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Abstract: Permanent magnet brake (PMB) is a safe and effective braking mechanism used to stop and
hold the load in place. Due to its complex structure and high reliability, assessing the reliability of PMB
remains a challenge. The main difficulty lies in that there are several performance indicators reflecting
the health state of PMB, and they are correlated with each other. In order to assess the reliability
of PMB more accurately, a constant stress accelerated degradation test (ADT) is carried out to
collect degradation data of two main performance indicators in PMB. An accelerated bivariate Wiener
degradation model is proposed to analyse the ADT data. In the proposed model, the relationship
between degradation rate and stress levels is described by Arrhenius model, and a common random
effect is introduced to describe the unit-to-unit variation and correlation between the two performance
indicators. The Markov Chain Monte Carlo (MCMC) algorithm is performed to obtain the point and
interval estimates of the model parameters. Finally, the proposed model and method are applied to
analyse the accelerated degradation data of PMB, and the results show that the reliability of PMB at
the used condition can be quantified quite well.

Keywords: bivariate wiener process; accelerated degradation data; bayesian method; permanent
magnet brake; arrhenius

1. Introduction

The PMB is the core component of the braking system for manufacturing equipment. It plays an
important role in ensuring the safe operation of manufacturing equipment [1]. It achieves braking by
driving the armature through the magnetic force generated by the permanent magnets. Compared to
other brakes, it has the advantage of small size and high torque. However, in the actual use process,
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the PMB is always running in a high temperature environment. This can lead to a certain degree of
degradation of the components of the PMB, such as the leaf springs, coils, and permanent magnets,
which can affect its performance. As the core component of the braking system, the reliability of the
PMB directly affects the service life of the manufacturing equipment. Therefore, it is necessary to
analyse the reliability of PMB in order to ensure the safe and stable operation of
manufacturing equipment [2, 3].

The evaluation of product reliability based on conventional life tests or accelerated life test (ALT)
requires observations of the product’s failure. Such testing methods are expensive in terms of human
and financial resources and do not meet practical needs, because the PMB is a class of high-reliability
and long-life product. The ADT has overcome the shortcomings of the ALT [4, 5]. The degradation
of PMB performance is accelerated by increasing the test stress levels to obtain sufficient degradation
information and to evaluate the reliability at normal stress levels. Compared with ALT, ADT can save
a large number of samples and test time, further improving test efficiency [6].

Analysing ADT data analysis is mainly based on the degradation models and acceleration function
between degradation and stress levels [7, 8]. The degradation model of performance characteristics
describes the law of product performance degradation with time, while the acceleration function is
used to characterize the relationship between the degradation rate of the performance indicators and
the stress level. The commonly used degradation models include various stochastic processes,
including Wiener process [9], gamma process [10], and inverse Gaussian process [11]. The gamma
process and inverse Gaussian process are mainly used to describe the monotone performance
degradation process. The Wiener process is a Brownian motion diffusion process, which is suitable
for modeling non-monotonic performance degradation with independent
Gaussian increments [12, 13]. Wiener process has been widely used for reliability analysis in ADT.
For instance, Hou et al. [14] proposed an improved random-effects ADT Wiener process for modeling
the capacity degradation of Li-ion batteries. Zhai et al. [15] used the inverse Gaussian distribution to
characterize the cellular heterogeneity of degradation pathways in the degradation modeling of the
Wiener process, and the model is applied to analyse the ADT data of LED. Yan et al. [16] proposed an
accelerated Wiener degradation model integrated by rate-volatility correlations and systematic error.
Ye et al. [17] considered an accelerated degradation model based on Wiener process with nonlinear
time scale function and random effects when interaction effects exist among stresses. Jiang et al. [18]
proposed a method of constructing generalized confidence intervals of reliability function and
quantile lifetime based on constant stress accelerated degradation Wiener model, and considered
optimum plan problem by minimizing the mean of the upper prediction limit for the degradation
characteristic at the design stress level. Jiang and Yang [19] proposed a dual-accelerated degradation
test model based on Wiener process. The point estimation of model parameters is obtained by
constructing a regression model. Based on point estimation of model parameters, generalized
likelihood estimation of model parameters is obtained by constructing generalized prediction
function. Ma et al. [20] proposes a Wiener process-based degradation model to predict the remaining
useful life of equipment under imperfect maintenance. The model includes beta distribution to
account for the residual degradation coefficient caused by maintenance. Random variables are used to
reflect unit heterogeneity, and analytical forms of remaining useful life are obtained through the
convolution operator.

