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Abstract: This paper investigates £,— L, control for memristive neural networks (MNNs) with a non-
necessarily differentiable time-varying delay. The objective is to design an output-feedback controller
to ensure the £, — L, stability of the considered MNN. A criterion on the £, — L, stability is proposed
using a Lyapunov functional, the Bessel-Legendre inequality, and the convex combination inequality.
Then, a linear matrix inequalities-based design scheme for the required output-feedback controller is
developed by decoupling nonlinear terms. Finally, two examples are presented to verify the proposed
L, — L, stability criterion and design method.
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1. Introduction

Over the past few decades, stability analysis and controller design for memristive neural networks
(MNNs) with delays have drawn extensive attention from the automation community. Various
noteworthy findings have been reported in the literature. For instance, Zhang et al. [1] explored the
stabilizability of delayed complex-valued MNNs and proposed a new memory-based controller with
distinguishable real-imaginary parts that can achieve state convergence to an equilibrium point in
finite time. Wu and Zeng [2] proposed an optimal control law to minimize the general cost function
and derived the required gain control matrix within the framework of Filippov’s solution to achieve
exponential stabilization of MNNs. In [3], Li et al. addressed the control issue for quaternion-valued
fractional-order fuzzy MNNs by integrating quaternion algebra into fractional-order MNNs, where
the states and connection weights were treated as quaternion values. Recently, several researchers
have investigated MNNs with time-varying delays (TVDs) and reported important findings [4-8].
However, these studies imposed a condition of differentiability on the TVDs, which might be
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overly restrictive.

In dynamic systems, disturbances are likely to occur, and they can have a significant impact on the
system’s performance. To mitigate these effects, various robust control methods have been
developed [9-14]. For MNNs, Cao et al. [15] discussed synchronization of MNNs with uncertain
parameters and topologies, proposing an adaptive robust controller strategy. Ghous et al. [16] first
proposed conditions on the H,, stability analysis, and then developed a state-feedback-based control
scheme. Yan et al. [17] explored H,, control of MNNs with dynamic quantization by constructing
two different time-dependent bilateral cyclic functions using differential inclusions, and introduced a
design methodology for a quantized controller relied on linear matrix inequalities (LMIs). In recent
years, numerous results of £, — L, control for various dynamic systems have been reported. Unlike
‘H, control, £, — L, control can ensure that the energy-to-peak (ETP) gain from disturbance to the
output signal is less than a predetermined threshold for all energy-bounded disturbances.
Nevertheless, as far as we know, there are no reports on £, — L, control studies for MNNSs, not to
mention MNNs with TVDs.

Motivated by the above observations, this paper investigates the problem of £, — £, control for
MNNs with TVD. In contrast to the TVDs discussed in previous literature, such as [4-8], in this
study, the delay factor under consideration is allowed to be non-differentiable. Due to the difficulty in
obtaining the full state information of a dynamic system, the controller scheme employed in this work
is based on output-feedback, as in [18-22]. The main objective is to design an output-feedback
controller that ensures the £, — L stability of the closed-loop MNN (i.e., guaranteeing the
asymptotic stability of the MNNs in the absence of disturbance and ensuring that the ETP gain from
the disturbance to the output signal is less than a prescribed £, — L, disturbance-suppression level
when the disturbance is energy-bounded) [23]. We first propose a criterion for the £, — L, stability
by using a Lyapunov functional, the Bessel-Legendre inequality (BLI), and the convex combination
inequality (CCI). Subsequently, we develop a design scheme for the required output-feedback
controller using a nonlinear decoupling technique. The scheme is based on LMIs that can be easily
verified using popular mathematical computing software. Finally, we apply two examples to validate
the proposed £, — L., stability criterion and design method.

