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Abstract: We study a switching heroin epidemic model in this paper, in which the switching of supply
of heroin occurs due to the flowering period and fruiting period of opium poppy plants. Precisely, we
give three equations to represent the dynamics of the susceptible, the dynamics of the untreated drug
addicts and the dynamics of the drug addicts under treatment, respectively, within a local population,
and the coefficients of each equation are functions of Markov chains taking values in a finite state
space. The first concern is to prove the existence and uniqueness of a global positive solution to the
switching model. Then, the survival dynamics including the extinction and persistence of the untreated
drug addicts under some moderate conditions are derived. The corresponding numerical simulations
reveal that the densities of sample paths depend on regime switching, and larger intensities of the white
noises yield earlier times for extinction of the untreated drug addicts. Especially, when the switching
model degenerates to the constant model, we show the existence of the positive equilibrium point under
moderate conditions, and we give the expression of the probability density function around the positive
equilibrium point.

Keywords: heroin model; stationary distribution; extinction; regime switching; Fokker-Planck
equation; probability density function

1. Model establishment

Heroin is a semi-synthetic opioid drug, which is mainly extracted from opium poppy. Heroin was
originally developed as a drug to cure morphine addiction, but later it was found to be highly addictive,
dependence causing and toxic [1]. Heroin became one of the most popular drugs in the world [2].
White and Comiskey [3] were the first to study the spreading of heroin by using an ordinary differential
equation (ODE) compartmental model, and they separated the local population into three compartments
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based on the states of drug addicts: the susceptible individuals, the untreated drug addicts and drug
addicts under treatment. Based on White’s model, many scholars developed different mathematical
models to discuss the transmission mechanisms of heroin, such as age structure models [4–6], distributed
delay models [7–9] and nonlinear incidence models [10–13] as well. Within the above-mentioned works,
the authors found that the consumption of heroin was transmitted from a drug addict to a non-drug
addict, which was similar to the mechanism of the spreading of infectious diseases. They further
discussed the basic reproduction number R0 as the threshold, and they determined the stability of the
drug-free equilibrium and the endemic equilibrium.

Meanwhile, environmental noises usually affected the dynamics of heroin models in [14–19]. More
precisely, Liu et al. [14] proposed a stochastic heroin epidemic model, in which they obtained a threshold
for the extinction of the drug addicts. Further, [15] studied a stochastic heroin epidemic model with
the bilinear incidence within a varying population. Then, Wei et al. [16] analyzed the long-term
dynamics of a perturbed heroin epidemic model under non-degenerate noise. Later, Wei et al. [17]
established a heroin population model with the standard incidence rates between distinct patches, and
by constructing suitable Lyapunov functions, they established the sufficient criteria for the existence of
the addict elimination and the existence of an ergodic stationary distribution. The recent contributions
in [20–33] governed the continuous-time Markov chains taking values in a finite-state space to describe
the regime switchings, in which Markov-chains were memoryless, and the waiting time from one state
to another state usually obeyed the exponential distribution. Therefore, in this paper, we consider the
following stochastic heroin model with the bilinear incidence rate under regime switching:

dS (t) =
[
Λ(m(t)) − β1(m(t))S (t)U(t) − µ(m(t))S (t)

]
dt

+σ1(m(t))S (t)dB1(t),

dU(t) =
[
β1(m(t))S (t)U(t) − p(m(t))U(t) + β2(m(t))U(t)T (t)

−(µ(m(t)) + δ1(m(t)))U(t)
]
dt + σ2(m(t))U(t)dB2(t),

dT (t) =
[
p(m(t))U(t) − β2(m(t))U(t)T (t) − (µ(m(t)) + δ2(m(t)))T (t)

]
dt

+σ3(m(t))T (t)dB3(t),

(1.1)

where S (t) is the number of the susceptible individuals; U(t) is the number of the untreated drug
addicts; and T (t) is the number of the drug addicts under treatment at time t respectively. Moreover,
N(t) = S (t) + U(t) + T (t) denotes the total population size at time t; Bi(t) (i = 1, 2, 3) are mutually
independent standard Brownian motions defined on a complete probability space (Ω,F ,P) with a
filtration {Ft}t≥0, which is increasing and right continuous while F0 contains all P-null sets; and
σ2

i > 0 (i = 1, 2, 3) denote the intensities of the white noises. Λ is the population density entering the
susceptible per unit of time, µ is the natural death rate of the total population, p is the proportion of
drug users who are under treatment, β1 is the rate that an individual becomes a drug user, β2 is the rate
that drug users under treatment relapsed to the untreated, δ1 is the drug-related death rate, δ2 is the
successful cure rate. We assume that all parameters of model (1.1) are non-negative.

Let m(t) be a right-continuous Markov chain on the complete probability space (Ω,F ,P) taking
values in a finite state space S = {1, 2, · · · ,N} for t ≥ 0 and ∆t > 0, which is generated by the
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transition matrix Γ = (pi j)N×N , i.e., P{m(t + ∆t) = j|m(t) = i} ≤ pi j∆t + o(∆t) if i , j; otherwise,
P{m(t + ∆t) = j|m(t) = i} ≤ 1 + pii∆t + o(∆t) if i = j, where pi j ≥ 0 is the transition rate from state i to
state j if i , j while

∑N
j=1 pi j = 1.

In this paper, we assume that pi j > 0 for i, j = 1, · · · ,N with i , j. In model (1.1), the parameters
Λ, p, µ, β1, β2, δ1, δ2, σi (i = 1, 2, 3) are not constants; instead they are generated by a homogeneous
continuous-time Markov chain m(t) for t ≥ 0. That is, for each fixed k ∈ S, Λ(k), p(k), µ(k), β1(k),
β2(k), δ1(k), δ2(k) and σi(k) (i = 1, 2, 3) are all positive constants. We assume that the Markov chain
m(t) is irreducible, which means that the system can switch from one regime to another regime. It
implies that the Markov chain m(t) has a unique stationary distribution π = (π1, π2, · · · , πN) which
can be determined by the equation πΓ = 0 subject to

∑N
k=1 πk = 1 and πk > 0 for any k ∈ S. Define

Rn
+ = {x ∈ R

n : xi > 0, 1 ≤ i ≤ n}. For any vector g = (g(1), g(2), · · · , g(N)), let ĝ = mink∈S{g(k)} and
ǧ = maxk∈S{g(k)}. Next, we will show the existence and uniqueness of a global positive solution. Then,
we will discuss the survival dynamics including the extinction and persistence of the untreated drug
addicts for the switching model (1.1). Further, we will investigate the probability density function of the
degenerated model (2.20) under some sufficient conditions.

2. Main results

In this section, we give the generalized SDEs

dX(t) = f (X(t),m(t))dt + g(X(t),m(t))dB(t), t ≥ 0, (2.1)

with the initial values X(0) = X0,m(0) = m, where B(·) and m(·) are the d-dimensional Brownian
motions and the right-continuous Markov chains, respectively. f (·, ·) and g(·, ·) respectively map Rn × S

to Rn and Rn×d with g(X, k)gT (X, k) = (gi j(X, k))n×n. For each k ∈ S, let V(·, k) be any twice continuously
differentiable function, and the operator L can be defined by

LV(X, k) =
N∑

i=1

fi(X, k)
∂V(X, k)
∂Xi

+
1
2

N∑
i, j=1

gi j(X, k)
∂2V(X, k)
∂Xi∂X j

+
∑
l∈N

pklV(X, l).

