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Abstract: The point-feature label placement (PFLP) refers to the process of positioning labels near 
point features on a map while adhering to specific rules and guidelines, finally obtaining clear, 
aesthetically pleasing, and conflict-free maps. While various approaches have been suggested for 
automated point feature placement on maps, few studies have fully considered the spatial distribution 
characteristics and label correlations of point datasets, resulting in poor label quality in the process of 
solving the label placement of dense and complex point datasets. In this paper, we propose a point-
feature label placement algorithm based on spatial data mining that analyzes the local spatial 
distribution characteristics and label correlations of point features. The algorithm quantifies the 
interference among point features by designing a label frequent pattern framework (LFPF) and 
constructs an ascending label ordering method based on the pattern to reduce interference. Besides, 
three classical metaheuristic algorithms (simulated annealing algorithm, genetic algorithm, and ant 
colony algorithm) are applied to the PFLP in combination with the framework to verify the validity of 
this framework. Additionally, a bit-based grid spatial index is proposed to reduce cache memory and 
consumption time in conflict detection. The performance of the experiments is tested with 4000, 10000, 
and 20000 points of POI data obtained randomly under various label densities. The results of these 
experiments showed that: (1) the proposed method outperformed both the original algorithm and recent 
literature, with label quality improvements ranging from 3 to 6.7 and from 0.1 to 2.6, respectively. (2) 
The label efficiency was improved by 58.2% compared with the traditional grid index. 

Keywords: metaheuristics; point-feature label placement; data mining; spatial distribution 
characteristics; label correlation 
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1. Introduction  

With the arrival of the big data era, people have an urgent demand and expectation for the intrinsic 
mechanism and high-value information contained in big data. Visualization technology [1], as an 
important tool of big data analysis, has become a hot spot of people's attention and research [2]. In the 
field of data visualization, geographic information technology is often used to integrate various 
industrial data into a unified geospatial space for analysis and representation. Therefore, geospatial 
data visualization is an important foundation for big data analysis and visualization technologies [3]. 
It can transfer information to users by transforming geospatial data into understandable symbols such 
as maps [4]. In the process, the label is the key factor for users to obtain valuable information 
correctly and quickly. Hence, obtaining more readable and clear labels becomes the focus and 
difficulty of research. 

Spatial objects in data visualization are generally classified into points [5], lines [6], areas [7], 
and bodies [8]. Among them, the point-feature label placement (PFLP) problem is the most 
complicated. The point-feature label placement is the placement of labels near the point features of a 
map according to certain rules such as maximizing conflict-free, ambiguity-free, and aesthetics, and 
belongs to the NP-hard combination optimization problem [9]. Scholars at home and abroad have 
conducted a lot of research on this challenge of finding the optimal solution from the large-scale 
feasible solution set in combinatorial optimization problems. Metaheuristic is a method that uses high-
level strategies to explore the search space and finds approximate optimal solutions in a short time [10]. It 
has been widely used in the study of PFLP problem, including tabu search [11], simulated annealing 
algorithm [12], genetic algorithm [13], ant colony algorithm [14], and greedy randomized adaptive 
search [15]. Most scholars mainly focus on improving these metaheuristic algorithms or adopting 
hybrid metaheuristic algorithms. Rabello et al. [16] presented a Clustering Search (CS) metaheuristic 
algorithm to solve the PFLP problem; Araujo et al. [17] proposed a CS-based Density Search 
Clustering (DCS) metaheuristic algorithm as a new alternative to PFLP; Ding [18] et al. combined 
exact and heuristic algorithms to construct the initial solution and used a backward greedy approach 
to improve the initial solution to obtain maximally conflict-free labels. Li et al [19]. combine genetic 
algorithm and tabu search to solve point-feature label placement. Lu [20] and DENG [21] et al. used 
discrete differential evolution and genetic algorithm (DDEGA) to solve the multi-geographic feature 
notation configuration problem. 

Some other scholars have applied data mining techniques to point-feature label placement, mainly 
including clustering grouping, extracting elite set patterns to guide subsequent iterations, and mining 
data set information to plan the label ordering. The clustering method refers to analyzing the features 
and dividing the whole dataset into several sub-datasets to reduce the computational complexity of the 
problem and thus improve the quality and efficiency of the label. Alvim & Taillard [22] proposed 
POPMUSIC heuristics to solve the PFLP problem. It divided the original instance into several subparts 
for tabu search and was suitable for medium-sized instance problems. Moreover, they presented a new 
set of instances with 13,206 points to be labeled. Zhou et al. [23] combined the ant colony algorithm 
and Density-based spatial clustering of applications with noise (DBSCAN) to solve the PFLP problem. 
This method is suitable for maps with large point scales and large variations in point cluster density. 
Cao et al. [24] divided a single dataset into several independent sub-datasets based on the label 
association model, but this method had limited effectiveness in enhancing dense point features. Due to 
the ability of clustering to reduce the complexity of the problem, the method has been well applied to 
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different problems such as traveling salesman [25,26] and shop floor scheduling [27,28] problems. 
However, while clustering can improve label quality to some extent, the improvements through 
clustering are low when the number of solution space searches is large enough. Using parallel 
computing can increase computational power requirements, while not using parallel computing results 
in severe computational time consumption. In addition, due to the good combination of data mining 
and greedy randomized adaptive search procedures [29,30], Guerine [31] et al. borrowed this idea to 
combine data mining techniques to cluster search and simulated annealing for the first time by 
extracting the maximum frequent item set for the elite set to guide the subsequent iterations of cluster 
search to obtain higher quality solutions. Besides, the label results can also be optimized by mining 
data set information to plan the label order. Luo & Xu [32] used Voronoi diagram to describe the spatial 
proximity and interaction of point features in the labeling. On this basis, the labeling order of degree 
of freedom from small to large was planned to control the labeling process in the direction of simplicity, 
efficiency, and high quality, but the labeling speed of this method is slow. Li et al [33] proposed to 
annotate the point elements according to their size from small to large, which got the more conflict-
free labels. These methods can improve the quality of labels to some extent but do not take into account 
the interference among features, and the solution quality may still be poor when solving dense and 
complex datasets. Cao et al. [24] quantified the interference ability of point features using the number 
of other point features associated with the point feature to guide the label placement. Although the 
method takes into account the interference among features, it considers more the global spatial 
characteristics of point elements, i.e., the number of rectangles associated with the point features. The 
quantified interference ability of point feature labels is more ambiguous, and the process of solving 
the label placement can still fall into the local optimum. 

Moreover, in the label placement process, it is required that there should be no overlap or conflict 
between labels and features. Therefore, a corresponding conflict detection method is needed. There are 
various methods such as traversal, R-tree spatial index [34], and grid spatial index [35] to detect 
conflict. These methods have the problem of being time consuming. 