The literature mentioned above involves only one degradation performance indicator. However,
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due to the complexity of their operating conditions and complicated structure, there usually exist
multiple failure modes for PMBs. In such a case, a single performance indicator cannot accurately
and comprehensively reflect their health status. Therefore, it is necessary to consider the use of
multiple performance indicators to characterize the health status of PMB.

In recent years, researches on multivariate degradation modeling using copula functions have
developed rapidly, mainly due to the flexibility of copula function. By substituting the marginal
distributions into copula function, correlation structure among random variables can be automatically
embedded [21]. Chen et al. [22] use a variety of stochastic processes to describe the mechanical seal
performance degradation process, and the correlation between the performance indicators is described
by different types of copula functions. Peng et al. [23] proposed a novel bivariate degradation model
based on inverse Gaussian processes and copulas. Fang et al. [24] proposed a framework of bivariate
stochastic process model to analyse accelerated degradation data by copula function. However,
different copula functions may be suitable for different degradation data. The selection of an optimal
copula function and how to interpret copula function from physical viewpoint are still limited.
Recently, Song and Cui [25] proposed a bivariate gamma degradation model that naturally captures
the correlation between two degradation processes through a common random effect, and
expectation-maximization algorithm is used to estimate the model parameters. Fang et al. [26]
proposed a novel multivariate degradation model based on inverse Gaussian process, where the
correlation is incorporated by multivariate normal distributed random effects. Zhai and Ye [27]
proposed an analytical multivariate Wiener process model. The model introduces a common
stochastic time scale shared by all performance indicators to describe dependencies from the dynamic
operating environment. Conditional on the time scale, the degradation of each performance indicator
is modeled as the sum of two independent Wiener processes, one of which represents the common
effect shared by all performance indicators, and the other represents the degradation caused by
performance indicator itself. Yan et al. [28] used multiple correlated Wiener processes to model the
degradation process of multiple performance indicators when common environmental condition is
taken into account. They utilized a commonly shared environmental condition function to
incorporates both the degradation correlation and random effect. The proposed model is also extended
to a two-stage degradation process in order to correlate multiple performance indicators at each stage.

To address the problems in the reliability assessment of PMB, an accelerated degradation model
for PMB based on the bivariate Wiener process is proposed. The main contributions of this paper
are as follows: 1) The degradation process of the two performance indicators is modelled separately
based on the Wiener process, which greatly improves the accuracy of the reliability assessment. 2) A
common random effect is introduced in the proposed model to represent the correlation between the
two performance indicators, which describes both the common factors affecting the degradation of the
two performance indicators and the unit variation. 3) The relationship between the drift coefficient
and the accelerated stress level is described using the Arrhenius formula. 4) A Gibbs sampling-based
MCMC algorithm is used to achieve Bayesian updating of the model parameters. Finally, the validity
of the model and method is verified by the accelerated degradation data of a PMB. The rest of this
paper is organized as follows. Section 3 describes the acceleration test procedure for PMB. Section 3
presents an acceleration model based on a bivariate Wiener process. Section 4 verifies the validity of
the proposed model through the practical application of the constant stress ADT data of the PMB. In
Section 5, the conclusions of this paper are presented.
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2. Experiment