2.1. Existence-and-uniqueness of the solution

We first of all consider the existence and uniqueness of a global positive solution before investigating
other long-term properties of model (1.1) in this section.

Theorem 1. For any initial value (S (0),U(0),T (0),m(0)) ∈ R3
+ × S, there exists a unique solution

(S (t),U(t),T (t),m(t)) of model (1.1) on t ≥ 0, and the solution will remain in R3
+ × S with probability one.

Proof. We write down similar lines as we did in [34, 35] and define the stopping time

τr = inf
{
t ∈ [0, τe) : min

{
S (t),U(t),T (t)} ≤

1
r

or max
{
S (t),U(t),T (t)

}
≥ r

}
.

Therefore, there exists an integer r1 ≥ r0 such that P{τr ≤ l} ≥ ε for each integer r ≥ r1. Define a
C2-function V : R3

+ → R+ as follows:

V(S ,U,T ) = S − c − ln
S
c
+ U − 1 − ln U + T − 1 − ln T,
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where c is a positive constant to be determined later. Let l > 1 be arbitrary, for any 0 ≤ t ≤ τr ∧ l =
min{τr, l}, and applying Itô’s formula to V , we get

LV = −µ(k)S −
(
µ(k) + δ1(k)

)
U −

(
µ(k) + δ2(k)

)
T

−
cΛ(k)

S
− β1(k)S − β2(k)T −

p(k)U
T
+

(
cβ1(k) + β2(k)

)
U + Λ(k)

+ (c + 2)µ(k) + p(k) + δ1(k) + δ2(k) +
1
2
(
cσ2

1(k) + σ2
2(k) + σ2

3(k)
)

< Λ̌ + (c + 2)µ̌ + p̌ + δ̌1 + δ̌2 +
1
2

(cσ̌2
1 + σ̌

2
2 + σ̌

2
3) + (cβ̌1 + β̌2 − µ̂ − δ̂1)U.

Choosing c such that cβ̌1 + β̌2 = µ̂ + δ̂1,

LV ≤ Λ̌ + (c + 2)µ̌ + p̌ + δ̌1 + δ̌2 +
1
2

(cσ̌2
1 + σ̌

2
2 + σ̌

2
3) := K.

The rest of the proof is similar to Theorem 1 in [17], so we omit it. The proof is complete.

2.2. Extinction of the untreated drug addicts within local population

For a long time, extinction always refers to the disappearance of infectious diseases in epidemiology.
So, the most important concern of the dynamical behaviors for the stochastic heroin model is to control
the spreading of heroin and the number of the untreated drug addicts. By the approaches given in [34–39],
together with constructing several Lyapunov functions, combining generalized Itô’s formula and the strong
law of large numbers, we derive the moderate conditions for the extinction of the untreated drug addicts
to model (1.1). With these conditions, we find that the spreading of heroin ultimately vanishes in the
local population, in other words, the number of the untreated drug addicts declines to zero.

Lemma 1. Assume that µ̂ > 1
2(σ̌2

1 ∨ σ̌
2
2 ∨ σ̌

2
3), and the solution (S (t),U(t),T (t),m(t)) of model (1.1) satisfies

lim
t 7→∞

1
t

∫ t

0
σ̌1S (s)dB1(s) = lim

t 7→∞

1
t

∫ t

0
σ̌2U(s)dB2(s) = 0 a.s.,

lim
t 7→∞

1
t

∫ t

0
σ̌3T (s)dB3(s) = 0 a.s..

Proof. We write down similar lines by the same approach as in Lemma 2.2 of [28], so the proof is easy
to check, and we omit the details.

Lemma 2. For t ≥ 0, the solution (S (t),U(t),T (t),m(t)) of model (1.1) satisfies

lim
t 7→∞

1
t
(
S (t) + U(t) + T (t)

)
= 0 a.s..

Proof. Define W(N) = (1 + N)ρ with ρ > 1, which gives

dW(N) = LW(N)dt + ρ(1 + N)ρ−1(σ1(k)S dB1(t) + σ2(k)UdB2(t) + σ3(k)TdB3(t)
)
,
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where

LW(N) = ρ(1 + N)ρ−1[Λ(k) − µ(k)S − (µ(k) + δ1(k))U − (µ(k) + δ2(k))T
]

+
ρ(ρ − 1)

2
(1 + N)ρ−2(σ2

1(k)S 2 + σ2
2(k)U2 + σ2

3(k)T 2)
= ρ(1 + N)ρ−2[(1 + N)

(
Λ(k) − µ(k)S − (µ(k) + δ1(k))U

− (µ(k) + δ2(k))T
)
+
ρ − 1

2
(
σ2

1(k)S 2 + σ2
2(k)U2 + σ2

3(k)T 2)]
≤ ρ(1 + N)ρ−2

[
(1 + N)(Λ̌ − µ̂N) +

ρ − 1
2

(σ̌2
1 ∨ σ̌

2
2 ∨ σ̌

2
3)N2

]
= ρ(1 + N)ρ−2

[
−

(
µ̂ −
ρ − 1

2
(σ̌2

1 ∨ σ̌
2
2 ∨ σ̌

2
3)
)
N2 + (Λ̌ − µ̂)N + Λ̌

]
.

The remaining proof is referred as Lemma 2.3 of [28]. We omit the details.

Theorem 2. If the conditions

µ̂ >
1
2

(σ̌2
1 ∨ σ̌

2
2 ∨ σ̌

2
3)

and
max{β̌1, β̌2}

µ̂
Λ̌ −

(
p̂ + µ̂ + δ̂1 +

1
2
σ̂2

2

)
< 0

hold, then

lim
t 7→∞

ln U(t)
t
< 0.

That is, the density of the untreated drug addicts will decline to zero with an exponential rate.

Proof. Model (1.1) gives

d(S + U + T ) <
[
Λ̌ − µ̂(S + T ) − (µ̂ + δ̂1)U

]
dt

+ σ̌1S dB1(t) + σ̌2UdB2(t) + σ̌3TdB3(t).
(2.2)

Integrating (2.2) from 0 to t, we get

A(t)
t
≤

1
t

∫ t

0

[
Λ̌ − µ̂(S (s) + T (s)) − (µ̂ + δ̂1)U(s)

]
ds +

M(t)
t
. (2.3)

Together with

M(t) =
∫ t

0
σ̌1S (s)dB1(s) +

∫ t

0
σ̌2U(s)dB2(s) +

∫ t

0
σ̌3T (s)dB3(s)

and
A(t) = S (t) + U(t) + T (t) − S (0) − U(0) − T (0),
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the expression (2.3) further gives

1
t

∫ t

0
(S (s) + T (s))ds ≤

1
µ̂

{1
t

∫ t

0

[
Λ̌ −

(
µ̂ + δ̂1

)
U(s)

]
ds +

M(t)
t
−

A(t)
t

}
. (2.4)

From model (1.1), we can see

1
t

(
ln U(t) − ln U(0)

)
≤ max{β̌1, β̌2}

1
t

∫ t

0
(S (s) + T (s))ds

−
(
p̂ + µ̂ + δ̂1 +

1
2
σ̂2

2

)
+
σ̌2B2(t)

t
.

