(ξ),V(ξ)) ≤ (U(ξ),V(ξ)) ≤ (U(ξ),V(ξ)) and limξ→∞(U(ξ),V(ξ)) = (u∗, v∗) =

limξ→∞(U(ξ),V(ξ)), therefore, limξ→∞(U(ξ),V(ξ)) = (u∗, v∗).
Let W(ξ) be a forced wave of the following equation

wt(t, x) = diwxx(t, x) + w(t, x)
[
ri(x − ct) − w(t, x)].

Then, by Theorem 1.1 in [11], we have the limit limξ→−∞W(ξ) = 0. Since W(ξ) is an upper solution of
the following two equations

d1U′′(ξ) + cU′(ξ) + U(ξ)
[
r1(ξ) − U(ξ)

]
− a1U(ξ)

∫ ∞

0

∫
R

J1(s, y)V(ξ − y + cs)dyds = 0,

and
d2V ′′(ξ) + cV ′(ξ) + V(ξ)

[
r2(ξ) − V(ξ)

]
− a2V(ξ)

∫ ∞

0

∫
R

J2(s, y)U(ξ − y + cs)dyds = 0,

the comparison principle implies that

lim sup
ξ→−∞

U(ξ) ≤ lim
ξ→−∞

W(ξ) = 0,

lim sup
ξ→−∞

V(ξ) ≤ lim
ξ→−∞

W(ξ) = 0.
(2.20)
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It can be also noted that
lim inf
ξ→−∞

U(ξ) ≥ lim
ξ→−∞

U(ξ) = 0,

lim inf
ξ→−∞

V(ξ) ≥ lim
ξ→−∞

V(ξ) = 0.
(2.21)

Then, (2.20) and (2.21) result in limξ→−∞U(ξ) = 0 and limξ→−∞ V(ξ) = 0. Therefore, (U,V) admits the
asymptotic boundary conditions. �

3. Asymptotic behaviors of forced waves

To understand the rate of convergence in two tails, we now study the asymptotic behaviors of forced
waves. Applying some delicate analyses, we could obtain the exactly exponential asymptotic decay of
the forced wave with nonzero forced speed.

Theorem 3.1. Let (A1)-(A4) be true. Then, there exist four positive constants A1, A2, B1 and B2 such
that the forced wave (U(ξ),V(ξ)) generated by (1.3) has the asymptotic properties as follows

(
U(ξ)
V(ξ)

)
=

(A1 + o(1))e
−c+

√
c2−4d1r1(−∞)

2d1
ξ

(A2 + o(1))e
−c+

√
c2−4d2r2(−∞)

2d2
ξ


as ξ → −∞; and (

U(ξ)
V(ξ)

)
=

(
u∗ − (B1 + o(1))e−σ1ξ

v∗ − (B2 + o(1))e−σ1ξ

)
,

as ξ → ∞. Here σ1 ∈
(
0,min{σ+

1 , σ
+
2 }

)
, σ+

1 =
c+
√

c2+4d1u∗
2d1

, σ+
2 =

c+
√

c2+4d2v∗
2d2

.

Proof. Linearizing the system (1.3) around the equilibrium (0, 0), we then get

d1φ
′′(ξ) + cφ′(ξ) + r1(ξ)φ(ξ) = 0,

d2ψ
′′(ξ) + cψ′(ξ) + r2(ξ)ψ(ξ) = 0.

(3.1)

The limit form of (3.1) for ξ → −∞ is written as

d1φ
′′(ξ) + cφ′(ξ) + r1(−∞)φ(ξ) = 0,

d2ψ
′′(ξ) + cψ′(ξ) + r2(−∞)ψ(ξ) = 0.