Regarding the problems of planning label order and conflict detection time, we proposed a PFLP 
algorithm based on spatial data mining which used data mining to discover the inherent laws of point 
datasets. Our main contributions are: 

I. The label frequent pattern framework of point features describes the interference among 
features in the labeling placement by fully mining the local spatial distribution characteristics of 
features and the correlation among labels. This pattern can provide a judgment basis for designing 
placement priorities. 

II. A flexible framework consisting of an ascending label ordering method is proposed for PFLP, 
which reduces the interference among label placement. 

III. In the conflict detection of automatic label placement, the bit-based grid spatial index is 
suggested to reduce cache memory and consumption time. 

This paper is structured as follows. In Section 2, detailed descriptions of the label frequent pattern 
framework of point features, a flexible framework consisting of label ordering based on label frequent 
pattern framework, and conflict detection of the bit-based grid spatial index as well as multiple 
metaheuristic algorithms are provided. In Section 3, we make experiments to test the proposed 
algorithm, analysis, and discussion of the results. In Section 4, the conclusions are summarized. 

2. The proposed method 

2.1. Label frequent pattern framework of point features 
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2.1.1. Label candidate position model 

The selection of a label candidate position model is one of the important foundations of label 
placement. It directly affects the quality and efficiency of labeling. At present, there are three main 
types of label candidate position models, as shown in Figure 1. (1) Fixed position model [36], which 
is an abstraction of label orientation, and it has low flexibility and space utilization; (2) sliding model 
[37], which can utilize the blank area more efficiently by moving in fixed steps, but the computational 
amount will increase significantly as the step length decreases; (3) multi-level and multi-orientation 
model [23], which improves the flexibility of candidate positions and the utilization of blank area by 
adjusting the radius r and inclination angle θ. The inclination angle [0 ,360 ]θ ∈   under different levels 
of radius r can be divided into n equal divisions by Δθ, and n candidate positions can be generated. 

 

(a) fixed-position model             (b) slider model        (c) multi-level and multi-orientation model 

Figure. 1. Label candidate position model. 

Considering the aesthetics, clarity, and non-ambiguity of labels, the symbolic circumcircle of the 
point feature can be added to the multi-level and multi-orientation model, and the symbolic 
circumcircle radius r1 of the point feature is required to be smaller than the model radius r. it is 
suggested that the value of 1=r rδ −  should not be too large to avoid ambiguity. The multi-level and 
multi-orientation model unifies the label candidate position models. This model can make full use of 
the space by adjusting these parameters, while it maybe brings a larger computation. Therefore, to 
balance the labeling quality and computing time, we selected the 8-position model with the 
parameters δ and Δθ as 5 pixels and 45º, respectively. In Figure 1(c), the smaller numerals indicate a 
higher priority of label candidate position, and the solid ellipse and the dashed rectangle are the 
circumscribed ellipse and the minimum bounding rectangle (MBR) composed of different positions, 
character heights, and string lengths, respectively. 

The point-feature label placement algorithm chooses different positions of points with some rules 
to obtain solutions. In this process, each labeled point directly will affect the labeling positions of 
subsequent points, so it is worthwhile to focus on how to use their diversity and mutual interference to 
guide the solution of PFLP. 

2.1.2. Mining and analysis based on local spatial distribution characteristics of point features 

Data mining [38] refers to mining knowledge from data using classification, regression analysis, 
cluster analysis, association rules, feature analysis, etc. It aims to transform a large amount of data into 
useful information and knowledge expressed as patterns or rules, such as frequent item sets and 
association rules, which help people better understand the actual data. When solving the PFLP 
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problem, various factors such as position, character height, string length, and sequence of labels can 
cause strong mutual interference. The interference causes the labeling algorithm to fall into the local 
optimum trap and slow down the solution speed. From the label candidate position model, it can be 
seen that the label candidate position minimum bounding rectangle (LBP-MBR) is driven by various 
factors such as different positions of labels, character height, string length, and sequence of labels. 
Therefore, we can use the association rule technique in data mining to discover the influence law 
among point labels and construct the corresponding label frequent pattern framework to quantify the 
influence of different point features on labeling. 

Let { }1 2, , , Np p p=P K  represent the set of points to be labeled and LBP-MBR of point pi and point 
pj are respectively Ri and Rj. αij a binary variable represents whether there is mutual interference 
between them. αij=0 indicates that point pi and pj have no correlation in the labeling process, as shown 
in Figure 2(a), that is Ri∩Rj=ϕ. In this case, we do not need to consider the order of labels. Otherwise, 
as shown in Figure 2(b), αij=1 indicates that pi and pj have a correlation, i.e., Ri∩Rj≠ϕ. Their influence 
on the automatic label placement needs to be considered. if αij=1, there exists an intersecting part of 
LBP-MBR between pi and pj, which is defined as the label influence surface Aij, Aij=Ri∩Rj. Obviously, 
both α and A have symmetry, i.e., αij=αji and Aij=Aji. 

 

Figure 2. Label influence surface pattern. 

Label influence surface between point features will produce corresponding interference in their 
label placement. We used association rules in data mining to explore local spatial distribution 
characteristics of point features and label correlation. Based on the calculation of LBP-MBR of point 
feature, two functions, label support sup(pi) and label confidence conf(pi), are defined to construct the 
label frequent pattern framework (LFPF) to quantitatively describe the interference intensity of 
features in the label placement process.  

(1) label support sup(pi) 
Label support sup(pi) is calculated based on the LBP-MBR of point pi. As shown in Figure 3 and 

Eq. (1), the label conflict frequency value gxy (gxy is initialized to 0) is calculated for each grid by 
judging whether there is a label influence surface xij at the label position. gxy reflects the frequency that 
the position of the gird is susceptible to be selected by label. sup(pi) describes the interference intensity 
of the point pi to other features by accumulating all label conflict frequent values in the range of LBP-
MBR of pi, as shown in Eq. (2). 
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Figure 3. Schematic diagram of calculation principle of label conflict frequent value. 

1 1
( )

i iw h

i xy
x y

sup p g
= =

= ∑∑  (2) 

Where wi and hi are the width and height of the label candidate rectangle of point pi respectively. 
sup(pi) quantifies the interference intensity by counting all the frequent values of LBP-MBR of 

pi. The larger value indicates that LBP-MBR of pi appears frequently in LBP-MBR of other point 
features, reflecting that the local spatial distribution around the point is denser and the spatial 
competition is intense, as shown in Figure 4. If we take it as a priority labeling point will reduce the 
selectivity of the label position of the subsequent points to be labeled, resulting in the solution of the 
labeling algorithm easily falling into the local optimum trap. 
 

                       

  

(a) Label density diagram (b) Statistical histogram 

Figure 4. Label density diagram and statistical histogram of conflict frequent values. 