(2.5)

Combining expressions (2.4) and (2.5), we have

ln U(t)
t
≤

max{β̌1, β̌2}

µ̂

{1
t

∫ t

0

[
Λ̌ −

(
µ̂ + δ̂1

)
U(s)

]
ds +

M(t)
t
−

A(t)
t

}
−

(
p̂ + µ̂ + δ̂1 +

1
2
σ̂2

2

)
+
σ̌2B2(t)

t
+

ln U(0)
t

<
max{β̌1, β̌2}

µ̂

(M(t)
t
−

A(t)
t

)
+
σ̌2B2(t)

t
+

ln U(0)
t

+
Λ̌max{β̌1, β̌2}

µ̂
−

(
p̂ + µ̂ + δ̂1 +

1
2
σ̂2

2

)
.

By the strong law of large numbers for local martingales, together with Lemma 1 and Lemma 2, we obtain

lim
t 7→∞

1
t

∫ t

0
σ̌2dB2(s) = 0 a.s.,

and

lim
t 7→∞

1
t

{max{β̌1, β̌2}

µ̂
(M(t) − A(t)) + ln U(0)

}
= 0 a.s..

If
max{β̌1, β̌2}

µ̂
Λ̌ −

(
p̂ + µ̂ + δ̂1 +

1
2
σ̂2

2

)
< 0,

this means that
lim
t 7→∞

ln U(t)
t
< 0.

In other words, by Definition 3.2 in [34], the density of the untreated drug addicts declines to extinction
exponentially. The proof is complete.

2.3. Persistence of the untreated drug addicts within local population

Next, we investigate the sufficient conditions of the existence of an ergodic stationary distribution for
model (1.1). Define

Rs
0 :=

∑
k∈S

πkR0k, (2.6)
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where

R0k = c1(k)Λ(k) − p(k) − µ(k) − δ1(k) −
1
2
σ2

2(k),

and c1(k) is the solution of the linear system (2.7).

Lemma 3. For each k ∈ S, the linear system

c1(k)µ(k) − β1(k) −
∑
l∈S

pklc1(l) = 0 (2.7)

has a unique solution c1 = (c1(1), c1(2), · · · , c1(N))T ≫ 0; moreover,

c2(k)(µ(k) + δ2(k)) − β2(k) −
∑
l∈S

pklc2(l) = 0 (2.8)

has a unique solution c2 = (c2(1), c2(2), · · · , c2(N))T ≫ 0.

Proof. The linear system (2.7) can be rewritten as the form of AV = β1, where V ∈ RN , β1 =

(β1(1), β1(2), · · · , β1(N))T, and

A =


µ(1) − p11 −p12 · · · −p1N

−p21 µ(2) − p22 · · · −p2N
...

...
...

−pN1 −pN2 · · · µ(N) − pNN

 .

Obviously, A ∈ ZN×N , and ZN×N =
{
B = (bi j)N×N : bi j ⩽ 0, i , j

}
. By Lemma 5.3 in [40], we obtain that

determinant of (Ak) is positive for k = 1, 2, · · · ,N, where

Ak =


µ(1) − p11 −p12 · · · −p1k

−p21 µ(2) − p22 · · · −p2k
...

...
...

−pk1 −pk2 · · · µ(k) − pkk

 .

In other words, the leading principal minors of A are all positive, which means that A is a nonsingular
M-matrix. For the vector β1 ∈ R

N , the linear system (2.7) has a solution c1 = (c1(1), c1(2), · · · , c1(N))T.
Similarly, we show that the linear system (2.8) has a solution c2 = (c2(1), c2(2), · · · , c2(N))T.

Theorem 3. If Rs
0 > 0, then model (1.1) admits a unique ergodic stationary distribution.

Proof. Let

x(t) = ln S (t), y(t) = ln U(t), z(t) = ln T (t),

Mathematical Biosciences and Engineering Volume 20, Issue 7, 13222–13249.



13229

and then model (1.1) is rewritten as follows:

dx(t) =
[Λ(m(t))

ex − β1(m(t))ey −
(
µ(m(t)) +

1
2
σ2

1(m(t))
)]

dt

+ σ1(m(t))dB1(t),

dy(t) =
[
β1(m(t))ex − p(m(t)) + β2(m(t))ez −

(
µ(m(t)) + δ1(m(t))

+
1
2
σ2

2(m(t))
)]

dt + σ2(m(t))dB2(t),

dz(t) =
[ p(m(t))ey

ez − β2(m(t))ey −
(
µ(m(t)) + δ2(m(t)) +

1
2
σ2

3(m(t))
)]

dt

+ σ3(m(t))dB3(t).

(2.9)

Equivalently, we study the stationary distribution of model (2.9) by using Lemma 2.1 in [41] (also
referred as Lemma 5.1 in [36]).

Step 1. The assumption pi j > 0 for i , j implies that condition (i) in Lemma 2.1 in [41] is satisfied.
Step 2. The diffusion matrix

D(x, k) =


σ2

1(k) 0 0
0 σ2

2(k) 0
0 0 σ2

3(k)


of model (2.9) is positive definite, which implies that condition (ii) in Lemma 2.1 in [41] holds.

Step 3. We define a C2-function

W(x, y, z, k) =
1
θ + 1

(ex + ey + ez)(θ+1)

− B
[
c1(k)(ex + ey) + c2(k)(ey + ez) + y + ωk

]
− x − z,

such that θ ∈ (0, 1) satisfying

µ̂ − 0.5θσ̌2
1 > 0, µ̂ + δ̂1 − 0.5θσ̌2

2 > 0, µ̂ + δ̂2 − 0.5θσ̌2
3 > 0,

and such that B > 0 satisfying
f u
1 + f u

3 − BRs
0 ≤ −2,

here ωk will be determined later. Obviously, there exists a point (x0, y0, z0, k) at which the minimum
value W(x0, y0, z0, k) is taken. We define a non-negative C2-Lyapunov function as follows:

V(x, y, z, k) = W(x, y, z, k) −W(x0, y0, z0, k). (2.10)

Denote

V1(x, y, z, k) =
1
θ + 1

(ex + ey + ez)(θ+1),

V2(x, y, z, k) = −c1(k)(ex + ey) − c2(k)(ey + ez) − y − ωk,

V3(y, k) = −x,

V4(x, k) = −z.
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By using the generalized Itô’s formula, together with the elementary equality

(a + b + c)θ ≤ 3θ(aθ + bθ + cθ), for a > 0, b > 0, c > 0,

we obtain

LV1 = (ex + ey + ez)θ
[
Λ(k) − µ(k)ex −

(
µ(k) + δ1(k)

)
ey −

(
µ(k) + δ2(k)

)
ez]

+
θ

2
(ex + ey + ez)θ−1(σ2

1(k)e2x + σ2
2(k)e2y + σ2

3(k)e2z)
≤ 3θΛ(k)(eθx + eθy + eθz) +

θ

2

(
σ2

1(k)e(θ+1)x + σ2
2(k)e(θ+1)y + σ2

3(k)e(θ+1)z
)

−
(
µ(k) + δ2(k)

)
e(θ+1)z − µ(k)e(θ+1)x −

(
µ(k) + δ1(k)

)
e(θ+1)y,

(2.11)

and picking the coefficients by terms gives that

LV1 ≤ −
(
µ̂ −
θ

2
σ̌2

1

)
e(θ+1)x −

(
µ̂ + δ̂1 −

θ

2
σ̌2

2

)
e(θ+1)y −

(
µ̂ + δ̂2 −

θ

2
σ̌2

3

)
e(θ+1)z

+ 3θΛ̌(eθx + eθy + eθz).