(3.2)

Note that the positive solution of (3.2) requires to satisfy limξ→−∞(φ(ξ), ψ(ξ)) = (0, 0). Henceforth, we
can obtain one positive solution of (3.2) in the following form

φ(ξ) = A1e
−c+

√
c2−4d1r1(−∞)

2d1
ξ
, ψ(ξ) = A2e

−c+

√
c2−4d2r2(−∞)

2d1
ξ
, (3.3)

for some positive constants A1, A2. Then, we can prove that (3.3) describes the dominating behaviors
of (2.1). Relating (3.1) and (2.1), we have another equivalent form of (2.1)

d1U′′(ξ) + cU′(ξ) + r1(−∞)U(ξ) + G1(U,V)(ξ) = 0,
d2V ′′(ξ) + cV ′(ξ) + r2(−∞)V(ξ) + G2(U,V)(ξ) = 0,

(3.4)
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where
G1(U,V)(ξ) = U(ξ)

[
r1(ξ) − r1(−∞) − U(ξ)

]
− a1U(ξ)

∫ ∞

0

∫
R

J1(s, y)V(ξ − y + cs)dyds,

G2(U,V)(ξ) = V(ξ)
[
r2(ξ) − r2(−∞) − V(ξ)

]
− a2V(ξ)

∫ ∞

0

∫
R

J2(s, y)U(ξ − y + cs)dyds.

Among them, G(U,V) = (G1(U,V),G2(U,V)) becomes the smaller term, which is higher order than
the linear term in (3.4). Similar to Theorem 2 in [16] and Theorem 3.1 in [29], it can be proved that
the system of equations (3.4) gives the asymptotic behaviors of (2.1) as ξ → −∞.

Linearizing the system (1.3) at the equilibrium (u∗, v∗) and setting ξ → ∞, then

d1φ̄
′′(ξ) + cφ̄′(ξ) − u∗φ̄(ξ) − a1u∗

∫ ∞

0

∫
R

J1(s, y)ψ̄(ξ − y + cs)dyds = 0,

d2ψ̄
′′(ξ) + cψ̄′(ξ) − v∗ψ̄(ξ) − a2v∗

∫ ∞

0

∫
R

J1(s, y)φ̄(ξ − y + cs)dyds = 0.
(3.5)

The characteristic equation of (3.5) is

P(σ) := (d1σ
2 − cσ − u∗)(d2σ

2 − cσ − v∗) − N1(σ)N2(σ),

Ni(σ) :=
∫ ∞

0

∫
R

Ji(s, y)eσ(y−cs)dyds, i = 1, 2.
(3.6)

We next find the positive roots of (3.6). Note that d1σ
2 − cσ − u∗ = 0 has one positive root

σ+
1 =

c +
√

c2 + 4d1u∗
2d1

.

Also, d2σ
2 − cσ − v∗ = 0 has one positive root

σ+
2 =

c +
√

c2 + 4d2v∗
2d2

.

Then, P(σ) admits at least one positive root. In fact,

P(0) = (1 − a1a2)u∗v∗ > 0, P(σ+
1 ) = P(σ+

2 ) < 0,

so P(σ) has at least one real root σ1 in the interval (0, σ+), where σ+ = min{σ+
1 , σ

+
2 }. Thus, we can get

one positive solution of (3.5) in the following form

φ̄(ξ) = B1e−σ1ξ, ψ̄(ξ) = B2e−σ1ξ.

Furthermore, the linear equations (3.5) give the asymptotic behaviors of (2.1) as ξ → ∞.
�
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4. Numerical validations

In order to further understand the above-mentioned analytical results, we will provide three nu-
merical examples by choosing different kernel functions Ji in this section. To ensure the theoretical
results can be realized numerically, we will pick up some special functions, such as Delta function,
Gaussion function, exponential function and Sine-Cosine function. Delta function δ(·) means it can
take ∞ at some certain point, while other values near this point are 0. Therefore, it can be seen as a
very narrow pulse signal and used in describing the competitive effect depending solely on the density
of individuals at the current position or time. Mathematically, it can reduce the double integrals into

single integral. Gaussion function e−
y2
4ρ /

√
4πρ is the density function of normal distribution, which is

a weight function and used to measure the competition at location y of speices. Exponential function
e−

s
τ /τ decays monotonically as time goes by, and Sine-Cosine function sin( s

τ
) + cos( s

τ
) is vibrating

periodically over time, which are helpful to understand certain interspecific competition of species at
previous time s > 0.