2. Preliminaries

This paper adopts the same notations as [24] unless explicitly stated otherwise. The time-delayed
MNN we consider is modeled as

¢(t) = = DP(1) + A(P(NT(B(1)) + Au($(D)T (Bt — p(1))) + Bu(t) + Ew(t),

u(r) = Ky(1), (2.1)
y(1) = Cé(1),
where ¢(f) = col{g (1), (1), ...,¢,(r)} € R" denotes the state vector, p(¢) is a TVD satisfying
p1 < p(t) < p,, and p;, p, are constants. As in [25-29], the time delay under consideration is
allowed to be non-differentiable. The activation function for a neuron is defined as
o(-) = col{oi(+),02(),...,0,()} € R* with 0;(0) = 0, j € {I,...,n}. The positive self-feedback
matrix is indicated by D = diagld,,ds,...,d,}, and A($()) = (a;j($i(®))ux, and

Ay(@(1)) = (aqij(¢i(1)))nxn represent the memristive connection weights. Unlike [30-33], the controller
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u(t) € R™ to be designed is based on output-feedback, which is easier to implement. w(¢) € R? is the
disturbance that belongs to L,[0, 00); B € R™™, C € R™4, and E € R™" are known system matrices.
As in [34, 35], it is postulated that the state-dependent parameters related to (2.1) adhere to the
subsequent condition:

_ Zli', |¢,(t)| <T,

a;; (¢i(1)) = {&i;’ gD > T, i,jEV.
_fda. OIS T,

aq;j (9i(1) = {&d;’ ;O > T;, 1,j€v,

where T; > 0 represents the switching jumps, and &, a;j, Gaij, and ag;;j, i, j € v are known constants. It
is evident that the MNN model (2.1) can be regarded as a state-dependent switched system.
Let us define

sgn () — ;). g0 < T,
—sgn (@ —ay), Il > T,
sgn (51dij - &d,-j), ¢ < T,
—sgn (&dz’j - adij), (D) > T;.

Xmmm:{

X0 (@i(0) = {

The MNN (2.1) is a differential system with state-dependent parameters. The solutions of the system
can be interpreted within Filippov’s framework. By using differential inclusion and set-valued mapping
theory, as in [16], the MNN can be transformed into an uncertain system as follows:

¢(t) = — (D = BKCO)p(1) + (Ag + A1 A(p(1))A2) 7(¢(1))
+ (Aao + A APt — p())Az) T(@(t — p(1)) + Ew(1), (2.2)

where

aai) + (aais)

_ ( dij nxn dij nxn

2 2 ’

a _ ) A b _ v A

Vij = (|Clij - Clij|) /2, Vij = \/(|adij - adij|) /2,
_(.a a a a

AL =V VDV e Ve Vi e e Vi Vi) 2 5

(P b b b
Ay = (v“vl, e ViV e s Vi Vs oo ViV

)nxn2 ’
T
nxn?
T

_(.a a a a
Ay = (V] Vis oo sV Vs e VOV e VS V)

(b b b b
Ap = (v“vl, sV Vs e Vi Vi ,vnnvn)nan ,

A@(®) €co [ (@E)], AG( - p1) € co [ 6(1)] .
X (@) =diaglx|, (#1(D) ... X1, @1(D) 5 - - X1 @u() 5 X (Da(D)}
Xb(¢(t)) = dlag{X?l (¢l(t)) PR ’/\/lljn (¢1(t)) P ’le (¢n(t)) 5o ’/\/i)m (¢n(t))}

with co[-] indicating the convex hull, and the vector v; denoting a column vector with a value of 1 in
its i-th entry and O in all other entries.
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Definition 1. System (2.2) is said to be L, — L, stable if it achieves asymptotic stability when w(t) = 0,
and satisfies

sup {y" ()y(0)} < fo w' (B)w(B)dB 2.3)

>0

under the zero-initial condition for a predefined constant y > 0 and all w(t) € L,[0, o).

Lemma 1. [36] (BLI) For any given matrix Q € S’ and function ¢ : Cla, b] — R", the inequality

b
[ 9 w0sr> 0 diagio. 30,5010
holds, where
o) - ¢(a)
Q=| ¢b)+¢@a)- ﬁb J owar |,
¢(b) — ¢(a)) — 2= [ Sap(D)p(1)dt
Sunt) = 2(2_ “)— 1.

—a

Lemma 2. [37] (CCI) For any given matrix Q € R, if there exists a matrix X € R™" such that
0 X
> 0, then,

X' Q
1
20 0 0 X ]
@ | > , Yae(0,1).
[ 0 e [x ¢
Lemma 3. [38] For any x, y € R", scalar « > 0, and positive definite n X n matrix Y, the following

holds: 1
2xTy < —x"rx + oy ry.
L

Qa Qb
Q.