In our early process [24], we expressed sup(pi), which quantifies the interference of point pi, by 
using the number of point features associated with LBP-MBR of the point element pi. However, we 
did not take into account the size of the LBP-MBR. The effect of affecting one label position rectangle 
of point feature is the same as that of multiple label position rectangles of point feature, take Figure 5 
as an example. For instance, as shown in the Figure 6, according to the method described in reference 
24, the interference ability of point pi is greater than that of point pk. point pk is labeled before point pj. 
In fact, the number of label candidates affected by pk is 14, while the number of annotation candidates 
affected by point pj is only 7. If pk is labeled first, it could affect the label possibility of subsequent 
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point features, potentially leading to a local optimum trap. However, this paper uses the label conflict 
frequency value within the label candidate area of the point feature to represent sup(pi). Considering 
the size of the label influence surface, the interference capability of the point feature is more reasonably 
represented. the label order of pj is prior to pk, avoiding the local optimal trap caused by pk being 
labeled first. 

 

Figure 5. Limitations of label support in reference 24. 

  

(a) interference ability of pj (b) interference ability of pk 

Figure 6. Comparison with reference 23 quantifying interference ability. 

(2) label confidence conf(pi) 

Although sup(pi) describes the local spatial distribution characteristics of pi, it ignores the 
interference between correlation points. For instance, the label influence surfaces Aij and Aji between 
pi and pj are equal, sup(pi)=sup(pj), but the interference between them is different. As shown in Figure 
7, figure (a) indicates that the LBP-MBR of pi interferes with eight label positions of pj, while figure 
(b) indicates that the LBP-MBR of pj affects five label positions of pi. Therefore, conf(pi) needs to be 
introduced to describe the correlation among the labels of point features.  

  

(a) Interference of point pi to point pj (b) Interference of point pj to point pi 

Figure 7. Schematic diagram of label correlation principle. 
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From the above representation, it is known that the impact of the same label influence surface on 
the label placement of different point features is different, and the mathematical essence is the size of 
the LBP-MBR of the two points is different. As a result, an association probability Pij needs to be 
defined to represent the interference intensity of labeled point pi to point pj to be labeled, see Eq. (3). 

i
ij

i i

P
w h
α

=
×

 (3) 

Similarly, Pji can be obtained as the effect of the preferred labeled point pj on subsequent point pi 
to be labeled. In dense point feature label placement, spatial competition is intense, and a point feature 
often interferes with multiple other point features. conf(pi) is the sum of the associated probabilities of 
other point features that have a label influence surface with the point pi, but directly accumulating their 
association probabilities ignores the characteristics associated with each pair of labels. Therefore, the 
association probabilities are first weighted and corrected according to the number of label positions of 
the label influence surface overlapping point pj, and then the conf(pi) can be obtained by accumulating 
weighted association probability of all other point features that have interference with the point feature 
pi, as shown in Eq. (4). 

1,
( )

k

i t ij
i i j

conf p Pω
= ≠

= ∑  (4) 

Where ωt is the weight corresponding to equal intervals of association probability, and ω1 ≤ ⸱⸱⸱ ≤ 
ωt ≤ ⸱⸱⸱ ≤ ωn (n is the number of candidate positions for the label). 

The use of association probability to calculate the conf(pi) not only described the interference 
intensity to other point features in its local area after preferential labeling on point pi, but also 
counteracted the over-smoothing problem caused by the summation calculation of association 
probabilities. 

In summary, we used the two quantitative criteria of sup (pi) and conf(pi) to mine the frequent 
patterns in the dataset to characterize the local spatial distribution and label correlation of point feature 
pi, to provide priori auxiliary decision information for the solution. 

2.2. Label ordering based on label frequent pattern framework 

The core of solving the point set is to obtain the maximum conflict-free labels in a limited space, 
and correlation among labels of point features actually reflects the spatial competition among these 
points, so PFLP problem can also be regarded as a trade-off problem of labels. In the process of label 
placement, the choice of point feature label is to judge whether there is an appropriate label position 
in the empty space according to the previous labeled results. Meanwhile, its labeling position will also 
affect the label position selection of subsequent point features. The PFLP algorithm usually randomly 
selects point features for labeling, ignoring the internal spatial structure and order of datasets, 
increasing the uncertainty and ambiguity in the solution process.  

The label frequent pattern framework describes the local spatial distribution characteristics of 
point pi and the correlation of its directly correlated point labels by defining the label support sup(pi) 
and the label confidence conf(pi) respectively. In this way, we designed the corresponding sequential 
rules to guide solutions to maximize the number of conflict-free labels. According to the function 
definition, sup(pi) has a strong correlation with the interference of points, while conf(pi) has a weak 
correlation. Therefore, the solution should be guided by the order of sup(pi) first and then conf(pi), and 
the label ordering of an ascending order label frequent pattern framework (A-LFPF) is constructed, as 
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shown in Figure 8. All points are first sorted from small to large with the value of sup(pi); then sort the 
points with the same value of sup(pi) according to the value of conf(pi) from small to large; and finally, 
sort the points with the same value of two functions randomly. compared with the label ordering of 
descending order label frequent pattern framework (D-LFPF), the label ordering of A-LFPF can not 
only effectively reduce the interference of the labeled points to the subsequent points to be labeled, but 
also improve the possibility of searching the empty space for the points to be labeled. Therefore, this 
label ordering can guide the label placement process, thereby improving the optimization rate of the 
algorithm and making the approximate optimal solution closer to the optimal solution. During the 
process of labeling point features, it's common to encounter different levels of detail (LOD). To 
prioritize the labeling process, we can rank the levels in order of importance and use the A-LFPF for 
ordering labels within the same level. However, in the experiment conducted to verify the superiority 
of the algorithm proposed in this paper, all point features were treated as having the same level of 
detail.   

 

Figure 8. Ascending order label frequent pattern framework. 

2.3. Solving label placement problem based on label frequent pattern framework 

The label frequent pattern framework (LFPF) is composed of label orderingbased on the label 
frequent pattern framework to mine the spatial distribution information and label correlation of point 
features, and then guide the solution of the label placement algorithm. The label placement based on 
LFPF obtains more reasonable results by establishing labeling quality evaluation, conflict detection 
method, and multi-hierarchy metaheuristic algorithm. 

2.3.1. Labeling quality evaluation 

The label placement aims to obtain the maximum number of clear, aesthetically pleasing, and 
readable conflict-free labels [39,40]; thus, three factors need to be considered: (1) conflict or overlap 
between labels and features; (2) label candidate position preference; (3) association of labels with 
corresponding points. Based on these criteria, users can optimize the labeling results using the 
evaluation function. In this paper, the labeling quality evaluation is defined as: 
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1 2 3( ) ( ) ( )conflict peference associationE l E l E l Eλ λ λ= + +  (5) 

Where l represents the labeling result of a map. The functions Econflict(), Epeference(), and Eassociation 
() quantify the conflict, the preference, and the association factors of labeling result respectively, with 
λ1,λ2 and λ3 as the weights. Due to the label association factor being related to the human eye resolution, 
it was not considered, i.e., λ3=0. Assuming that a smaller quantitative score indicates a higher quality 
labeling result, then the goal of PFLP is to obtain the smallest score. 