Example 1. Let Ji(s, y) = δ(s) 1√
4πρ

e−
y2
4ρ , where ρ > 0 and δ(s) is the delta function. From the

point of biological meanings, we change the nonlocal structure of time variable into local situation by
choose the Delta function δ(s), while the space variable is still globally dependent. The spatial structure
is represented by the Gaussion type kernel function, which means the nearby reaction is more important
than distant reaction toward the original position. In this case, the competitive term which originally
has double-nonlocal property with respect to time and space reduces to one-nonlocal property with
respect to space variable.

In this example, the system (2.1) can be reduced t

d1U′′(ξ) + cU′(ξ) + U(ξ)

r1(ξ) − U(ξ) − a1

∫
R

1√
4πρ

e−
y2
4ρ V(ξ − y)dy

 = 0,

d2V ′′(ξ) + cV ′(ξ) + V(ξ)

r2(ξ) − V(ξ) − a2

∫
R

1√
4πρ

e−
y2
4ρ U(ξ − y)dy

 = 0.

(4.1)

Truncate R = (−∞,∞) by [−κ, κ] for some large κ and adopt the uniform partition of [−κ, κ] as

−κ = ξ1 < ξ2 < · · · < ξ2n−1 < ξ2n < ξ2n+1 = κ,

where ξi = ξ1 + (i − 1)h, h = κ
n , i = 1, 2, · · · , 2n + 1. Corresponding to the truncation, the asymptotic

boundary conditions then become

(U(ξ1),V(ξ1)) = (0, 0), (U(ξ2n+1),V(ξ2n+1)) = (u∗, v∗).

Let [WT
1 ,W

T
2 ] = [[W(1), · · · ,W(2n + 1)], [W(2n + 2), · · · ,W(4n + 2)]] ∈ R4n+2 be defined by

W(i) =

U(ξi), for 1 ≤ i ≤ 2n + 1,
V(ξi−2n−1), for 2n + 2 ≤ i ≤ 4n + 2.

Then we have the following algebraic system in the form of matrix by discretizing the system (4.1):[
M1 0
0 M2

] [
W1

W2

]
+

([
N1 0
0 N2

] [
W2

W1

])
◦

[
W1

W2

]
+

[
L1 0
0 L2

] [
W1 ◦W1

W2 ◦W2

]
+

[
C1

C2

]
= 0, (4.2)
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where A ◦ B represents the Hadamard products of matrix A and B. Here

M1 =



1 0 0 · · · 0
−ch + d1 ch − 2d1 + h2(r1(ξ2) − a1v∗

2 J̃(ξ2)) d1 · · · 0
...

. . .
. . .

. . .
...

0 · · · −ch + d1 ch − 2d1 + h2(r1(ξ2n) − a1v∗
2 J̃(ξ2n)) d1

0 · · · 0 0 1


with J̃(ξi) = 1 −

∫ ξ2n+1−ξi

ξi−ξ2n+1
G̃(y)dy and G̃(y) = 1√

4πρ
e−

y2
4ρ ,

M2 =



1 0 0 · · · 0
−ch + d2 ch − 2d2 + h2(r2(ξ2) − a2u∗

2 J̃(ξ2)) d2 · · · 0
...

. . .
. . .

. . .
...