(2.12)

According to the similar discussion and Lemma 3, we obtain

LV2 = −c1(k)
[
Λ(k) − µ(k)ex − p(k)ey + β2(k)ey+z −

(
µ(k) + δ1(k)

)
ey]

− c2(k)
[
β1(k)ex+y −

(
µ(k) + δ1(k)

)
ey −

(
µ(k) + δ2(k)

)
ez]

− β1(k)ex − β2(k)ez + p(k) + µ(k) + δ1(k) +
1
2
σ2

2(k) −
∑
l∈S

pklω(l)

−
∑
l∈S

pklc1(l)(ex + ey) −
∑
l∈S

pklc2(l)(ey + ez)

≤
[
c1(k)µ(k) − β1(k) −

∑
l∈S

pklc1(l)
]
ex

+
[
c2(k)

(
µ(k) + δ2(k)

)
− β2(k) −

∑
l∈S

pklc2(l)
]
ez

+
[
c1(k)

(
p(k) + µ(k) + δ1(k)

)
+ c2(k)

(
µ(k) + δ1(k)

)
−

∑
l∈S

pklc1(l) −
∑
l∈S

pklc2(l)
]
ey

+ p(k) + µ(k) + δ1(k) +
1
2
σ2

2(k) − c1(k)Λ(k) −
∑
l∈S

pklω(l)

=: −R0k −
∑
l∈S

pklω(l)

+
[
c1(k)

(
p(k) + δ1(k)

)
+ c2(k)

(
δ1(k) − δ2(k)

)
+ β1(k) + β2(k)

]
ey,

(2.13)

Mathematical Biosciences and Engineering Volume 20, Issue 7, 13222–13249.



13231

with
R0k = c1(k)Λ(k) − p(k) − µ(k) − δ1(k) −

1
2
σ2

2(k).

We define a vector R0 = (R01,R02, · · · ,R0N)T, since the generator matrix Γ is irreducible, there exists a
solution of the Poisson system ω = (ω1, · · · , ωN)T such that

Γω =
( N∑

k=1

πkR0k

)
1⃗ − R0, (2.14)

where 1⃗ is a column vector in which all elements are one, which further implies

R0k +
∑
l∈S

pklω(l) =
N∑

k=1

πkR0k,

and together with (2.6), the expression (2.13) turns into

LV2 ≤ −Rs
0 +

[
č1( p̌ + δ̌1) + č2δ̌1 + β̌1 + β̌2

]
ey. (2.15)

By the same arguments, we derive

LV3 = −
Λ(k)

ex + β1(k)ey + µ(k) +
1
2
σ2

1(k) ≤ −
Λ̂

ex + β̌1ey + µ̌ +
1
2
σ̌2

1, (2.16)

LV4 ≤ −
p̂(k)
ez + β̌2(k)ey + µ̌ + δ̌2 +

1
2
σ̌2

3. (2.17)

Thus the following result is derived

LV = LV1 + BLV2 +LV3 +LV4 < f (x, y, z) = f1(x) + f2(y) + f3(z), (2.18)

where

f1(x) = −
(
µ̂ −
θ

2
σ̌2

1

)
e(θ+1)x + 3θΛ̌eθx −

Λ̂

ex + 2µ̌ + δ̌2 +
1
2

(σ̌2
1 + σ̌

2
3),

f2(y) = −
(
µ̂ + δ̂1 −

θ

2
σ̌2

2

)
e(θ+1)y + 3θΛ̌eθy + (β̌1 + β̌2)ey

+ B
[
− Rs

0 +
(
č1( p̌ + δ̌1) + č2δ̌1 + β̌1 + β̌2

)
ey],

f3(z) = −
(
µ̂ + δ̂2 −

θ

2
σ̌2

3

)
e(θ+1)z + 3θΛ̌eθz −

p̂
ez .

Furthermore, we have

f (x, y, z) ≤ f1(x) + f u
2 + f u

3 → −∞, if x→ +∞ or x→ −∞,

and the same arguments give that

f (x, y, z) ≤ f u
1 + f2(y) + f u

3 → −∞, if y→ +∞,

f (x, y, z) ≤ f u
1 + f2(y) + f u

3 → f u
1 + f u

3 − BRs
0 ≤ −2, if y→ −∞,

f (x, y, z) ≤ f u
1 + f u

2 + f3(z)→ −∞, if z→ +∞ or z→ −∞.
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Therefore, we take ε > 0 sufficiently large, and let

U = (−ε, ε) × (−ε, ε) × (−ε, ε) × (−ε, ε).

Then,
LV(x, y, z, k) ≤ −1, (x, y, z, k) ∈ Uc × S.

Hence condition (iii) of Lemma 2.1 in [41] is verified.

2.4. Probability density function of model (2.20) within local population

Lemma 4. [42] Let Υ0 be a symmetric positive definite matrix, such that the three dimensional algebraic
equation

G2
0 + A0Υ0 + Υ0AT

0 = 0 (2.19)

holds, where G0 = diag{1, 0, 0}, and

A0 =


−c1 −c2 −c3

1 0 0
0 1 0


and also that c1 > 0, c3 > 0 and c1c2 − c3 > 0, then Υ0 follows

Υ0 =
1

2(c1c2 − c3)


c2 0 −1
0 1 0
−1 0

c1

c3

.
Lemma 5. [42] Let Υ0 be a symmetric positive semi-definite matrix, such that the three-dimensional
algebraic equation

G2
0 + Ã0Υ1 + Υ1ÃT

0 = 0

holds, where G0 = diag{1, 0, 0}, and

Ã0 =


−d1 −d2 −d3

1 0 0
0 0 d33.

.
Also, d1 > 0, d2 > 0, and thus Υ1 takes the form

Υ1 = diag
{ 1
2d1
,

1
2d1d2

, 0
}
.

Next, as a special case, we consider the degenerated model (2.20) as follows:

dS (t) =
[
Λ − β1S (t)U(t) − µS (t)

]
dt + σ1S (t)dB1(t),

dU(t) =
[
β1S (t)U(t) − pU(t) + β2U(t)T (t) − (µ + δ1)U(t)

]
dt

+ σ2U(t)dB2(t),
dT (t) =

[
pU(t) − β2U(t)T (t) − (µ + δ2)T (t)

]
dt + σ3T (t)dB3(t).

(2.20)
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Then, we investigate the existence of the probability density function of model (2.20). First of all, we
consider the existence of the positive equilibrium point to model (2.20).

Theorem 4. If the conditions

g1 = 0, 1 +
m1m2

m1 p − β1Λ
> 0, (2.21)

or

g1 < 0, ∆ > 0, β1Λ − m1 p − m1m2 > 0, (2.22)

or

g1 < 0, ∆ = 0, (β2m1 − β1m3)(m2 + p) + β2(m1 p − β1Λ) > 0, (2.23)

hold, then, model (2.20) admits a positive equilibrium point P∗, where g1,m1,m2,m3 and ∆ could be
found later.

Proof. Let (z1, z2, z3)T = (ln S , ln U, ln T )T, by using Itô’s formula, the following is derived from
model (2.20) that 

dz1 =
[ Λ
ez1
− β1ez2 −

(
µ +
σ2

1

2

)]
dt + σ1dB1(t),

dz2 =
[
β1ez1 − p + β2ez3 −

(
µ + δ1 +

σ2
2

2

)]
dt + σ2dB2(t),

dz3 =
[
pez2−z3 − β2ez2 −

(
µ + δ2 +

σ2
3

2

)]
dt + σ3dB3(t).