Lemma 4. (Schur’s complement) [39] For any given matrix S € S}, § = [ ] < 0 is equivalent

to
0. <0, 0, 0,0.'0! <0.
Lemma 5. [40] For any natural number N, if there are a scalar u > 0, and matrices A, V;, U,
Y;(i=1,---,N) such that
A V1+/JU1"'VN+,L1UN
. T n | <0,
* dlag{—qu Y|, —uYy —,uYN}

then we can obtain that
N

A+ ) He(VY'Ul) <o.
i=1
Assumption 1. [41] There is a positive matrix F = diag{F1, F5, ..., F,} such that

o (@) = o3®)|| < Filla=bll, Va,beR. (2.4)

Now, the problem we investigate can be stated more precisely as follows: given the MNN (2.1)
with TVD that is not necessarily differentiable, we design an output-feedback controller u(t) = Ky(t)
to ensure the L, — L, stability of MNN (2.2) as defined in Definition 1.
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3. £, — L, stability analysis

For the sake of clarity in the presentation, the notations listed below will be employed in this section:

01i=[0nx(i—1)n I, Onx(ls—i)n],izl,---,l&
T
T T T T T T
a —a, a; +a;, —2a; 0/1—0/2—606] ,
T

T T T T T T T
@, —a; @, +a; —2a, ozz—a/3—6a/8] ,
T

T T T T T T T
3 -y a3 +a, —2a, a3—a4—6a10] ,

r ~r |7

r=|Gy G|, e(=9¢t+r, pn=p—p,

T T

A T
_[ 7 _ T, T _~» T T _ T AT
Gy = [ a;s ) —a, a)ta, —2a; a, —a, G, ]

b

Go = pialay + ag) — 2(ay; + ap3),
N T
G,(0) = [ af pal pe ol +al, GIT(H)] ,
G1(0) = (0, — O)(a1; + a14) + (0 — p)(ap — 13),

g1(9>:(9—p1)[j7 —[Zi;]

82(0) = (Pz—é’)[ O] [“‘3],

Q14
a0 = n@ - s@®) $T@ oT@®) o (Pt -p) W) ]T,
T
no@ = ") ¢"t—p1) $Tt—p@) ¢Tt-po) |
1 T
mm:—[ L ermar [ sl |

_ T
m() = [ [ etmdr [0 6xnel (ndr |
1 [ —p(h) —p(1) r
)= —— r)dr 53(r)e! (r)dr ] ,
mn = —— L. ¢ldr [ 63(n¢] (1)
n4(t) = (p() —p) ma(D),  ms5(2) = (p2 — p(1)) 1713(0),
_ - T
@) = | [ ¢f(dr pr [ 64 (rydr | (3.1)
where
t
610 = 2P gy = 2 HPD
L1 P(l)_Pl
53 = 2Py 5y =222,
P2 — p(1) P12
We can establish the following criterion for MNN (2.2).
Theorem 1. For given positive scalars pi, p,, if there exist matrices P = (ij)5x5 e ST,

M\,M>,0,0, € S, W,Wo € R™ N, ,N, € R positive diagonal matrices
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T1,Ta, Ay, Ay, Az, As, and a matrix X € R¥3" such that

| R X
\P‘[XT X ]20, (32)
c’'c-p, <0, (3.3)
0,0 = E B ok
% —A1 0 O O
* x  —-A; 0 0]<O0 (3.4)
* * * =Ny, 0
* * * x =Ny

fori=1,2, and any 0 in R,

©:(0) = O)(0) + 2a| W] Eag + 2a1sW, Eaig + aigy*las,
©)(6) = He|(GT(OPGy) + N1g1(6) + Noga(8)| + H + 20 (-W] - DgWa)arss
+ 20 (W] Ay + T\ F)ays + 204 TaFayy + 2a) W Ay + 2aisW, Apase
+2a Wi Apa; — GIR Gy, —TTYT + M — agas,
M = diag{M,, —M, + M, s, —M>, Oranxian}s
H = diag{He(~W] D), 013,130, He(=W1) + p1 Q) + p3,0s,
He(~=TT) + AL(A) + M)Az, He(=T1) + AL (As + A A2, O,
R; = diag{R;,3R;,5R;} i=1,2,
Dy =D - BKC,
B = [W1TA1 017n><2n]T’
Er = [W[As  Oizuxanl’,
B3 = [Oianxen Wi A1 Osal’,

—_ T T
E4 = [O14nx2n W2Ad1 035201

then, MNN (2.2) achieves L, — L., stability.