2.3.2. Conflict detection 

Because one of the criteria of PFLP is no overlap or conflict between labels and features, it is 
necessary to develop a reasonable conflict detection method. There are various methods such as 
traversal, R-tree spatial index [34], and grid spatial index [35] to detect conflict. The traversal approach 
is to perform conflict detection between the label to be placed and the placed labels one by one. Its 
speed is extremely low and does not meet the needs of label placement. R-tree spatial index (RI) takes 
the minimum bounding rectangle of geographical objects as the basis of data storage. It divides 
neighboring geographic objects together by spatial aggregation and allows direct indexing of spatial 
objects that occupy a certain range. As the data volume increases, the deepening and reorganization of 
the spatial tree will take up more memory space and slow down the query speed. Moreover, it is not 
accurate for irregular features and rotation, wasting a lot of graphic space, as shown in Figure 9. The 
grid spatial index adopts row arrangement coding, and it only needs to determine whether the grid is 
where a label is located. This method is equivalent to a local small-scale traversal addressing and has 
strong adaptability and robustness to irregular ground features. Therefore, allowing for the possible 
irregularity of point symbols, the grid spatial index is suggested for conflict detection. 

 

Figure 9. Comparison chart of index methods. 

The traditional grid space index (GI) is built in a way that one byte corresponds to one grid. It is 
prone to the problems of large memory space and time consuming in the case of large visualization 
range and high accuracy of grid division. Therefore, this paper takes full advantage of the 8-bit per 
byte feature of the computer to propose a bit-based grid spatial index (BI), i.e., one grid corresponding 
to one bit. The grid spatial index based on x-bit mainly includes 8-bit, 16-bit, 32-bit and 64-bit, as 
shown in Figure 10. Theoretically speaking, it not only reduces the memory space to about 1/8 times, 
but also reduces the number of searches for one label to about 1/x times.  

Museum 

Hotel 

Museum 

Hotel 

(a) R-tree spatial index (b) grid spatial index 
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Figure 10. Schematic diagram of bit-based grid spatial index calculation unit. 

For the 8-bit example of conflict avoidance for point labels, assume that the height of the label is 
H pixels and the width is W pixels. When the horizontal direction is bitwise, the label is divided into 
the left starting part, the middle byte part, and the right end part, as shown in Figure 11. The bit 
operation is performed to determine whether the grid is occupied by taking the low bit for the left start 
part and the high bit for the end part. the search times of a conflict-free label can be reduced by nearly 
1/8 times compared with the byte index, which effectively improves the space utilization and reduces 
the search time. In addition, if the label text is arranged horizontally, usually W > H, which means that 
the horizontal bit grid can make full use of the bit characteristics to reduce the number of searches, the 
bit grid can be used horizontally or vertically according to the main way of text arrangement. 

 
Figure 11. Schematic diagram of bit-based grid spatial index calculation unit. 

2.3.3. Metaheuristic algorithm based on label frequent pattern framework of point features 

The PFLP problem is a typical combinatorial optimization problem, and meta-heuristic 
algorithms are usually used to solve the point feature label placement problem. Simulated annealing 
algorithm (SA), genetic algorithm (GA), and ant colony algorithm (ACA) are the classical algorithms 
to solve the PFLP problem, which have good performance in solving the notation configuration. The 
current label placement algorithm usually randomly selects point features as label ordering, but solving 
in random order ignores the intrinsic spatial structure and order information of the point datasets, which 
increases the uncertainty and ambiguity in the process of PFLP. We construct the label frequent pattern 
framework by mining the local spatial characteristics and label correlation of point features and obtain 
a label ordering of an ascending order label frequent pattern framework pattern (A-LFPF) according 
to this pattern and use the A-LFPF to guide the meta-heuristic algorithm to solve the point feature label 
placement to jump out of the local optimum. For these three metaheuristic algorithms, we provide 
some introduction to them as follows: 

1. Simulated Annealing Algorithm 

SA is based on solid annealing. First, at a high initial temperature, the solution is diverse and 
volatile due to the acceptance of new states with large energy differences from the current one. Then, 
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as the temperature slowly cools down, the probability of accepting a worse solution slowly decreases 
and eventually converges to a stable value, i.e., the approximate optimal solution. SA has a good global 
search capability, and the specific steps are as follows: 

(1) Initialize the temperature T to a high initial temperature T0 and randomly initializes the 
solution. 

(2) Repeat the following steps until the temperature T falls below a given threshold value Tc:  
① If the set number of annealing iterations is reached decrease the temperature T according to 

an annealing schedule otherwise perform steps 2 and 3. 
② Randomly select a certain number (mv×n) of points and make them reselect a new candidate 

position to get a new solution. mv is the labeling transformation probability. 
③ Calculate ΔE, the change of the labeling quality evaluation caused by changing the label.  

If the new solution is worse, it will accept the difference solution with the probability of Eq. (6). 
( / )E Tp e− ∆=  (6) 

However, using too many annealing iterations can make the SA algorithm extremely time-
consuming. Therefore, in this paper, we start with a smaller number of annealing iterations at the 
beginning of annealing and gradually increase the number of iterations as the temperature cools. 

2. Genetic algorithm 

GA is a search algorithm that simulates natural selection and population genetic mechanisms. In 
the application of PFLP, genes represent the candidate labeling position, and these are randomly 
generated in {1,2,3,4,5,6,7,8} by the integer encoding to form individuals. A certain number of 
individuals formed the population. According to the genetic mechanism, individuals of the parent 
generation are crossed or mutated to produce offspring, and the population evolves according to 
superiority and inferiority to obtain the optimal population. We obtain the optimal solution by using 
an elite selection strategy, uniform crossover, and variation. 

The specific steps are as follows ： 
(1) Generate a certain number of individuals and initialize the population. 
(2) An elite retention strategy is used to replicate the elite population of the parent directly to the 

next generation. Individuals from the parent population are crossed and genetically mutated to obtain 
new individuals. Crossover parents are randomly selected from individuals, one of which must be from 
an elite individual, and the other from the entire population, performing uniform crossover to produce 
new offspring. Mutation takes place at a single point of variation. 

(3) Select the best individuals among the parent population and all new individuals as the 
offspring population. 

Repeat the above steps until the termination condition is satisfied to obtain the best population, 
and the best individual in this population is the approximate optimal solution for the secondary dataset. 

3. Ant colony algorithm 

The ant colony algorithm simulates the process of foraging by ants. The ant colony is constructed 
following the principle that the size of data is the same as the size of the ant colony [23], The right path 
is selected using the roulette wheel method with the pheromone concentration remaining in the ant 
colony during path selection. Since the ant colony algorithm has better guidance on the label direction, 
we develop the penalty mechanism based on label position preference to update pheromone 
concentration. The higher the priority of a conflict-free label position label is, the more the pheromone 
concentration increases. More ants will choose this path with a positive feedback mechanism. The 
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specific steps are as follows: 
(1) Initialization: the size of the ant colony is the same as the point dataset, the pheromone ijτ  of 

each point feature is initialized to ( )0ξ ξ > , the rightmost label priority ijη  is set to 8, and the other 
directions of the label are set to -1 in turn. 