(2.24)

Then, we determine the unique local equilibrium point

P∗ = (S ∗,U∗,T ∗) = (ez∗1 , ez∗2 , ez∗3),

by solving the following equations:

Λ

ez∗1
− β1ez∗2 −

(
µ +
σ2

1

2

)
= 0,

β1ez∗1 − p + β2ez∗3 −
(
µ + δ1 +

σ2
2

2

)
= 0,

pez∗2−z∗3 − β2ez∗2 −
(
µ + δ2 +

σ2
3

2

)
= 0,

(2.25)

in which

S ∗ =
p − β2T ∗ + m2

β1
> 0, U∗ =

m3T ∗

p − β2T ∗
> 0,

and T ∗ satisfies the following quadratic equation

g1T 2 + g2T + g3 = 0, (2.26)
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with

g1 = β1β2m3 − β
2
2m1,

g2 = 2β2m1 p + β2m1m2 − β1β2Λ − β1m2m3 − β1m3 p,

g3 = β1 pΛ − m1m2 p − m1 p2,

and

m1 = µ +
σ2

1

2
,m2 = µ + δ1 +

σ2
2

2
,m3 = µ + δ2 +

σ2
3

2
.

Next, we discuss the value of g1 by three cases.
Case 1. If g1 = 0 (i.e., β1m3 − β2m1 = 0), and

1 +
m1m2

m1 p − β1Λ
> 0, (2.27)

together with

g2 = β2(m1 p − β1Λ), g3 = p(β1Λ − m1m2 − m1 p),

as (2.27) is valid, then we get

g3

g2
=

p(β1Λ − m1m2 − m1 p)
β2(m1 p − β1Λ)

= −
p
β2

(
1 +

m1m2

m1 p − β1Λ

)
< 0,

and thus Eq (2.26) has a unique positive root.
Case 2. If g1 < 0, then we get

∆ =g2
2 − 4g1g3

=
[
2β2m1 p + β2m1m2 − β1β2Λ − β1m2m3 − β1m3 p

]2

+ 4β2 p(β2m1 − β1m3)(β1Λ − m1 p − m1m2).

Next, we turn to analyze the value of ∆. When

∆ > 0, β1Λ − m1 p − m1m2 > 0, (2.28)

which further gives

g3

g1
=
β1 pΛ − m1m2 p − m1 p2

β1β2m3 − β
2
2m1

=
p(β1Λ − m1m2 − m1 p)
β2(β1m3 − β2m1)

< 0.

Thus, Eq (2.26) has a unique positive root. When

∆ = 0, (β2m1 − β1m3)(m2 + p) + β2(m1 p − β1Λ) > 0, (2.29)

which gives that

−
g2

2g1
= −

2β2m1 p + β2m1m2 − β1β2Λ − β1m2m3 − β1m3 p
2β2(β1m3 − β2m1)

=
(β2m1 − β1m3)(m2 + p) + β2(m1 p − β1Λ)

2β2(β2m1 − β1m3)
> 0,
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and thus Eq (2.26) has a unique positive root.
Case 3. When g1 > 0, if the drug addicts under treatment T (t) has a unique positive root, the value

of β1 will be very small, and the drug addicts U(t) and susceptible individuals S (t) are negative, so we
omit this case.

Theorem 5. If the conditions of Theorem 4 are satisfied, and

Λβ2
1 − m3β2 p > 0, (2.30)

then, model (2.20) possesses a probability density function

Φ(S ,U,T ) = (2π)−
3
2 |Σ|−

1
2 e−

1
2 (ln S

S ∗ ,ln
U

U∗ ,ln
T

T∗ )Σ−1(ln S
S ∗ ,ln

U
U∗ ,ln

T
T∗ )T
,

and the positive definite matrix Σ is presented later.

Proof. Let xi = zi − z∗i for i = 1, 2, 3, and the linearized equation of model (2.24) is written as
dx1 =(−a11x1 − a12x2 + a13x3)dt + σ1dB1(t),
dx2 =(a21x1 + a22x2 + a23x3)dt + σ2dB2(t),
dx3 =(a31x1 + a32x2 − a33x3)dt + σ3dB3(t),

(2.31)

where

a11 = Λe−z∗1 , a12 = β1ez∗2 , a13 = 0,

a21 = β1ez∗1 , a22 = 0, a23 = β2ez∗3 ,

a31 = 0, a32 = pez∗2−z∗3 − β2ez∗2 , a33 = pez∗2−z∗3 .

Let X = (x1, x2, x3)T, B(t) = (B1(t), B2(t), B3(t))T,M = diag{σ1, σ2, σ3} and

A =


−a11 −a12 0
a21 0 a23

0 a32 −a33

.
Therefore, Eq (2.31) can be equally rewritten as

dX(t) = AX(t)dt + MdB(t).

According to the relative theory in Gardiner [43], there is a unique density function Φ(X) around the
positive equilibrium point P∗ which satisfies the following equation (i.e., Fokker-Planck equation):

−

3∑
r=1

σ2
i

2
∂2Φ

∂x2
i

+
∂

x1
[(−a11x1 − a12x2 + a13x3)Φ]

+
∂

x2
[(a21x1 + a22x2 + a23x3)Φ] +

∂

x3
[a31x1 + a32x2 − a33x3)Φ] = 0.

(2.32)

On the basis of Roozen [44], we can approximate it with a Gaussian distribution

Φ(X) = Φ(x1, x2, x3) = C0e−
1
2 (x1,x2,x3)Q(x1,x2,x3)T

,

Mathematical Biosciences and Engineering Volume 20, Issue 7, 13222–13249.



13236

where C0 is a positive constant, which is determined by∫
R3
Φ(x1, x2, x3)dx1dx2dx3 = 1.

Also, the real symmetric inverse matrix Q meets the subsequent algebraic equation

QM2Q + QA + AT Q = 0,

such that Σ = Q−1, and then we derive

M2 + AΣ + ΣAT = 0. (2.33)

Furthermore, we have C0 = (2π)−
3
2 |Σ|−

1
2 .

According to the finite independent superposition principle, we express Eq (2.33) as the sum of the
solutions of the following algebraic sub-equations:

M2
k + AΣk + ΣkAT = 0, k = 1, 2, 3, (2.34)

where

M1 = diag(σ1, 0, 0),M2 = diag(0, σ2, 0),M3 = diag(0, 0, σ3)

with

Σ = Σ1 + Σ2 + Σ3,M2 = M2
1 + M2

2 + M2
3 .

Obviously, the characteristic polynomial of matrix A is

λ3 + p1λ
2 + p2λ + p3 = 0,

with

p1 = a33 + a11,

p2 = a11a33 + a12a21 − a23a32,

p3 = a12a21a33 − a11a23a32.

(2.35)

We find that

∆1 = p1 = a33 + a11 > 0,
∆2 = p1 p2 − p3 = a2

11a33 + a11a12a21 + a11a2
33 − a23a32a33,

(2.36)

due to a2
11a33 + a11a2

33 > 0, and direct substitution gives that

a11a12a21 − a23a32a33 =
m3T ∗(Λβ2

1 − β2m3 p)
p − β2T ∗

> 0. (2.37)

We derive that A is a Hurwitz matrix. Next, we will prove that Σ is positive definite.
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Step 1. We consider the algebraic equation

M2
1 + AΣ1 + Σ1AT = 0, (2.38)

and our discussion will be separated into two cases according to the value of a32.
Case 1.1. If a32 , 0, according to Li et al. [45], we select the standardized transformation matrix

H1 =


a32a21 −a32a33 a2

33 + a32a23

0 a32 −a33

0 0 1

, (2.39)

such that B1 = H1AH−1
1 . By direct calculation, we obtain

B1 =


−y1 −y2 −y3

1 0 0
0 1 0

,
where

y1 = a11 + a33,

y2 = a11a33 + a12a21 − a23a32,

y3 = a12a21a33 − a11a23a32.