0 · · · −ch + d2 ch − 2d2 + h2(r2(ξ2n) − a2u∗
2 J̃(ξ2n)) d2

0 · · · 0 0 1


,

N1 = −
h3a1

3



0 0 0 · · · 0 0
G̃(ξ2 − ξ1) 4G̃(ξ2 − ξ2) 2G̃(ξ2 − ξ3) · · · 4G̃(ξ2 − ξ2n) G̃(ξ2 − ξ2n+1)

...
...

...
...

...
...

G̃(ξ2n − ξ1) 4G̃(ξ2n − ξ2) 2G̃(ξ2n − ξ3) · · · 4G̃(ξ2n − ξ2n) G̃(ξ2n − ξ2n+1)
0 0 0 · · · 0 0


,

N2 =
a2

a1
N1, L1 = L2 =



0 0 · · · 0 0
0 −h2 · · · 0 0
...

...
. . .

...
...

0 0 · · · −h2 0
0 · · · 0 0 0


, C1 =


0
...

0
−u∗

 and C2 =


0
...

0
−v∗

 .

Let r1(x) and r2(x) be 2
1+e−x − 1.2 and 1.2

1+e−x − 0.2, respectively. Meanwhile, other parameters are set to
be a1 = 0.4, a2 = 0.5, d1 = d2 = ρ = 1, c = 2. Then, let (u∗, v∗) = (0.5, 0.75) and (A1)-(A4) hold. By
solving the solutions of (4.2) with Matlab, we can obtain the numerical solution of (4.1). In Figure 1,
we see that the monotonic forced wave front connecting (0, 0) and (u∗, v∗) in Example 1 propagates to
the right at the rate c = 2. So as to be more readable, in Figure 2, we present all possible evolutions of
the forced wave front of u-spices and v-spices, respectively.

Example 2. Let Ji(s, y) = 1
τ
e−

s
τ δ(y), where δ(y) is the delta function with y and τ > 0. From the

point of biological meanings, we change the nonlocal structure of space variable into local situation by
choose the Delta function δ(y), while the time variable is still globally dependent. The time structure is
represented by the exponential decay function, which means the effect of short time is more important
than the effect of longer time. In this case, the competitive term which originally has double-nonlocal
property with respect to time and space reduces to one-nonlocal property with respect to time variable.
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Figure 1. For the system in Example 1, the forced wave front is plotted for t = 20, 30, 40
(corresponding to blue line, green line and red line). The left panel shows the wave front of
u-species every 10 time steps, and the right panel presents the wave front of v-species.

Figure 2. For the system in Example 1, the evolutions of the forced wave front are fully
plotted with regard to the possible time and position in 3-D form. The left panel shows the
wave front of u-species, and the right panel shows the wave front of v-species.
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Figure 3. For the system in Example 2, the forced wave front is plotted for t = 20, 30, 40
(corresponding to blue line, green line and red line). The left panel shows the wave front of
u-species every 10 time steps, and the right panel presents the wave front of v-species.

In this example, the system (2.1) reduces to

d1U′′(ξ) + cU′(ξ) + U(ξ)
[
r1(ξ) − U(ξ) − a1

∫ ∞

0

1
τ

e−
s
τ V(ξ − cs)ds

]
= 0,

d2V ′′(ξ) + cV ′(ξ) + V(ξ)
[
r2(ξ) − V(ξ) − a2

∫ ∞

0

1
τ

e−
s
τ U(ξ − cs)ds

]
= 0.

The procedure of numerical simulation in this example is similar as that in Example 1, so we omit the
details. Let r1(x), r2(x) be 2

1+e−x − 1.2, 1.2
1+e−x − 0.2, and other parameters are set to be a1 = a2 = 0.5, d1 =

d2 = 1, τ = 2, c = 2. Then, (u∗, v∗) = (0.4, 0.8) and (A1)-(A4) hold. In Figure 3, we can observe
that the non-monotonic forced wave connecting (0, 0) and (u∗, v∗) in Example 2 propagates to the right
at the rate c = 2. Likewise, Figure 4 presents all the possible evolutions of the forced wave front of
u-spices and v-spices, respectively.