(2) Ant search: Since we set a fixed label ordering based on the LFPF in the point feature label 
placement, we do not need to set a taboo table, and only need ants to traverse through all point 
element sets. 

(3) Calculate the probability of each label candidate position: Calculate the selection probability 
of each label candidate position based on the pheromone concentration and label priority of each point 
feature, where α is the information heuristic factor and β is the expectation heuristic factor, and the 
calculation formula is shown in Eq. (7). 

(4) Ant selection location: Based on the selection probability of each position calculated in step 
(3), a roulette selection method is used to select the candidate location of the label. 

(5) Pheromone update: After the ants select the position, the pheromone concentration is updated 
by setting a penalty mechanism based on the conflict situation and the direction priority of the label. 
The higher the label priority of a conflict-free label, the higher the increase in pheromone concentration 
of that label, where the label position directly to the right is +9, and the pheromone of labels in other 
directions is -1 in turn. If the label has a label conflict then -5. Each label position pheromone has a 
minimum of 10 to ensure that each label orientation can be selected. 

(6) The iteration of the algorithm ends when the number of iterations reaches rACA. 

[ ] [ ]
[ ] [ ]
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ij

is isi allow
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α β
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All three algorithms output results when certain termination conditions are met. In this paper, 
when the algorithm reaches a specified number of iterations or the evaluation function value reaches 
multiple times within a certain range, one of them is satisfied to stop the computation process. The 
experimental parameters and definitions of the three algorithms are shown in Table 1. 

Table 1．Parameters and values used in methods. 

Algorithm Parameters Parameters Definition Experimental value 

SA 
 

T0 Initial temperature 40000 
λ Annealing speed 0.95 

SAmax Number of annealing iterations 4000 
Tc Termination temperature 1.00 
rSA Maximum number of repetitions of SA 30000 
mv Labeling transformation probability 0.001 

GA 

Pc Population size 100 
pm Elite population probability 0.10 
pe Chromosomal crossover probability 0.70 
pv Chromosomal variation probability 0.20 

 rGA 
Maximum number of repetitions of GA 50

 
ACA 

 
α Information heuristic factor 0.50 
β Expectation heuristic factor 0.50 

 rACA 
Maximum number of repetitions of ACA 5000
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3. Experiment and discussion 

3.1. Instance and experiment environment 

In our experiments, we use crawler technology to obtain 4000, 10000, and 20000 points of random 
POI data from Kaifeng city, Zhengzhou city, and Beijing city respectively to test the LFPF algorithm, 
which is representative of the third-tier, second-tier, and first-tier cities in China. The symbol size R1 
and the distance R2 from the coordinate point to the label are 5 and 10 pixels, respectively, and the 
label font is 12 pixels. All methods are implemented by Microsoft Visual C++ 6.0 in C++, and 
experiments were carried out on Intel (R) Core (TM) i5-8500 3.0 GHz processor with 8GB of RAM. 

3.2. Comparison experiment 

To verify the superiority of the above algorithms, some comparative experiments with the label 
frequent pattern framework (LFPF) are conducted through metaheuristics including ACA, GA, and 
SA. It discusses and analyzes the effect of the proposed method on improving the quality and efficiency 
of point-feature label placement. 

3.2.1. Index comparison experiment 

To verify the effectiveness of the proposed bit-grid based index BI, the time consumption statistics 
of GI, BI and RI obtained by simulated annealing algorithm from 40,000℃ annealed to 0.01℃ under 
the eight commonly used label densities ρ of 5%, 10%, 15%, 20%, 25%, 30%, 35%, and 40% are 
shown in Table 2–4. The Rule in the table represents the order of labels. Ρ is the ratio of the sum of the 
symbol and label area to the map area, indicating the denseness of the distribution of features and 
labels. The experimental data are 4000, 10000, and 20000 points of the actual point datasets. Figure 
12 is the time cumulative histogram of the three index methods in Tables 2–4.  

Table 2. Time consuming statistics of index methods for 4000 points under different label densities. 

Index label ordering  ρ=5% ρ=10% ρ=15% ρ=20% ρ=25% ρ=30% ρ=35% ρ=40% 
GI R 12059 8229 6881 7285 7018 6586 5902 5802 

D-LFPF 12312 8225 6546 8022 6566 5778 5320 5153 
A-LFPF 11600 7785 6492 7864 6145 6088 5334 4777 

BI R 3835 3216 2724 2695 2628 2437 2296 2334 
D-LFPF 3779 3239 2964 2574 2417 2356 2398 2215 
A-LFPF 3721 2922 2784 2500 2425 2340 2315 2198 

RI R 6213 5681 5345 6868 6440 5377 5064 5161 

D-LFPF 5820 5082 4809 5528 6326 5409 5005 4518 

A-LFPF 6306 5582 5373 6783 5806 5966 5943 5541 

 
The following two conclusions can be drawn from Figure 12 and Table 2-4: (1) BI takes the 

shortest time, followed by RI, and GI takes the longest time. the efficiency of BI is 58.2% higher than 
GI. Because the grid index is equivalent to a local traversal index, search and query times of BI can be 
reduced by nearly 7 times, greatly improving the conflict detection efficiency. Due to the 
corresponding spatial regions of the brother nodes of the R-tree can overlap, its index has redundant 
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paths for searching thus wasting some search time. (2) When the scale of points reaches 10000 and 
20000, the time consumption of method RI has an obvious relative growth trend compared with BI. 
From Table 3–4 of 10000 and 20000 experimental statistics, it can be found that RI partially takes 
longer than GI. RI starts from the root node to find out whether there is a node rectangle intersecting 
with it according to the position of the label rectangle, and it searches down to the leaf node layer by 
layer. With the points increasing and the distribution of data aggregation, the R-tree structure will be 
deeper, which will increase the search time for querying a label rectangle and lead to a decrease in 
indexing efficiency. For GI, no matter how many points participate in the label placement, the grid 
index theoretically queries the pixel grid at the location of the label rectangle. Therefore, as points 
increase, the time increase of RI is relatively the largest.   

Table 3. Time consuming statistics of index methods for 10000 points under different label densities. 

Index label ordering ρ=5% ρ=10% ρ=15% ρ=20% ρ=25% ρ=30% ρ=35% ρ=40% 
GI R 29527 19704 17767 20066 18320 14794 15682 14750 

D-LFPF 29568 17892 17486 19066 17835 15883 14772 12782 
A-LFPF 28390 20125 17574 18820 17835 15594 14183 14594 

BI R 10804 9167 8119 8260 7196 6639 6561 6493 
D-LFPF 10747 8923 7664 7563 7034 6364 6221 6157 
A-LFPF 10588 8888 8117 8169 6902 6566 6327 6189 

RI R 18913 16734 15729 18908 17980 16458 15839 16652 

D-LFPF 17490 14282 14454 18013 16892 15340 15094 13974 

A-LFPF 18308 16769 15273 18491 18001 16280 15849 14783 

Table 4. Time consuming statistics of index methods for 20000 points under different label densities. 