Proof. Construct the following Lyapunov functional:

Vg, d) = Vi(dy) + Va(dy) + Vg, 1),
Vi(g) =@ (t)Ph(),

t =P

Va(¢) = ¢" ()M, p(r)dr + ¢" (P Magp(r)dr,

t—pi —p2

0 t —p1 t
Vi, d:) = pi f f ¢" (r)Q19(r)drdb + p1, f f ¢" (r)Q2(r)drdo,
—p1 Jt+6 —p2 Ji+b

where

¢(1) = col{p(1), prm (1), ne(D)} .
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Differentiating V;(¢,) along the trajectories of (2.2), we obtain
Vi) = 26" ()PH().
If we let ¢, 77 stand for ¢(¢) and 7(¢), then we get
. T T T T T r ~
pl’]l(t):[a’l _alz a'l +(12—20’5 ] n,
16(1) = [ aj —ay pnay +pnay —2af - 2a; ] fl
ar 1T .
:[ag—az Gg] A,
leading to '
¢(1) = Gofy,
where Gy is defined as shown in (3.1), and

A

T
o) =i, pm@® =pi| o ol |'n
Consider the last element of @(7) (i.e., 76(f)). We can get

[ euryr
—P1
P12 f_p 04(r)¢(r)dr

[ #irydr

" . 3.5
P2 [ 6a(N(r)dr G-)

ne(t) =

From the given expression, we observe that the initial n elements can be represented as (a; + @13) 7).
For the remaining n components, it is necessary to determine two expressions of d4(s) based on 9,(s)
and d5(s), respectively. Some calculations show

P1204(r) =(p — p1) 62(r) + (P2 — p)
=(p2 = p) 03(r) = (o — p1) . (3.6)

Reinjecting (3.6) into (3.5) leads to

-p1 -p
piz ( f 54 (Pdr + f &(r)@(r)dr)

p -p2
-p1 -
= f [0 = p1) 62(r) + (p2 = P)] Pu(r)dr + f [Go2 = p) 63(r) = (p = pD)] ¢(r)dr
-p -2
= Gi(p)).
Hence, we obtain that 7(f) = [ al +al, GT(p) ]ﬁ and

¢(1) = G (o).

Moreover, based on the definition of 7, it is apparent that

(o — p)N2(t) — na(t) =0,
(02 = P)n3(2) — 15(1) =0.
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Therefore, using the matrices g; and g, defined in (3.1), the following equality holds for any matrices

]\]1,]\[2 c Rl8n><2n:
27" (N1g1(0) + Naga(p)) 7y = 0.

The derivatives of V;(¢,), Va(¢,), and V3(¢,) in MNN (2.2) can be computed as follows:

Vi(¢) = 7" He [(G] (0)PGo) + N1g1(p) + Naga(0)) | 1. (3.7)
Va(¢) = ¢7 (OM1¢(2) — ¢7 (1 — p)M 1 — py)
+ @7 (1 = p)Mag(t = p1) = ¢7 (t = p2)Magp(t — p2)
=7 M), (3.8)
—P1
V3(di &) = pi2 [f (¢T(t)Q2¢(t) — T (t +0)0r0(t + 9)) d@]
—P2
0
+p1 f (¢"0016(1) - ¢" (1 + 0)019(1 + 0) de]
-p1
—P1
= p5Hd (D00 —p1a | Tt + O)0a(t + 6)d0
—P2
0
+01d" (001 —p1 | H7(t+6)Q1(t + O)do
—p1
4 I=p1
= ¢ (1) (P%Ql + P%z Qz) d(t) — p T (1 Q1p(r)dr — p1a &' (1 Oxd(rdr.  (3.9)
I=p1 1=p2
Using Lemma 1, we can get
T
t a; —an a; —an
—P1 (N0 1d(rdr < —| @+ —2as | Ri| ai +ay - 2as }
=p a —02—606 ag —02—606
= —ngle,
and
—p1 @3 — 4 a3 — Q4
i | T O0pdr < L2 | @ity -200 | Ro| s+ - 20
e P2 asz —ay — 6ap | | @3 — a4 — 6a
) — a3 @y — a3
- P2 a) + a3 — 20’7 Rz a; + a3 — 20’7 }
p=P 02—03—6087 »CZQ—CZ3—6618
- P2 _GTR,G, - L2 GIR,G,
P2—p P —p1
R 0 ]G
o K8 | Karaeng | g
p2—p

Mathematical Biosciences and Engineering

Volume 20, Issue 7, 13182-13199.