Furthermore, algebraic Eq (2.38) can be converted to the equivalent

H1M2
1 HT

1 + B1H1Σ1HT
1 + H1Σ1HT

1 BT
1 = 0,

letting

Θ1 = ϱ
−2
1 H1Σ1HT

1 , ϱ1 = a21a32σ1,

and algebraic Eq (2.38) is converted as

G2
0 + B1Θ1 + Θ1BT

1 = 0. (2.40)

We notice that the real parts of the eigenvalues of A are all negative, so B1 is a Hurwitz matrix. By
Lemma 4, Θ1 is positive definite and takes the form

Θ1 =
1

2(y1y2 − y3)


y2 0 −1
0 1 0
−1 0

y1

y3

.
Therefore, Σ1 = ϱ

2
1H−1

1 Θ1(HT
1 )−1.

Case 1.2. If a32 = 0, we choose Ĥ1 such that B̂1 = Ĥ1AĤ−1
1 with

Ĥ1 =


a21 0 a23

0 1 0
0 0 1

, B̂1 =


−b1 −b2 −b3

1 0 0
0 0 −a33

,
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where

b1 = a11, b2 = a12a21, b3 = a23a33 − a11a23.

One can equivalently transform (2.38) into

Ĥ1M2
1 ĤT

1 + B̂1Ĥ1Σ1ĤT
1 + Ĥ1Σ1ĤT

1 B̂T
1 = 0,

letting

Θ̂1 = ϱ̂
−2
1 Ĥ1Σ1ĤT

1 , ϱ̂1 = a21σ1.

The algebraic Eq (2.38) becomes

G2
0 + B̂1Θ̂1 + Θ̂1B̂T

1 = 0, (2.41)

with

Θ̂1 = diag
{ 1
2b1
,

1
2b1b2

, 0
}
. (2.42)

Therefore, Σ1 = ϱ̂
2
1Ĥ−1

1 Θ̂1(ĤT
1 )−1.

Step 2. Let us consider the following algebraic equation

M2
2 + AΣ2 + Σ2AT = 0, (2.43)

we select the corresponding elimination matrix J2 and let A2 = J2AJ−1
2 with

J2 =


0 1 0
0 0 1
1 0

a12

a32

, A2 =


0 −

a12a21

a32
+ a23 a21

a32 −a33 0
0 k2 −a11

,
with

k2 =
a11a12

a32
−

a12a33

a32
.

Case 2.1. If k2 , 0, we then let B2 = H2A2H−1
2 with

H2 =


k2a32 −k2(a11 + a33) a2

11
0 k2 −a11

0 0 1

, B2 =


−q1 −q2 −q3

1 0 0
0 1 0

, (2.44)

where

q1 = a11 + a33,

q2 = a11a33 + a12a21 − a23a32,

q3 = a12a21a33 − a11a23a32.
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Moreover, algebraic Eq (2.43) is equivalently transformed into

(H2J2)M2
2(H2J2)T + B2[(H2J2)Σ2(H2J2)T ] + [(H2J2)Σ2(H2J2)T ]BT

2 = 0,

and letting

Θ2 = ϱ
−2
2 (H2J2)Σ2(H2J2)T , ϱ2 = k2a32σ2,

algebraic Eq (2.43) is converted as

G2
0 + B2Θ2 + Θ2BT

2 = 0, (2.45)

with

Θ2 =
1

2(q1q2 − q3)


q2 0 −1
0 1 0
−1 0

q1

q3

.
In other words, Σ2 = ϱ

2
2(H2J2)−1Θ2[(H2J2)T ]−1.

Case 2.2. If k2 = 0, then we select Ĥ2 and let B̂2 = Ĥ2A2Ĥ−1
2 with

Ĥ2 =


a32 −a33 0
0 1 0
0 0 1

, B̂2 =


−ω1 −ω2 −ω3

1 0 0
0 0 −a11

,
where

ω1 = a33, ω2 = a12a21 − a23a32, ω3 = −a21a32.

One can equivalently transform (2.43) into

(Ĥ2J2)M2
2(Ĥ2J2)T + B̂2[(Ĥ2J2)Σ2(Ĥ2J2)T ] + [(Ĥ2J2)Σ2(Ĥ2J2)T ]B̂T

2 = 0,

letting

Θ̂2 = ϱ̂
−2
2 (Ĥ2J2)Σ2(Ĥ2J2)T , ϱ̂2 = a32σ2,

which by Lemma 5 is simplified as

G2
0 + B̂2Θ̂2 + Θ̂2B̂T

2 = 0, (2.46)

with

Θ̂2 = diag
{ 1
2ω1
,

1
2ω1ω2

, 0
}
.

Therefore, Σ2 = ϱ̂
2
2(Ĥ2J2)−1Θ̂2[(Ĥ2J2)T ]−1.

Step 3. Let us consider the algebraic equation

M2
3 + AΣ3 + Σ3AT = 0, (2.47)
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and we select J3 and let A3 = J3AJ−1
3 with

J3 =


0 0 1
0 1 0
1 0 0

, A3 =


−a33 a32 0
a23 0 a21

0 −a12 −a11

.
We find H3 such that B3 = H3A3H−1

3 with

H3 =


−a12a23 a11a12 a2

11 − a12a21

0 −a12 −a11

0 0 1

, B3 =


−s1 −s2 −s3

1 0 0
0 1 0

, (2.48)

where

s1 = a11 + a33,

s2 = a11a33 + a12a21 − a23a32,

s3 = a12a21a33 − a11a23a32.

So, (2.47) is equivalently transformed into

(H3J3)M2
3(H3J3)T + B3[(H3J3)Σ3(H3J3)T ] + [(H3J3)Σ3(H3J3)T ]BT

3 = 0,

and letting

Θ3 = ϱ
−2
3 (H3J3)Σ3(H3J3)T , ϱ3 = a12a23σ3,

algebraic Eq (2.47) is converted as

G2
0 + B3Θ3 + Θ3BT

3 = 0, (2.49)

with

Θ3 =
1

2(s1s2 − s3)


s2 0 −1
0 1 0
−1 0

s1

s3

.
In other words, Σ3 = ϱ

2
3(H3J3)−1Θ3[(H3J3)T ]−1.

3. Examples and numerical experiments

We assume that the Markov chain m(t) takes values in the state space S = {1, 2} with the generator

Γ =

(
−0.80 0.80
0.20 −0.20

)
.