Index label ordering ρ=5% ρ=10% ρ=15% ρ=20% ρ=25% ρ=30% ρ=35% ρ=40% 
GI R 55635 35566 33004 37460 34243 32485 30011 27707 

D-LFPF 59638 41401 31953 36540 32940 29101 29101 27258 
A-LFPF 51981 35946 32127 35796 32544 29896 29232 25762 

BI R 22572 11445 16953 16357 15715 14028 13296 12853 
D-LFPF 20740 18125 16335 15590 14584 13328 12681 12083 
A-LFPF 22762 17978 16352 15515 14681 13630 12473 12276 

RI R 39438 40170 33004 39081 37439 38634 34167 33790 

D-LFPF 38190 33536 29299 41392 34717 33146 31945 30634 

A-LFPF 41137 35323 31095 36568 38990 35138 33805 34628 

 
 

 

4000 10000 20000 

Figure 12. Cumulative time chart of different indexes. 
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3.2.2. Comparison experiments of point feature label placement based on label frequent pattern framework 

In this paper, we fully exploited the local spatial distribution characteristics of the point dataset 
and the label correlation to construct the LFPF and applied it to the metaheuristics to conduct the 
labeling experiments. Additionally, the bit-based grid index is also used to reduce conflict detection 
time. In order to verify the effectiveness and applicability of the new algorithm, we designed to analyze 
the generalizability of LFPF algorithm and compare the label effect of LFPF algorithm with the primitive 
metaheuristic algorithm and annotation association model framework (AAMF) algorithm [24] by using 
simulated annealing algorithm, genetic algorithm, and ant colony algorithm. We used eight commonly 
used label densities (ρ) of 5%, 10%, 15%, 20%, 25%, 30%, 35%, and 40% for the experiment. The 
experiment is based on the premise that all point features are considered to the same level of detail. 
The comparative experiments between LFPF and the original algorithm mainly include: (1) LFPF-
SA,SA, and AAMF-SA; (2) LFPF-GA, GA, and AAMF-GA; (3) LFPF-ACA, ACA and AAMF-ACA. 
The experimental data include 4000, 10000, and 20000 points of the actual point datasets, respectively, 
coming from Kaifeng (a third-tier city), Zhengzhou (a second-tier city), and Beijing (a first-tier city) 
in China. These three datasets are denoted by I1, I2, and I3 respectively. We repeated the experimental 
results 10 times to take the average value. We recorded the time consumed (T) and the quantitative 
score (E) for each group of experiments. The experimental results are shown in Table 5–10. R-SA 
represents the original SA, A- LFPF -SA represents the SA based on A-LFPF, D- LFPF -SA represents 
the SA based on D-LFPF, A-AAMF-SA represents the SA based on A-AAMF, and D-AAMF-SA 
represents the SA based on D-AAMF. The same applies to GA and ACA. 

Table 5. The statistical results of SA with label density range from 5% to 20%. 

Instance Algorithm 
ρ=5% ρ=10% ρ=15% ρ=20% 

T E T E T E T E 

I1 

R-SA 3835 195.3 3216 239 2724 265.6 2695 281.1 
A- LFPF -SA 3715 191.6 3170 234.8 2758 259.7 2562 276.8 
D- LFPF -SA 3779 200.1 3239 245.1 2964 269.7 2574 286.5 
A-AAMF-SA 3721 192.5 2922 235.7 2784 259.8 2500 277.4 
D-AAMF-SA 3748 198.3 3282 243.1 2700 267.7 2565 284.4 

I2 

R-SA 10804 188.3 9167 234.2 8119 263.6 8260 284.1 
A- LFPF -SA 10588 185.1 8888 230.2 8117 258.9 8169 278.8 
D- LFPF -SA 10747 190.3 8923 236.6 7664 266.4 7563 286.7 
A-AAMF-SA 10864 185.3 9003 230.4 9935 259.5 7707 279.4 
D-AAMF-SA 11103 189.2 9094 235.4 9055 265.1 8052 285.1 

I3 

R-SA 22572 220.7 11445 261 16953 285.3 16357 302.7 

A- LFPF -SA 22762 216.5 17978 255.6 16352 279.8 15515 297.1 

D- LFPF -SA 20740 222.5 18125 263.5 16335 288.4 15590 306.1 

A-AAMF-SA 23121 217.6 18061 257.1 16545 281.6 15720 298.7 

D-AAMF-SA 20744 222.4 18470 262.3 16519 286.8 16233 304.8 
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Table 6. The statistical results of SA with label density range from 25% to 40%. 

Instance Algorithm 
ρ=25% ρ=30% ρ=35% ρ=40% 

T E T E T E T E 

I1 

R-SA 2628 295.7 2473 307.2 2296 316.1 2334 326.2 
A- LFPF -SA 2417 291.5 2421 303.1 2374 311.6 2193 322.1 
D- LFPF -SA 2417 301.7 2356 313.3 2398 322.8 2215 333.3 
A-AAMF-SA 2425 291.9 2340 303.4 2315 312.5 2198 322.7 
D-AAMF-SA 2388 299.7 2395 311.2 2435 320.1 2193 322.1 

I2 

R-SA 7196 300.2 6639 314.9 6561 325.7 6493 336.1 
A- LFPF -SA 6902 294.8 6566 308.9 6327 319.6 6189 330.4 
D- LFPF -SA 7034 303.5 6364 317.6 6221 329.1 6157 340.2 
A-AAMF-SA 6996 295.5 6580 310.3 6496 320.5 6333 331.5 
D-AAMF-SA 7025 301.9 6588 316.1 6628 327.6 6331 338.7 

I3 

R-SA 15715 315.7 14028 328.6 13296 337.5 12853 346.2 

A- LFPF -SA 14681 310 13630 323 12473 331.6 12276 340.2 

D- LFPF -SA 14584 319.8 13328 332.8 12681 341.8 12083 350.9 

A-AAMF-SA 14896 311.5 13925 324.3 12894 332.7 12766 341.4 

D-AAMF-SA 15064 318.3 13866 331.2 13075 339.9 12470 348.9 

Table 7. The statistical results of GA with label density range from 5% to 20%. 