13190

For the matrix X € R¥>", and by using Lemma 2, the derivative of V3(¢,, ¢,) is given by
Vagid) < 8" (1) (0101 +p12Q2) () - GIRIG,

R X || Gs
X Rz] 64] (3.10)

=7 [OﬁTs (P%Ql +P%2Q2) a5+ G RGy — FT‘PF] 7.

Then, we consider the free-weighting n X n matrices, W; and W,, under the conditions of MNN (2.2),
we can conclude that the following equation holds true:

0=2[¢"OW] + " OW3|[-d() - Dxp(0) + Apo($(1)) + A0 (92 - p(1))]
+2[TOW] + §TOWI | [ALAGD) A (D) + An APl — p(ONARO (@B — p))].  (3.11)

Given that A(¢(1))A(p(t)) < I and A(p(t — p(1)))A(¢d(t — p(t))) < I, we can derive the following set of
four inequalities for positive diagonal matrices Ay, Ay, Az, A4t

e ]

20" (OWIAIA(G(1)Aro(p(1)) < ¢ (OW]AIAT ATW18(1) + " (¢(1) AT A1 Aro(§(1)), (3.12)
26T (HWI AL A(G(1)Aro(d(1)) < T (O)WIALAS ATWLd(0) + T (¢(1) AT AL Az ((0)), (3.13)
20T (YW Aai Ap(t — p()) Ao ((t — p(t)))

< ST OWIANAT Ay Wig(0) + T ($(1 = p(D)A A ART(B(t — p(1))), (3.14)
20T (W3 A At = p(D)ART($(t — p(1))
< T OW, An N Ay Wad(0) + o (Bt = p(D)A 1 AsA T ($(1 = p(1)). (3.15)

Under the condition specified in (2.4) for neuron activation functions, the following inequalities hold:

0 < 20" (T Fo(¢(1) = 20" (9T 10($(1)),
0 < 2¢"(t = p(O)T2F o (p(t = p(1))) = 207 (¢(t = pNT20(¢(t = p(1))).

Through a synthesis of Eqs (3.7)—(3.16), we arrive at the ensuing outcome:

V(g d) < A" (Hel(GT(O)PGo) + Nigi(0) + Naga(®)] + afs (0701 + p1r02) s + H + M
—GIR\G, =TT + 20 (W] — DxWy)ays + 2ai ToFayg + 2a] (W] Ag + T F)ays
+20] W[ Apars + 201 W) Ao + 205 W Agoarn )iy + w' (w(2)

= HTOL O + wT (W (D). (3.17)

(3.16)

Utilizing the convexity property of ©/(-), we infer from (3.4) that

®)(p(1))) < 0 (3.18)
for all p(¢) € [p1,p2]. After taking (3.18) into account, it can be inferred from (3.17) that
Vi (e ¢:) < w (0w, (3.19)

In the case where w(¢) = 0, we can obtain the following expression from (3.19):
‘7i (¢l" ¢l‘) < O

Mathematical Biosciences and Engineering Volume 20, Issue 7, 13182-13199.
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According to Lyapunov’s theory, for all non-zero ¢(f), MNN (2.2) is guaranteed to exhibit asymptotic
stability. On the other side, when w(¢) # 0, an index function can be introduced and defined as follows:

J@t) = yt) y(t) — v f w(r) w(r)dr.
0

Assuming zero initial condition, applying the Newton-Leibniz formula results in:

0

J@® =y y@®) —»* f w(r) w(r)dr + f V(r)dr — (V(t) = V(0)).
0
<¢"(1)(C"C - Py)g0) + f (V(r) = yw() ' w(r)) ds
0