A PMB is a device that uses permanent magnetism generated by permanent magnets to drive the
rotor and clamp the magnetic yoke to achieve braking. PMB is notable for their small size, high
torque, and robust resistance to interference, making them a popular choice in a range of applications.
The PMB studied in this paper is manufactured by a company located in Zhejiang province, China.
This type of PMB is primarily used for braking servo motors of injection molding machines, and its
performance directly impacts the reliability and safety of the injection molding machine. The
structure of the PMB is shown in Figure 1, and its physical diagram is depicted in Figure 2. It can be
seen from the structural diagram that the PMB consists of a rotor, leaf spring, armature, coil, external
magnetic yoke, permanent magnet, retainer, and inner magnetic yoke. Due to the complexity of the
operating conditions inside injection molding machines, PMBs may operate in high-temperature
environments, which can lead to degradation of the plate springs, coils, and permanent magnets.
Inadequate braking torque and slow response time are the main failure modes of these brakes during
the aging process. Brake torque, a key performance indicator, is largely influenced by the permanent
magnets, which may undergo irreversible demagnetization at high temperatures due to poor thermal
stability in materials like NdFeB (N35SH). The response time of the armature, a significant
characteristic of PMB, relies on the cooperation of the coil, leaf spring, and permanent magnet. The
coil generates an electromagnetic force when a current is produced by switching on the voltage, and
this force combines with the force of the leaf spring to overcome the permanent magnetic force of the
permanent magnet, releasing the armature. However, leaf springs can exhibit reduced rebound force
due to stress relaxation in high-temperature environments, and the aging of coils can lead to the
decreased electromagnetic force, resulting in insufficient combined force to overcome the permanent
magnet force and slower armature release time, causing the brake to hold the brake. Temperature
stress is identified as the primary operating environment for PMB. Obtaining sufficient lifetime data
for PMB in a short time frame can be difficult because of its high reliability and long service life.
However, ADT using temperature as the stress factor can simulate the aging process and provide
sufficient brake reliability data.

This study conducts a constant stress ADT on the PMB using temperature as the acceleration
factor in order to investigate the degradation of braking torque and armature release time. The
experiment utilizes a DOS60 electric oven, as depicted in Figure 3, to apply the temperature stress to
the PMB. Figure 4(a) depicts the braking torque test rig, which is utilized to measure the PMB’s
braking torque. It comprises a control cabinet, a Permanent Magnet Synchronous Motor, a speed and
torque tester, a digital display module, and a test computer. Figure 4(b) displays the integrated test
bench of a high-precision solenoid for measuring the PMB’s armature release time. The temperature
levels for the constant ADT were determined to be 105, 120 and 140◦C. The dataset consists of 9
samples divided into 3 groups. Each group of 3 samples is tested at different temperature levels, with
measurements of braking torque and armature release time taken once every 24 hours. The test lasts
for 30 days (720 h). The experiment process primarily consists of the following steps. Firstly, the
initial values of braking torque and armature release time of each sample are tested and recorded
before the experiment. Secondly, the sample without electrical power is placed in the DOS60 electric
oven, and the ambient temperature and applied stress time are set. Finally, for samples that reach the
specified test time without failure, measure the braking torque and armature release time when cooled
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to room temperature. After all performance tests have been completed, return to the electric oven for
the specified test time. After all performance indicators have been tested, they are put back into the
electric oven for the specified time. This process is repeated until the end of the test period. The brake
torque failure threshold is set to ω1 = 90, and the armature release time failure threshold is set to
ω2 = 30. Figure 5 presents the acceleration decay data for the performance indicators at each stress
level, which are used for model building and parameter estimation. Based on the ADT data, the main
concern of the manufacturer is whether the reliability of the product at time 365 days has reached 0.99
at the normal used condition 80◦C.

Figure 1. Structural diagram of PMB.

Figure 2. Physical drawing of permanent magnetic brake.
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Figure 3. DOS60 electric oven.

Figure 4. Quality characteristics testing.
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Figure 5. The degradation curve of the permanent magnetic brake performance indicators at
accelerated stress levels.