Instance Algorithm 
ρ=5% ρ=10% ρ=15% ρ=20% 

T E T E T E T E 

I1 

R-GA 730 267.5 548 303.4 424 324.6 448 339.5 
A- LFPF -GA 686 261.3 498 299.1 403 318.7 385 333.8 
D- LFPF -GA 670 272.4 541 308.5 444 329.7 300 345.8 
A-AAMF-GA 641 262.8 501 300 433 320 380 334.7 
D-AAMF-GA 585 272.9 525 307.5 437 328.5 316 344.3 

I2 

R-GA 1805 258.4 1247 302.7 1073 329.2 1025 346.7 
A- LFPF -GA 1746 253.9 1236 297.5 1016 324 854 342.3 
D- LFPF -GA 1868 260.2 1154 306.7 952 333.3 918 350.1 
A-AAMF-GA 1639 256.3 1359 297.8 1005 325 864 342.8 
D-AAMF-GA 1613 260.7 1344 303.4 929 332 819 349.3 

I3 

R-GA 2618 271.6 3399 309.5 1827 331.6 1333 347.7 

A- LFPF -GA 2337 268.2 2101 304.9 1707 326.7 1436 341.5 

D- LFPF -GA 2418 274.8 2103 314.3 1729 336.7 1556 351.3 

A-AAMF-GA 2423 268.4 2128 306.7 1540 328.1 1381 343.5 

D-AAMF-GA 2615 273 2053 313.1 1603 335.1 1428 350.8 
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Table 8. The statistical results of GA with label density range from 25% to 40%. 

Instance Algorithm 
ρ=25% ρ=30% ρ=35% ρ=40% 

T E T E T E T E 

I1 

R-GA 355 351.8 344 361.7 275 369.3 272 375.9 
A- LFPF -GA 338 346.6 244 358.7 239 364.6 247 371.3 
D- LFPF -GA 300 358 244 368.8 266 375.3 228 382.7 
A-AAMF-GA 347 347 245 360.5 260 364.9 212 373.9 
D-AAMF-GA 274 358.2 282 366.1 243 374.5 227 381 

I2 

R-GA 768 360.7 739 371.9 541 382.5 660 389.8 
A- LFPF -GA 705 355.4 649 367.1 599 376.3 514 384.6 
D- LFPF -GA 781 364.3 517 378.5 551 385.3 500 385.5 
A-AAMF-GA 660 357.3 710 367.8 550 376.7 508 385.4 
D-AAMF-GA 774 362.6 627 374.9 566 384.6 478 393.1 

I3 

R-GA 1259 359.3 1072 370.8 1052 378 953 386.1 

A- LFPF -GA 1226 353.7 1019 364.9 1028 372.6 909 380.3 

D- LFPF -GA 1108 364.8 1019 376.4 1043 383.2 853 391.8 

A-AAMF-GA 1209 354.7 1130 366.1 1024 373.2 957 380.8 

D-AAMF-GA 1128 362.8 1079 373.6 876 382 908 389.3 

Table 9. The statistical results of ACA with label density range from 5% to 20%. 

Instance Algorithm 
ρ=5% ρ=10% ρ=15% ρ=20% 

T E T E T E T E 

I1 

R-ACA 292.8 266.5 248 303.9 254 324.6 237 339.8 
A- LFPF -ACA 331 260.2 312 297.4 249 318.4 292 333.9 
D- LFPF -ACA 282.5 273.8 241.4 312 229 332.1 179 346.9 
A-AAMF-ACA 345 361.7 257 298.7 247 319.7 210 335.7 
D-AAMF-ACA 351.2 272.2 315 309.9 260 330.8 259 345.3 

I2 

R-ACA 887 236.3 825 282 695 311 719 330.6 
A- LFPF -ACA 777 231.3 809 277.6 839 305.6 855 324.9 
D- LFPF -ACA 880 241.4 647 287.5 691 316.2 726 335.2 
A-AAMF-ACA 916 233 821 278.3 980 307.4 659 326.9 
D-AAMF-ACA 874 239.3 817 285.8 754 314.9 575 335.1 

I3 

R-ACA 2126 239.2 2168 280.3 1535 305.5 1722 323.5 
A- LFPF -ACA 2089 234.2 1775 274.7 1524 299.2 1792 316.8 
D- LFPF -ACA 1762 244.7 1888 286.4 1547 311.8 1519 329.8 
A-AAMF-ACA 1926 236 2090 276.3 1703 301.4 2006 318.2 
D-AAMF-ACA 1982 242.9 1760 284.9 1354 310.1 1598 328.4 

 
In Table 5–10, LFPF achieved higher improvement compared with the original algorithm under 

the eight label densities of the experiment, which indicates that LFPF is obviously superior to the 
original algorithm in performance and robustness. LFPF-SA-A, LFPF-GA-A, and LFPF-ACA-A label 
quality scores were reduced by 3.2~6.1, 3~6.2, and 4.3~6.7 compared with the original algorithm 
respectively. Besides, compared with A-AAMF-SA, A-AAMF-GA, and A-AAMF-ACA, label quality 
scores were reduced by 0.1~1.8, 0.2~2.6, 0.4~2.2, respectively. In addition, among the five label 
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ordering. The A-LFPF algorithm achieved the best label placement results, followed by the A-AAMF 
algorithm, then the original algorithm, and the D-LFPF algorithm with the D-AAMF algorithm 
achieved the worst label results. This shows that the proposed label ordering (A-LFPF) in this paper 
can effectively help the algorithm jump out of the local optimum trap and guides the label placement 
toward a better direction efficiently, getting a better labeling result. Giving priority to the points with 
low interference intensity can greatly reduce the impact of the labeled point on the points to be labeled. 

Table 10. The statistical results of ACA with label density range from 25% to 40%. 

Instance Algorithm 
ρ=25% ρ=30% ρ=35% ρ=40% 

T E T E T E T E 

I1 

R-ACA 224 352 226 362.1 225 368.9 290 376.7 
A-PFCLP -ACA 231 346.9 233 357.3 192 363.4 187 371.3 
D-PFCLP -ACA 214 359.2 244 369.2 204 376.3 189 383.7 
A-AAMF-ACA 174 348.1 167 358.2 217 364.8 221 371.4 
D-AAMF-ACA 197 358.3 228 368 188 375.2 262 382 

I2 

R-ACA 768 345.6 678 358.8 571 368.7 711 378 
A-PFCLP -ACA 605 340.7 639 353.7 475 364 646 372.6 
D-PFCLP -ACA 523 351 454 364.2 506 374 513 383.8 
A-AAMF-ACA 772 341.4 564 355 775 364.1 608 373.5 
D-AAMF-ACA 672 349.1 633 362.9 605 373 524 382.9 