<o w(CTC-Pu)on+ [ i O @ds

0

From (3.3) and (3.4), it follows that for all w(¢) # 0, we have J(f) < 0. Therefore, MNN (2.2) has
L, — L, stability. O

4. L, — L. control

The objective of this section is to discuss the issue of £, — L, control concerning MNN (2.2) with
TVD. The following theorem provides a design strategy based on LMIs:

Theorem 2. For given positive scalars vy, €, p1, and p,, if there exist matrices P = (P jk)SxS e s,
M, M, 0,,0,,L,LU € S, W;,W, € R™, N,N, € RI8>2n - positive diagonal matrices
T1,T>, A1, Ay, A, Ay, and a matrix X € R¥3". Such that (3.2), (3.3), and

[0:0) 21 EZ F Es
*  =A; 0 0 0 0
* * —A3 0 0 0
. . « —A, 0 0 < 0, 4.1)
* % * =Ny 0
* * * * x —e(L+ L")

0,(0) = ©,(9) + 2a] BUCa, +2a]C"U" B a3,
0i(6) = He[(GT(6)PGo) + N1g1(6) + Nog2(0)] — GIR\G, —T"WT' + H+ M

+2a] (-W! — D"Wy)ays + 2al (W] Ay + T1 F)as + 2at W] Ay

+ 205 ToFayy + 20 W3 Agais + 2a s W5 A7 + 2af W] Eaig + 2a] W, Eas,
M = diag(My, =M\ + M3, 0,50, — M2, O14nx14n),
H = diag (He(~W] D), O30 He(~W3) + pi Q1 + p},0n,

He(=T]) + AY (A1 + AYAy, He(=T; ) + AL (As + A)Aa, —yzl),

Es= [W/B-BL+&U"C" Opyn WiB-BL+&U'C" 03],

Mathematical Biosciences and Engineering Volume 20, Issue 7, 13182-13199.
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and the other notations used are the same as in Theorem 1, then, the control gain for the desired
output-feedback controller can then be calculated by

K=L"U 4.2)
Proof. The inequality expressed in Eq (4.1) can be restated in the following form:
Q+ He(ApKAc) <0 4.3)
where
Q = 6i()

AB = [WlTB Ol3n><n WZTB 03n><n]T’
AC = [C 013n><n C O3n><n]-
Recognizing (4.2), the Eq (4.3) can be rewritten as:
Q+ He(A;UAc + (Ag = AJL) L™ UAC) < 0 4.4)
where
T
AJ = [ B 0n><13n B On><3n ] .

In light of Lemma 5, it follows that the validity of inequality (4.4) is guaranteed by (4.1), culminating
in the completion of the proof. O

5. Number examples

Two numerical examples are presented to demonstrate the effectiveness of the £, — L, stability
analysis for the MNN with non-necessarily differentiable TVD, and the proposed output-feedback
controller design method.

Example 1. In this context, we consider MNN (2.1) with n = 2 and activation functions o (¢;(1)) =
tanh(¢;(¢)) for j = 1,2, which satisfies (2.4). The network parameters are selected in accordance
with [34]:

_[ @@ 0

D =| dy ($2() |
_| an(ei@ 06 —

A =| o5 an ($20) |’
[ -01 aq (¢1(0) |

m@m% @m@N»_02 I’

where

. 60 <05, (09, 1601 <05,
9, 160> 0.5, d2(¢2(”)‘{1, 6:(0)] > 0.5,

B , lp1(1)] < 0.5, | 0.1, |g(n)] < 0.5,
ar (¢1(0) = { ~01, |6 >05, @ (¢2(0) = { 0, 6a(0)] > 0.5,

0.6, |p1(n <0.5, {03, g0 0.5,
0.1, g0 > 0.5, “ﬁ“%“»‘{oz 62 (1) > 0.5.

a1
0

aqiz (¢1(0) = {
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Then, we can obtain that

(095 0 —-0.05 0.6 -0.1 0.35
1)_7 0 095]’ Ao [ 0.5 —005]’ A”“[ozs —02]’

[ V0.05 0 0 0 r 005 0 0 0
Al = ’ A2 = s

| 0 0 0 +0.05 0 0 0 +0.05
A [0 V025 0 0 A ][00 0.05 0
““lo o 005 0" "2 |0 V025 0 0