3. Bivariate constant-stress accelerate degradation model

3.1. Bivariate Wiener degradation process

The Wiener process is a commonly used stochastic process model, particularly for modelling the
degradation process with non-monotone Gaussian increments. If a continuous-time stochastic process
follows the Wiener process, then the process Xs(t) satisfies the following properties [29]:
a) Xs(0) = 0 with probability 1.
b) For any moment t and t + ∆t, the increment ∆Xs(t) = Xs(t + ∆t) − Xs(t) is normal distributed.
c) For any different time intervals [t1, t2] , [t3, t4] , t1 < t2 ≤ t3 < t4, the increments Xs (t4) − Xs (t3) and
Xs (t2) − Xs (t1) are independent of each other.

If a product has two performance indicators that exhibit the properties mentioned above, then
degradation of each performance indicator can be described by Wiener process with a time scale
transformation. For modeling degradation paths of two performance indicators, a bivariate Wiener
process [30] can be constructed as follows:(

x1(t)
x2(t)

)
= β

(
µ1l1 (t, γ1)
µ2l2 (t, γ2)

)
+

(
σ1 0
0 σ2

) (
B1 (l1 (t, γ1)
B2 (l1 (t, γ2)

)
(3.1)

where µ and σ represent the degradation rate and volatility of the sth performance indicator,
respectively. B (·) represents the standard Brownian motion. l (t, γ) is a non-decreasing time function
with l (0, γ) = 0. The parameter β describes random effects and unobservable common factors
affecting the two performance indicators, which is assume to follow normal distribution N(1, δ2).

The lifetime of the sth performance indicator can be defined as

Ts = inf {t : Xs(t) ≥ ωs, t > 0} , s = 1, 2, (3.2)

where ωs is the failure threshold of the sth performance indicators. The product life Ts first reaches
obeys the transformed inverse Gaussian distribution. Given β, the probability density function (pdf) of
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Ts is:
fs (ts | β) =

ωs√
2πσ2

s (ls (ts, γs))3

× exp
{
−

(ωs − βµsls (ts, γs))2

2σ2
sls (ts, γs)

}
dls (ts, γs)

dts

(3.3)

The cumulative distribution function (cdf) of Ts [31] is

FTs (ts | β) =Φ

βµsls (ts, γs) − ωs

σs
√

ls (ts, γs)


+ exp

{
2βµsωs

σ2
s

}
Φ

−ωs − βµsls (ts, γs)

σs
√

ls (ts, γs)

 , (3.4)

where Φ(·) is the standard normal distribution function. The joint cdf of T1 and T2 can be rewritten as

F (t1, t2) =
∫

FT1 (t1 | β) FT2 (t2 | β) f (β)dβ. (3.5)

The analytic expression of F (t1, t2) can be found in the Appendix.
The lifetime of the system can be defined as the first time of either performance indicator exceeds

the failure threshold ωs (ωs > 0). Thus, the lifetime of the system T = min{T1,T2}. The reliability
function of the system can be expressed as [30]

R(t) = P(T > t) = P (T1 > t,T2 > t)

= P (T1 < t,T2 < t) + 1 − P (T1 < t) − P (T2 < t)

= F(t, t) + 1 − FT1(t) − FT2(t)
(3.6)

where the analytical form of FTs(t) is

FTs(t) =
∫

FTs(t | β) f (β)dβ

=Φ

 µsls (t, γs) − ωs√
µ2

sδ
2 (ls (t, γs))2 + σ2

sls (t, γs)
)


+ exp
{

2µsωs

σ2
s
+

2µ2
sδ

2ω2
s

σ4
s

}

× Φ

−2µ2
sδ

2ωsls (t, γs) + σ2
s (µsls (t, γs) + ωs)

σ2
s

√
µ2

sδ
2 (ls (t, γs))2 + σ2

sls (t, γs)


3.2. Accelerated model

The acceleration model reflects the impact of accelerated stress on the product degradation process,
specifically establishes the relationship between stress level and accelerated degradation rate [32, 33].
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This paper incorporates an acceleration model into the bivariate Wiener process (3.1) to describe the
relationship between temperature stress and degradation rate µs. In the model (3.1), µs can be expressed
as a function of the acceleration stress