Example 3. Let Ji(s, y) = 1
τ
[sin( s

τ
) + cos( s

τ
)]e−

s
τ δ(y), where τ > 0 and δ(y) is the delta function

with the variable y. From the point of biological meanings, we change the nonlocal structure of space
variable into local situation by choose the Delta function δ(y), while the time variable is still globally
dependent. The time structure is represented by the Sine-Cosine function combined with exponential
decay function, which means the effect decays fast as time goes on. But the Sine-Cosine function
can induce the non-monotone phenomenon. In this case, the competitive term which originally has
double-nonlocal property with respect to time and space reduces to one-nonlocal property with respect
to time variable. There appear some complicated dynamics.
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Figure 4. For the system in Example 2, the evolutions of the forced wave front are fully
plotted with regard to the possible time and position in 3-D form. The left panel shows the
wave front of u-species, and the right panel shows the wave front of v-species.

In this example, the system (2.1) is simplified as

d1U′′(ξ) + cU′(ξ) + U(ξ)
[
r1(ξ) − U(ξ)

]
− a1U(ξ)

∫ ∞

0

1
τ

[
sin

( s
τ

)
+ cos

( s
τ

)]
e−

s
τ V(ξ − cs)ds = 0,

d2V ′′(ξ) + cV ′(ξ) + V(ξ)
[
r2(ξ) − V(ξ)

]
− a2V(ξ)

∫ ∞

0

1
τ

[
sin

( s
τ

)
+ cos

( s
τ

)]
e−

s
τ U(ξ − cs)ds = 0.

The procedure of numerical simulation in this example is similar as that in Example 1, so we omit
the details. Similarly, let r1(x), r2(x) be 2

1+e−x − 1.2, 1.2
1+e−x − 0.2, respectively. Meanwhile, we assume

that a1 = a2 = 0.5, d1 = d2 = 1, τ = 3, c = 2. Then, we set (u∗, v∗) to be (0.4, 0.8) and (A1)-(A4)
hold. In Figure 5, it can be observed that the non-monotonic forced wave connecting (0, 0) and (u∗, v∗)
in Example 3 moves to the right at the rate c = 2. As a further step, Figure 6 present all possible
evolutions of the forced wave front of u-spices and v-spices, respectively.

5. Conclusions and outlooks

In summary, we propose an improved Lotka-Volterra competition model with the spatio-temporal
nonlocal effect under climate change. By use of the cross-iteration techniques, we investigate the exis-
tence and asymptotical behaviors of the proposed model in detail, and then demonstrate the existence
of forced waves generated by the model, where the solutions to the model need to fulfil the appropriate
bounds. Meanwhile, it is found that the asymptotic behaviors of forced waves are dominated by the
leading equations, and the numerical examples are also provided to validate the analytical predictions.

Although we do not prove the monotonicity of forced waves, by picking out three different kernels
and interspecific competition coefficients a1 and a2, we find the forced waves could be monotonic or
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Figure 5. For the system in Example 3, the forced wave front is plotted for t = 20, 30, 40
(corresponding to blue line, green line and red line). The left panel shows the wave front of
u-species every 10 time steps, and the right panel presents the wave front of v-species.

Figure 6. For the system in Example 3, the evolutions of the forced wave front are fully
plotted with regard to the possible time and position in 3-D form. The left panel shows the
wave front of u-species, and the right panel shows the wave front of v-species.

Mathematical Biosciences and Engineering Volume 20, Issue 8, 13638–13659.



13657

non-monotonic. Monotone propagation for species is particular and it can be estimated and controlled.
Due to the spread of species potentially being affected by a series of factors, many species will appear
to be in non-monotonic propagation mode. In this situation, human intervention would be difficult
without knowing at what time the species will peak. The uniqueness and monotonicity of forced waves
within some parameter ranges will be investigated in the future work.
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