The initial value is (S (0),U(0),T (0)) = (0.70, 0.50, 0.40), and the unique stationary distribution of m(t)
is π = (π1, π2) = (0.20, 0.80), respectively. We next apply two methods to simulate the sample paths of
model (1).
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Milstein’s higher order method (MHOM). The discretization equations of model (1.1) by MHOM
in [46] are written as follows:

S i+1 =S i + (Λ(k) − β1(k)S iUi − µ(k)S i)∆t + σ1(k)S i

√
∆tvk,i

+ 0.5σ2
1(k)S 2

i (v2
k,i − 1)∆t,

Ui+1 =Ui +
(
β1(k)S iUi + β2(k)UiTi − (µ(k) + p(k) + δ1(k)) Ui

)
∆t

+ σ2(k)Ui

√
∆tvk,i + 0.5σ2

2(k)U2
i (v2

k,i − 1)∆t,

Ti+1 =Ti + (p(k) − β2(k)UiTi − (µ(k) + δ2(k)) Ti)∆t + σ3(k)Ti

√
∆tvk,i

+ 0.5σ2
3(k)T 2

i (v2
k,i − 1)∆t, i = 0, 1, 2, · · · .

(3.1)

Partially truncated Euler-Maruyama method (PTEMM). The PTEMM in [47] is written as follows:

∆t = 10−4, h(∆t) = ∆t−
1
3 , u−1(r) =

√
r
3
, Xc =

√
3 × 10

2
3

3
√

S 2
i + U2

i + T 2
i

,

and the discretization equations of model (1.1) are written in (3.2), so the verifications of assumptions
in [48] are straightforward

S i+1 =S i +
(
Λ(k) − f1∆t,i − µ(k)S i

)
∆t + g1∆t,i

√
∆tvk,i,

Ui+1 =Ui +
(
f2∆t,i − (µ(k) + p(k) + δ1(k)) Ui

)
∆t + g2∆t,i

√
∆tvk,i,

Ti+1 =Ti +
(
p(k) − f3∆t,i − (µ(k) + δ2(k)) Ti

)
∆t + g3∆t,i

√
∆tvk,i,

(3.2)

where i = 0, 1, 2, · · · and

f1∆t,i = (1 ∧ Xc) β1(k)S iUi, f2∆t,i = (1 ∧ Xc) (β1(k)S iUi + β2(k)UiTi),
f3∆t,i = (1 ∧ Xc) β2(k)UiTi, g1∆t,i = (1 ∧ Xc)σ1(k)S i,

g2∆t,i = (1 ∧ Xc)σ2(k)Ui, g3∆t,i = (1 ∧ Xc)σ3(k)Ti.

vk,i are the Gaussian random variables, which follow the standard normal distribution N(0, 1). Next, we
use PTEMM to simulate the figures in Examples 1–3.

Table 1. Values of parameters to model (1.1).

Group k Λ(k) p(k) µ(k) δ1(k) δ2(k) β1(k) β2(k) σ2
1(k) σ2

2(k) σ2
3(k)

(I)
1 0.60 0.65 0.35 0.20 0.25 0.25 0.35 0.200 0.450 0.100
2 0.40 0.55 0.25 0.10 0.20 0.15 0.25 0.100 0.350 0.050

(II)
1 0.60 0.65 0.35 0.20 0.25 0.25 0.35 0.200 0.490 0.100
2 0.40 0.55 0.25 0.10 0.20 0.15 0.25 0.100 0.400 0.050

(III)
1 0.60 0.30 0.25 0.20 0.25 0.55 0.65 0.002 0.003 0.003
2 0.40 0.20 0.15 0.10 0.20 0.45 0.55 0.001 0.001 0.002

Example 1 We choose (I) and (II) of Table 1 to simulate the extinction in Theorem 2. By (I), we obtain

µ̂ = 0.25 > 0.225 =
1
2

(σ̌2
1 ∨ σ̌

2
2 ∨ σ̌

2
3),

max{β̌1, β̌2}

µ̂
Λ̌ −

(
p̂ + µ̂ + δ̂1 +

1
2
σ̂2

2

)
= −0.235 < 0.
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By (II), we derive

µ̂ = 0.25 > 0.245 =
1
2

(σ̌2
1 ∨ σ̌

2
2 ∨ σ̌

2
3),

max{β̌1, β̌2}

µ̂
Λ̌ −

(
p̂ + µ̂ + δ̂1 +

1
2
σ̂2

2

)
= −0.260 < 0.

Compare the trajectories of solutions under conditions (I) and (II), and the time spent in Figure 2 under
(II) is shorter than that in Figure 1 under (I) when the intensities of the white noises increase.

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 1. The extinction of the untreated drug addicts to model (1.1) under (I) with initial
conditions (S (0),U(0),T (0)) = (0.70, 0.50, 0.40) and σ2

1(1) = 0.2, σ2
1(2) = 0.1, σ2

2(1) =
0.45, σ2

2(2) = 0.35, σ2
3(1) = 0.1, σ2

3(2) = 0.05.

0 500 1000 1500 2000 2500 3000
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0.5

1

1.5

2

2.5
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3.5

4

Figure 2. The extinction of the untreated drug addicts to model (1.1) under (II) with initial
conditions (S (0),U(0),T (0)) = (0.70, 0.50, 0.40) and σ2

1(1) = 0.2, σ2
1(2) = 0.1, σ2

2(1) =
0.49, σ2

2(2) = 0.4, σ2
3(1) = 0.1, σ2

3(2) = 0.05.

Example 2 We choose (III) of Table 1 to present the results in Theorem 3. In fact, the following
condition is valid:

Rs
0 =

∑
k∈S

πkR0k = 0.707 > 0.

As shown in Figure 3, the densities of the susceptible, the untreated drug addicts, and the drug addicts
under treatment are stationary over time. The related simulations are demonstrated by MHOM in the
middle and by PTEMM on the right. Moreover, for 50000 sample paths in total, the distributions of
frequency for the solution of model (1.1) are carried out in Figure 4.
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Figure 3. The stationary distributions with same Markov chain (left) under MHOM (middle)
and PTEMM (right) respectively.
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Figure 4. Histogram of S (t),U(t),T (t) to model (1) with 50000 sample paths.

Example 3 We choose the data in Table 2 to verify the conditions of Theorem 4 and Theorem 5.
By (IV), the conditions

1 +
m1m2

m1 p − β1Λ
= 0.618 > 0,Λβ2

1 − m3β2 p = 0.043 > 0

hold, we derive the equilibrium point P∗ = (1.078, 0.861, 0.407) by Theorem 4. Meanwhile, the
stochastic persistence of density function of model (2.20) is demonstrated in Figure 5.
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Table 2. Values of parameters to model (2.20).

Group Λ p µ δ1 δ2 β1 β2 σ2
1 σ2

2 σ2
3

(IV) 0.60 0.35 0.15 0.125 0.115 0.400 0.532 0.125 0.045 0.035
(V) 0.60 0.35 0.05 0.150 0.055 0.400 0.380 0.170 0.080 0.044
(VI) 0.60 0.35 0.17 0.050 0.070 0.261 0.450 0.188 0.045 0.035
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Figure 5. Persistence and density function of model (2.20) around (1.078, 0.861, 0.407).
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Figure 6. Persistence and density function of model (2.20) around (0.746,1.670,0.768).

Or, we take parameter (V) to compute the following conditions

β1Λ − m1 p − m1m2 = 0.105 > 0, Λβ2
1 − m3β2 p = 0.106 > 0
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then, the equilibrium point P∗ = (0.746, 1.670, 0.768) is followed. Further, the stochastic persistence
of density function of model (2.20) is shown in Figure 6. Or, by selecting parameter (VI), the
following conditions

(β2m1 − β1m3)(m2 + p) + β2(m1 p − β1Λ) = 0.160 > 0,Λβ2
1 − m3β2 p = 0.079 > 0

hold, we obtain the positive equilibrium point P∗ = (0.967, 0.845, 0.679). So, the same dynamical
properties appear, and we omit this case hereby.