I3 

R-ACA 1817 336.3 2029 349.3 1518 358.5 1883 367.1 

A-PFCLP -ACA 1894 329.7 1140 343.5 1293 352.1 1676 360.7 

D-PFCLP -ACA 1284 343.5 1458 356.4 1452 365.2 1350 374.1 

A-AAMF-ACA 1718 331.5 1558 344.6 1500 352.8 1481 361.8 

D-AAMF-ACA 1368 342.1 1779 354.4 1218 363.8 1328 372.7 

Figure 13 represents the plot of the difference in scores between A-LFPF-SA and SA, A-LFPF-
GA and GA, and A-LPFPF-ACA and ACA at different densities. The blue dots in the graph indicate 
the mean value, and the ends of the yellow line indicate the maximum and minimum value of the score 
difference. The average difference values of SA, GA, and ACA are 4.9, 5.1, and 5.6 respectively, and 
the average difference values are greater than 0. And the minimum difference values of ACA and SA 
are greater than 0, which has high stability. The ACA has a tendency to label at a higher label priority 
because it considers the label priority to develop a label conflict penalty mechanism to update the 
pheromone concentration, which tends to label at a higher label priority regardless of the label order 
used and therefore has a higher stability. SA is more stable due to its larger initial temperature, smaller 
termination temperature, and larger maximum number of iteration repetitions.  However, GA has a 
minimum difference of partial label density of less than 0 and is slightly less stable. So in terms of 
stability, A-LFPF is the best in combination with SA and ACA. However, due to the instability of GA, 
the maximum difference values of GA improve the most compared to SA and ACA. The crossover and 
mutation operations of the GA make it capable of jumping out of the local optimum trap. Both A-
LFPF-GA and GA have large randomness, and the difference between the minimum and maximum 
values of the final results obtained is large, so the difference between A-LFPF-GA and GA under partial 
label density exists less than 0. 
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Figure 13. The difference in fitness scores between A-LFPF and the original algorithm.  

The three cases in Figure 14 show the comparison of the trend (f) of the evaluation 
function values of the three algorithms for A-LFPF-SA, A-AAMF-SA, and SA at different 
densities. We use this to compare and analyze A-AAMF, A-LFPF, and R, and we can find: 
(1) Comparing the algorithm of this paper with SA, we can find that the algorithm A-LFPF-
SA of this paper is significantly better than SA for different label densities and cases. A-
LFPF-SA produced better initial solutions and outperformed SA in every iteration. 
Preferentially placing the intrusive points can reduce the interference on the later to be placed 
labels to obtain a better label placement result. (2) Compared with A-AAMF, A-LFPF scores 
were lower and the quality of the label result was slightly improved.  Furthermore, in most 
cases, the initial solution of A-LFPF is better than A-AAMF and performs better than A-
AAMF in each iteration. This suggests that LFPF has a more reasonable ability to quantify 
conflicts between point features than AAMF, providing a better label ordering for point 
feature label placement. A-LFPF makes the point features with less interference to be labeled 
first for better label results. 
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Figure 14. Comparison chart of labeling quality scores of three algorithms under different densities. 

3.3. Discussion 

The proposed algorithms in this paper have been evaluated through experimental results, which 
are discussed in detail in the following sections. These discussions aim to provide insights into the 
performance of the algorithms for PFLP and their importance in solving this problem. 

In the first section, we discuss the label ordering based on LFPF and random label ordering. Our 
experiments show that the optimal label result is obtained by constructing the label ordering in 
ascending order (A-LFPF) according to the label frequent pattern framework. D-LFPF makes more 
interference points be labeled first, which leads to more points in the later labeling order being affected 
and unable to find an empty space to label. On the contrary, giving priority to the points with low 
interference intensity can greatly reduce the impact of the labeled point on the points to be labeled. It 
guides the label placement in a better direction efficiently, getting a better labeling result. Random 
label ordering ignores the internal spatial structure and order of datasets, increasing the uncertainty 
and ambiguity in the solution process. This demonstrates the importance of constructing a label 
ordering that considers the frequent pattern of the label in solving PFLP. It can effectively help the 
algorithm jump out of the local optimum trap and guides the label placement toward a better direction 
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efficiently, getting a better labeling result. 
In the second section, we compare the annotation association model framework (AAMF) and 

label frequent pattern framework (LFPF). Compared with the algorithm A-AAMF, the label quality of 
A-LFPF was slightly improved. AAMF quantifies the interference of the point feature by using the 
number of point features associated with LBP-MBR of the point feature. The effect of affecting one 
label position rectangle of the point feature is the same as that of multiple label position rectangles of 
the point feature. However, LFPF quantifies the interference intensity by counting all the frequent 
values of LBP-MBR of the point feature. LFPF takes into account the size of the LBP-MBR, 
quantifying interference capacity is more reasonable. By proposing a more reasonable interference 
intensity calculation method, this work presents a more effective label ordering construction algorithm, 
which can provide better performance for PFLP. 

In the third section, we discuss the stable integration of the algorithms. Our experiments show 
that the combination of A-LFPF with the SA and ACA algorithms is more stable, while it is less stable 
when combined with the GA algorithm. Some results from the A-LFPF-GA experiment are inferior to 
those obtained using the GA algorithm alone. This is because the crossover and variation of the GA 
algorithm make it more random and therefore less stable. A suitable and stable metaheuristic algorithm 
should be selected in the actual label placement process. 

In the fourth section, we discuss the performance evaluation of the indexes used in our 
experiments. We compared the performance of three indexes (GI, BI, and RI) in terms of conflict 
detection efficiency. The grid index is equivalent to a local traversal index, search and query times of 
BI can be reduced by nearly 7 times, greatly improving the conflict detection efficiency. Due to the 
corresponding spatial regions of the brother nodes of the R-tree can overlap, its index has redundant 
paths for searching thus wasting some search time. This demonstrates the effectiveness of the proposed 
index in conflict detection. 

Overall, the algorithms presented in this paper can help improve the accuracy and efficiency of 
labeling, which is crucial for point-feature label placement. However, there are still some shortcomings: 
(1) The constructed order of the ascending label is static. In the future, it can be considered to update 
the label order in real time during the label process according to its impact capacity. (2) Data mining 
is not performed on the specific label candidate positions, and further guidance is needed for point 
label candidate positions to improve the efficiency and quality of the algorithm. (3) A more reasonable 
ambiguity factor based on the human eye resolution should be developed in the quality evaluation 
function. (4) The combination with the genetic algorithm is somewhat unstable, and subsequent 
attempts can be made to add local search into it to improve the stability of the algorithm. 

4. Conclusions 

Aiming at the problem of automatic label placement of dense and complex points, we proposed 
a PFLP algorithm based on spatial data mining. In this algorithm, we construct the label frequent 
pattern framework of point features to describe the interference among features in the labeling 
placement by fully mining the spatial distribution characteristics of features and the correlation among 
labels. This pattern can provide a judgment basis for designing placement priorities. In addition, an 
ascending label order based on the label frequent pattern framework is constructed to reduce the 
interference between point features. Prioritizing labels on features of lesser impact can reduce the 
impact on subsequent point features. Moreover, in the label placement process, we proposed a bit-
based grid space index method, which can not only reduce the cache space occupied by the dataset but 
also improve the indexing efficiency of conflict detection, and further improve the labeling efficiency. 
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The label frequent pattern framework is combined with simulated annealing, genetic algorithm, and 
ant colony algorithm to verify the superiority of the algorithm in label placement under different label 
densities in test instances. The experimental results show that the proposed label frequent pattern 
framework has some universality, and the quality and efficiency of the label for each instance under 
different label densities are improved with the compared algorithms. 
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