Table 1. Maximum allowable value p,, p;, for given p;.

o1 0 0.5 1 1.5 2 2.5 3
02 3.04 3.46 3.85 421 4.59 5.01 5.46

P12 3.04 2.96 2.85 271 2.59 2.51 2.46

The presented results in Table 1 demonstrate the upper delay bound and the allowable time delay
in the non-differentiable TVD system governed by MNN (2.2) for different values of the parameter p;.
The analysis indicates that the upper bound of the time delay (p,) increases as the lower bound of the
time delay (p;) increases, while the allowable time delay interval (p,,) decreases.
Example 2. Consider MNN (2.1) with n = 2, where the activation functions for neurons j = 1,2 are

given by o(¢;(r)) = tanh(¢;(r)) and o(¢;(t — p(7))) = tanh(¢;(r — p(¢))). These functions satisfy the
condition in (2.4). The other parameters are as follows:

wir)=[ 1.8e70% 18705 |, p() = 1 +2.8]sin(r)],
09 0 4 2 0.1 02 12
D‘[o Q9y B‘[13} E_[0304} C_[lly

| an(@1(®)  an(di(®) | 0.1 aqrz (¢1(1))
A(¢(’))‘[a21 G1(1)  an (b)) ] A"("’(”)‘[adn (1)) —0.2 ]

where

md@@»:{? 61(0] < 1, mﬂ@@»={i? 61(0] < 1,

S, e > 1, s el > 1,
_J -3 @<, _]2 620l < 1,
ax (¢1(1) = { 232, b)) > 1, axn (¢2(1) = { 16, |l > 1,

0.6, (<1, 0.3, I <1,

aqin (61(1) = { 0.1 OES! ag1 (2(1)) = { 0.2 lo(0)] > 1.

By excluding matrix C, the matrices are identical to these in [16], and MNN (2.2) can be acquired
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with the parameters listed below:

| t2s 1ss| o5 VOIS 0 0
T30 18 P00 VoI V02 |
- T
~0.1 0.35 05 0 Vo1 0
Ap = ],Az [ ] ,

| 025 —0.2 0 V015 0 02

[0 V025 0 o] , _[0o0 V005 0]
0 0 V005 0| 77T V025 0 0]

Under the parameters specified above, Figure 1 illustrates the state trajectories of the system (2.2),
where the initial condition is set to ¢(f) = [2 4]7 and u(f) = 0. The figure demonstrates that the
system trajectories fail to converge to zero without any control input.

Ag =

Il Il Il Il
0 10 20 30 40 50
t

Figure 1. The state trajectories of MNN system (2.1) without control.

For this example, the control methods presented in [4-8] are not applicable since the time delay
is not differentiable. However, the present control method is suitable for stabilizing MNN (2.2). The
determination of the required gain matrices can be achieved by utilizing Theorem 2, which yields the
following result:

(5.1)

13.5374 —15.4456
-15.2271 13.2160 |

In the simulation, we set

y=1,¢ =09, ¢(t)=[2 5],
1/2
Lo - (supo<, {y%)y(r)})l/2 e [1 o] |
(W' Bw(B)dB) 01
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Figure 2 presents MNN (2.2) state trajectories in response to control inputs. It is apparent that under
the controller (5.1) specified by Theorem 2, MNN (2.2) states achieve £, — L, stablility. Additionally,
Figure 3 depicts the evolution of L(¢). Controller design efficacy is confirmed through simulation
results.

---=hi(t)
#a(t) |

0.4 0.6 0.8 1

Figure 2. The state trajectories of MNN (2.1) with control.

0.15 T

L(#)

0.05 b

0 0.2 0.4 0.6 0.8 1
t

Figure 3. L(1).

6. Conclusions

This paper has investigated £, — L, control for MNNs a with non-necessarily differentiable TVD.
A criterion on the £, — £, stability was proposed using a Lyapunov functional, the BLI, and the

Mathematical Biosciences and Engineering Volume 20, Issue 7, 13182-13199.
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CCI. Then, a LMIs-based design scheme for the required output-feedback controller was developed
by decoupling nonlinear terms. Finally, two examples were presented to verify the proposed £, — Lo
stability criterion and design method.
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