µps = exp
(
as + bskp

)
, s = 1, 2, p = 1, . . . , h, (3.7)

where as and bs are unknown parameters, and need to be estimated from ADT data. kp is the normalized
accelerated stress, and is defined as

kp =
φ
(
sp

)
− φ (s0)

φ (sh) − φ (s0)
, p = 1, . . . , h,

where s0 is the minimum stress level, sh is the maximum stress level. φ(·) represents a given function
of stress level. In this paper, we use temperature as the accelerating stress, thus the Arrhenius relation
φ(sp) = 1/

(
sp + 273.13

)
is adopted here. Based on the models (3.1) and (3.7), accelerated bivariate

Wiener degradation model can be formulated as

Xps(t) = βpµpsls (t, γs) + σsBs (ls (t, γs)) ,

µps = exp
(
as + bskp

)
, s = 1, 2, p = 1, . . . , h,

(3.8)

where βp ∼ N(1, δ2).

3.3. Bayesian inference

Assume that a system has two performance indicators. The stress levels in the ADT are set as
s1 ≤ · · · ≤ sh, and there are n systems tested at each stress level. Let xpis j be the degradation value
of the sth performance indicators of the ith system at the measurement time tp j under the stress level
sp, where s = 1, 2, p = 1, 2, . . . , h, i = 1, 2, . . . , n, j = 1, 2, . . . , mp. Let zpis j = xpis j − xpis( j−1),
where xpis0 = 0, and τpisi (γs) = lps

(
tpis j, γs

)
− lps

(
tpis( j−1), γs

)
. To simplify the notation, we use τpis j

to denote τpis j (γs). The relationship between stress level and degradation rate is expressed by the
Arrhenius model: µps = exp

(
as + bskp

)
. Therefore, from the model (3.8), we know that conditioned

on βpi, zpis j follows normal distribution, that is, zpis j | βpi ∼ N
(
βpi exp

(
as + bskp

)
τpis j, σ

2
sτpis j

)
, and

βpi ∼ N
(
1, δ2

)
. Let z =

{
zpis j, s = 1, 2, i = 1, . . . , n, j = 1, 2 . . . ,mp, p = 1, . . . , h

}
be the observed

data and Θ =
{
δ2

1, σ
2
1, σ

2
2, γ1, γ2, a1, a2, b1, b2

}
be the model parameter vector. Given z, the likelihood

function of Θ can be written as

L(z | Θ) =
h∏

p=1

n∏
i=1

∫ 2∏
s=1

mpis∏
j=1

1√
2πσ2

sτpis j

× exp

−
(
zpis j − βpi exp

(
as + bskp

)
τpis j

)2

2σ2
sτpis j

 × (
2πδ2

)− 1
2 exp

−
(
βpi − 1

)2

2δ2

 dβpi.

(3.9)

The likelihood function (3.9) contains computation of integration, and the analytic form of the
likelihood function is complex, which makes it difficult to obtain parameter estimates by traditional

Mathematical Biosciences and Engineering Volume 20, Issue 7, 12320–12340.



12329

methods. Compared with classical maximum likelihood method, Bayesian approaches have
significant advantages. The Bayesian methods can easily obtain point and interval estimates of the
model parameters or functions of parameters through MCMC-Gibbs sampling algorithm, and the
implementation of Bayesian approach can be carried out by the software OpenBUGS or RStan easily.

Figure 6. Flowchart of Bayesian inference.

Bayesian statistics is different from classical statistical theory. It treats all unknown parameters as
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random variables and thus uses probability density functions to quantify them [34]. These densities
are often elicited from historical information or experts’ experiences, which are called prior
distribution. The setting of the prior distribution is essential in Bayesian inference because it affects
the inference of the posterior distribution. Prior distributions are further divided into conjugate prior
distributions and uninformative prior distributions. A conjugate prior distribution means that the prior
and posterior distributions belong to the same distribution family. An uninformative prior is one with
little or no information about the parameters. The prior distributions of the parameters in this paper
are set as follows:

σ2
s ∼ IG (gs, ls) , δ2 ∼ IG(z, r),

as ∼ N(0, 104), bs ∼ N(0, 104),
(3.10)

where σ2
s ∼ IG (gs, ps) means that σ2

s obeys the inverse gamma distribution and the hyperparameters
gs and ps are set to 0.001. Similarly, the prior information of δ2 is also specified as an inverse gamma
distribution, and z = r = 0.001. Small values of gs, ps, z and r leads to large variances of these prior
distributions, which indicates absence of prior information on σ2

s and δ2. Similarly, due to the lack of
information on the parameters as, and bs, their priors are designated as diffuse prior distributions that
have large variance. The flowchart of the method proposed herein is illustrated in Figure 6.

4. Case study

In this section, we use the proposed model to analyse the ADT data of the PMB as shown in
Figure 5. As can be seen in Figure 5, the degradation paths are linear, and thus we assumed that
l1 (t, γ1) = l2 (t, γ2) = t. In order to verify whether the accelerator degradation data can be fitted
by the proposed bivariate Wiener process, hypothesis testing is performed to check the normality of
the degradation increments at each stress level. In this paper, the Doornik-Hansen method [35] is
used to conduct multivariate normality test on the data. The results are listed in Table 1, where “E”
denotes the value of test statistic, “DF” is the degree of freedom, and “MVN” represents multivariate
normal distribution. From Table 1, we can see that all the p-values are significantly greater than 0.05,
which indicates that the degradation increments follow bivariate normal distribution, or the proposed
bivariate Wiener process is suitable for the ADT data of the PMB. As an illustration, the Q-Q plots of
the multivariate normal distribution for the degradation increments are shown in Figure 7. In Figure 7,
we can find that the majority of data points are in alignment with the line, which also supports the
normality hypothesis.

Table 1. The multivariate normality test for the degradation increments at each stress level.

Test Project E DF p-value MVN

The degradation increments at 105◦C 1.766 4 0.778 YES

The degradation increments at 120◦C 1.428 4 0.839 YES

The degradation increments at 140◦C 2.907 4 0.573 YES
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Figure 7. Q-Q plots of the multivariate normality test for the degradation increments at each
stress level.

After the hypothesis testing, we use the model (3.8) to fit the ADT data. The parameter estimation
is done by the MCMC algorithm, which is implemented by OpenBUGS software. To assess the
convergence of MCMC algorithm, we generate three Markov chains under three different initial
values of the parameters, and simulate 80,000 posterior samples of the model parameter vector Θ for
each chain. Then the Gelman-Rubin’s diagnostic method is utilized to judge whether the MCMC
algorithm has converged [36]. The results of the Gelman-Rubin’s convergence diagnostic for each
parameter are shown in Figure 8, where the first half posterior series are set as the burn-in samples.
As can be seen in Figure 8, after 10,000 iterations, the intersample (in green) and intrasample (in
blue) variabilities begin to stabilize, and their ratios (in red) tend to be 1, which indicates that the
convergence of the MCMC algorithm has been achieved.

For performing posterior analysis, autocorrelation of the generated series of each parameter also
needs to be checked. Figure 9 shows the autocorrelation of these series, and we can find that when the
lag is 20, the autocorrelation of the posterior samples of Θ can be ignored. Thus, the thinning interval
is set as 20. Then we keep 240000/20 = 12000 posterior samples for further posterior inference.
Table 2 lists the posterior means, standard deviations (SD), medians, and 95 % credible intervals of
the parameters. Figure 10 shows the posterior densities of Θ, in which we can see that the posteriors
of a1, a2, b1, b2, σ2

1, and σ2
2 are almost symmetric, and thus their posterior medians are close to their

posterior means. While the posterior of δ2 is significantly skewed, we take the median as the point
estimate. The main aim for ADT is to extrapolate the reliability of the product at the normal used
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condition. Once the Bayesian estimates of a1, a2, b1 and b2 are obtained, we can get the estimates of
µ01 and µ02 (degradation rate at the normal used stress 80◦C) by the Arrhenius model (3.7). Based on
the Bayesian estimates, we draw the reliability function of the product and two performance indicators
under four temperature stresses according to (3.6). As shown in Figure 11, the four pairs of curves
from left to right represent the reliability functions of the product under the stress levels 80, 105, 120,
and 140◦C, respectively. Specially, under the normal used condition 80◦C, the reliability of PMB at
time 365 days is 0.9965, which is beyond the manufacturer’s expectation 0.99.