4. Conclusions and discussion

Heroin is an addictive drug made from the various opium poppy plants around the world. The price
and spreading of heroin depend on the flowering period (usually May–July for a year) and the fruiting
period (usually June–August for a year). So, we give an SUT epidemic model with regime switching to
describe the flowering period and fruiting period of opium poppy plants in this paper. We are motivated
by the switching between flowering period and fruiting period of opium poppy plants in years, and the
recent contributions [17, 30, 31] on epidemic models. We focus on the survival analysis of switching
model (1.1) and its probability density function of constant model (2.20) for investigating their long-time
dynamical properties.

For the switching SUT epidemic model (1.1), the existence and uniqueness is first derived with
probability one in Theorem 1 by contradiction and stochastic analysis. Further, Theorem 2, Figures 1
and 2 verify the extinction of the switching SUT model under moderate conditions in theoretical and
numerical aspects. The simulations therein also reveal that the larger intensities of the white noises make
the time of extinction earlier. As a consequence of theoretical investigation, we derive the important
index Rs

0 > 0 of the existence and uniqueness of the ergodic stationary distribution in Theorem 3. The
corresponding sample paths and histogram frequencies are demonstrated in Figures 3 and 4, respectively,
in which Milstein’s higher order method and partially truncated Euler-Maruyama method both verify
well under the same Markovian chain.

For the constant SUT epidemic model (2.20), we aim at the existence of the positive equilibrium
point in Theorem 4 and the existence of probability density function in Theorem 5, respectively. One of
three types of sufficient conditions is required for determining a positive equilibrium point, and details
could be found in Example 3. The sample paths of model (2.20) under distinct positive equilibrium
points are demonstrated in Figure 5. Further, the expression of probability density function around the
positive equilibrium point is obtained in Theorem 5 after we prove that coefficient matrix A is a Hurwitz
matrix and diffusion matrix Σ is positive definite by using the Fokker-Planck equation.
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leucoencé phalopathie due to inhaled heroin, Rev. Colomb. Psiquiat., 49 (2020), 289–292.
https://doi.org/10.1016/j.rcp.2019.06.003

2. National, Institute on drug abuse. Available from: https://www.drugabuse.gov/drug-topics/opioids

3. E. White, C. Comiskey, Heroin epidemics, treatment and ODE modelling, Math. Biosci., 208 (2007),
312–324. https://doi.org/10.1016/j.mbs.2006.10.008

4. S. Djilali, T. M. Touaoula, M. S. El-Hadi, A heroin epidemic model: Very general non-
linear incidence treat-age and global stability, Acta. Appl. Math., 152 (2017), 171–194.
https://doi.org/10.1007/s10440-017-0117-2

5. J. Wang, J. Wang, T. Kuniya, Analysis of an age-structured multi-group heroin epidemic model,
Appl. Math. Comput., 347 (2019), 78–100. https://doi.org/10.1016/j.amc.2018.11.012

6. X. Duan, X. Li, M. Martcheva, Qualitative analysis on a diffusive age-structured
heroin transmission model, Nonlinear Anal.-Real World Appl., 54 (2020), 103105.
https://doi.org/10.1016/j.nonrwa.2020.103105

7. J. Liu, T. Zhang, Global behaviour of a heroin epidemic model with distributed delays, Appl. Math.
Lett., 24 (2011), 1685–1692. https://doi.org/10.1016/j.aml.2011.04.019

8. G. Huang, A. Liu, A note on global stability for a heroin epidemic model with distributed delay,
Appl. Math. Lett., 26 (2013), 687–691. https://doi.org/10.1016/j.aml.2013.01.010

9. X. Abdurahman, Z. Teng, L. Zhang, Global dynamics in a heroin epidemic model with difff-
ferent conscious stages and two distributed delays, Int. J. Biomath., 12 (2019), 1950038.
https://doi.org/10.1142/S1793524519500384

10. M. Ma, S. Liu, J. Li, Bifurcation of a heroin model with nonlinear incidence rate, Nonlinear Dyn.,
88 (2017), 555–565. https://doi.org/10.1007/s11071-016-3260-9

11. L. Chen, F. Wei, Study on a susceptible-exposed-infected-recovered model with nonlinear incidence
rate, Adv. Differ. Equations, 2020 (2020), 206. https://doi.org/10.1186/s13662-020-02662-5

12. S. Djilali, S. Bentout, T. M. Touaoula, A. Tridane, S. Kumar, Global behavior of Heroin epidemic
model with time distributed delay and nonlinear incidence function, Results Phys., 31 (2021),
104953. https://doi.org/10.1016/j.rinp.2021.104953

13. S. Bentout, Y. Chen, S. Djilali, Global dynamics of an SEIR model with two age structures and
a nonlinear incidence, Acta. Appl. Math., 171 (2021), 1–27. https://doi.org/10.1007/s10440-020-
00369-z

Mathematical Biosciences and Engineering Volume 20, Issue 7, 13222–13249.

http://dx.doi.org/https://doi.org/10.1016/j.rcp.2019.06.003
http://dx.doi.org/https://doi.org/10.1016/j.mbs.2006.10.008
http://dx.doi.org/https://doi.org/10.1007/s10440-017-0117-2
http://dx.doi.org/https://doi.org/10.1016/j.amc.2018.11.012
http://dx.doi.org/https://doi.org/10.1016/j.nonrwa.2020.103105 
http://dx.doi.org/https://doi.org/10.1016/j.aml.2011.04.019 
http://dx.doi.org/ https://doi.org/10.1016/j.aml.2013.01.010
http://dx.doi.org/ https://doi.org/10.1142/S1793524519500384
http://dx.doi.org/ https://doi.org/10.1142/S1793524519500384
http://dx.doi.org/https://doi.org/10.1007/s11071-016-3260-9
http://dx.doi.org/https://doi.org/10.1186/s13662-020-02662-5
http://dx.doi.org/https://doi.org/10.1016/j.rinp.2021.104953
http://dx.doi.org/https://doi.org/10.1007/s10440-020-00369-z
http://dx.doi.org/https://doi.org/10.1007/s10440-020-00369-z


13247

14. S. Liu, L. Zhang, Y. Xing, Dynamics of a stochastic heroin epidemic model, J. Comput. Appl. Math.,
351 (2019), 260–269. https://doi.org/10.1016/j.cam.2018.11.005

15. S. Liu, Z. Liang, X. Zhang, A. Li, Dynamics of a stochastic heroin epidemic model-
with bilinear incidence and varying population size, Int. J. Biomath., 12 (2019), 1950005.
https://doi.org/10.1142/S1793524519500050

16. Y. Wei, Q. Yang, G. Li, Dynamics of the stochastically perturbed heroin epidemic model under
non-degenerate noises, Physica A, 526 (2019), 120914. https://doi.org/10.1016/j.physa.2019.04.150

17. F. Wei, H. Jiang, Q. Zhu, Dynamical behaviors of a heroin population model with standard
incidence rates between distinct patches, J. Frankl. Inst.-Eng. Appl. Math., 358 (2021), 4994–5013.
https://doi.org/10.1016/j.jfranklin.2021.04.024

18. J. Liu, S. Wang, Dynamics in a stochastic heroin model with seasonal variation, Phys. A, 532 (2019),
121873. https://doi.org/10.1016/j.physa.2019.121873
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