Figure 8. The Gelman-Rubin’s convergence diagnostic for each parameter.

Figure 9. Autocorrelation graph of Θ.
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Finally, a sensitivity analysis is carried out to assess the effects of priors. As an illustration, we
change the prior of a1, and keep the priors of other parameters unchanged. In addition to the normal
prior N(0, 104), two other priors N(0, 10) and N(0, 100) for a1 are also considered. Figure 12 shows the
posterior densities of a1 based on different priors, in which we can see that the posterior densities are
robust based on the different priors, and the posterior modes are almost the same. Figure 13 also shows
the reliability functions of PMB at 80◦C based on the different priors. As can be seen in Figure 13, the
effects of the priors on the results can be ignorable, which shows the robustness of the proposed method.

Table 2. Bayesian estimation of the model parameters based on the ADT data of PMB.

Parameters Mean SD MC error 2.50% Median 97.5%

δ2 0.007 0.014 8.566 × 10−5 4.635 × 10−4 0.003 0.039
a1 −2.275 0.352 0.002 −3.026 −2.255 −1.641
a2 −3.452 0.417 0.002 -4.355 −3.424 −2.715
b1 1.892 0.397 0.002 1.160 1.874 2.718
b2 2.536 0.454 0.002 1.719 2.511 3.502
σ2

1 0.267 0.023 4.971 × 10−5 0.224 0.265 0.317
σ2

2 0.074 0.006 1.379 × 10−5 0.063 0.074 0.089

Figure 10. Posteriori probability density graph of Θ.

Mathematical Biosciences and Engineering Volume 20, Issue 7, 12320–12340.



12334

Figure 11. Reliability of the product and the two performance indicators under different
stress levels.

Figure 12. The posterior densities of a1 based on different values of hyperparameters.
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Figure 13. The reliability of PMB based on different priors.

5. Conclusions

In this paper, we have proposed an accelerated bivariate Wiener degradation model to evaluate
the reliability of PMB. Firstly, a comprehensive analysis of the structure and functioning of PMB
is conducted, and the degradation of braking torque and armature release time are identified as the
performance indicators of PMB. Then we design an ADT to collect the degradation data of the two
performance indicators. Based on the ADT data, the influences of temperature stress on reliability are
reflected by degradation rate, and thus a bivariate Wiener degradation process combined with Arrhenius
model is proposed. The MCMC-Gibbs sampling algorithm is utilized to estimate the model parameters.
Then the reliability of PMB at the normal used condition can also be obtained. Finally, the proposed
model is applied to analyse the ADT of PMB, and we find that the reliability of PMB at time one year
is 1, which has reached the manufacturer’s requirement. The research data in this paper can be used as
theoretical support for the future PMB reliability modeling analysis. The model proposed in this study
also provides a new idea for the reliability modeling of PMB.
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Appendix

According to [26],

F(t1, t2) = Q1 + Q2 + Q3 + Q4,

where

Q1 =

∫
Φ

βµ1l1 (t1, γ1) − ω1

σ1
√

l1 (t1, γ1)

Φ βµ2l2 (t2, γ2) − ω2

σ2
√

l2 (t2, γ2)

 f (β)d fβ

= bvn
(
−ω1 + µ1l1 (t1, γ1)

P1
,
−ω2 + µ2l2 (t2, γ2)

P2
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,
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Q2 =

∫
Φ

βµ1l1 (t1, γ1) − ω1

σ1
√

l1 (t1, γ1)

 exp
{

2βµ2ω2

σ2
2

}
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and

bvn (x1, x2, θ) =
1

2π
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1 − θ2
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exp
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−
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2
(
1 − θ2

) }
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