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Abstract: A nonempty subset D of vertices in a graph Γ = (V, E) is said is an offensive alliance, if
every vertex v ∈ ∂(D) satisfies δD(v) ≥ δD(v) + 1; the cardinality of a minimum offensive alliance of
Γ is called the offensive alliance number αo(Γ) of Γ. An offensive alliance D is called global, if every
v ∈ V − D satisfies δD(v) ≥ δD(v) + 1; the cardinality of a minimum global offensive alliance of Γ

is called the global offensive alliance number γo(Γ) of Γ. For a finite commutative ring with identity
R, Γ(R) denotes the zero divisor graph of R. In this paper, we compute the offensive alliance (global,
independent, and independent global) numbers of Γ(Zn), for some cases of n.

Keywords: Offensive alliance; global offensive alliance; alliance number; Zero divisor graph;
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1. Introduction

We consider a finite and simple graphs Γ = (V, E) with vertices V and edge set E. The degree of a
vertex v ∈ V is denoted by δ(v). For a nonempty subset D ⊆ V and a vertex v ∈ V , ND(v) = {u ∈ D :
u ∼ v} is the set of neighbors of v in D, and the degree of v in D will be denoted by δD(v) = |ND(v)|.
D = V − D is the complement of D in V , and the boundary of D ⊆ V , denoted by ∂(D), is defined as

∂(D) =
⋃
v∈D

ND(v).

An independent set in a graph Γ is a subset D of the vertex set of Γ such that no two vertices of D are
adjacent. The independence number of Γ, denoted by α(Γ), is defined as the cardinality of a maximum
independent set of Γ.
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In 2004 P. Kristiansen et al. [1] studied alliances in graphs, and in their work, alliances of different
types were proposed and studied. Since then, alliances such as defensive alliances [2–4], offensive
alliances [5–7] and powerful alliances [8–10] have been studies. Alliance has been extensively stud-
ied since a couple of decades ago. Generalizations of these, called k-alliances, were introduced by
Shafique and Dutton [11]; and inspired by that research, other researchers have dedicated time to the
study of k-alliances [12–14]. It is known that problems of finding small defensive and offensive al-
liances are NP-complete [15–17]. We are interested in the study of the mathematical properties of
offensive (global, independent and independent global) alliances. Odile Favaron et al. [18] in 2004,
derived several bounds on the offensive alliance number and the strong offensive alliance number.
Recall that given a nonempty subset D ⊆ V , D is an offensive alliance of Γ if it satisfies

δD(v) ≥ δD(v) + 1, ∀v ∈ ∂(D). (1.1)

The offensive alliance number αo(Γ) is the cardinality of a minimum offensive alliance. D is called a
global offensive alliance if it satisfies

δD(v) ≥ δD(v) + 1 ∀v ∈ D. (1.2)

The global offensive alliance number γo(Γ) is the cardinality of a minimum global offensive alliance.
We say that a (global) offensive alliance D is independent if D is an independent set. The independent
offensive alliance number is denoted by αi(Γ), and the independent global offensive alliance number
is denoted by γi(Γ).

Throughout this paper, R denotes a finite commutative ring with identity. The zero divisor graph
of R is the simple graph Γ(R) with the vertex set being vertices set the proper zero-divisors of R, i.e.,
Z(R)∗ = Z(R) − {0}, and for different u, v ∈ Z(R)∗ they are adjacent if and only if uv = 0. For any real
number t, dte (resp., btc) denotes the ceiling of t, that is, the least integer greater than or equal to t (resp.,
the floor of t, that is the greatest integer less than or equal to t).
Istvan Beck in 1988 introduced the concept of a ring associated graph. This idea establishes a con-
nection between graph theory and commutative rings [19]. In [20], Anderson and Livingston studied
the zero divisor graph with a slight modification. In [21], Muthana and Mamouni studied the global
defensive alliance number of the zero divisor graphs. In [22] Raúl Juárez et al. introduced the global
offensive alliances of zero divisor graph. Later, Driss Bennis et al. in [23] generalized these results to
global defensive k-alliances. From now on, only Zn rings will be considered.

2. Preliminaries

In this section, we give an explanation of how the set of zero divisors is organized for each case of
n. Let p and q be distinct prime numbers, and n, k and r are positive integers.

Case 1. If n = pk, one can divide the zero divisors into k − 1 sets. These sets are:

S pi = {spi : gcd(s, pk−i) = 1},

for i ∈ {1, 2, · · · , k−1}. Each vertex of S pi is adjacent to every vertex of S p j , when i + j ≥ k. Moreover,
|S pi | = (p − 1)pk−i−1. For more details, see [24].
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Case 2. If n = pkqr, where p and q are distinct primes, and k and r are positive integers, the zero
divisors set can be separated into three families as follows:

S pi = {spi : gcd(s, pk−iqr) = 1},
S q j = {sq j : gcd(s, pkqr− j) = 1},

S piq j = {spiq j : gcd(s, pk−iqr− j) = 1},

for i ∈ {1, 2, · · · , k}, j ∈ {1, 2, · · · , r}, and it is not possible to have i = k and j = r simultaneously.

In [25] we have the following result.

Lemma 1. Let p and q be distinct prime numbers, and k and r are positive integers

1. |S pi | = qr−1 pk−i−1(p − 1)(q − 1), for i ∈ {1, · · · , k − 1} and |S pk | = qr−1(q − 1).
2. |S qi | = pk−1qr−i−1(p − 1)(q − 1), for i ∈ {1, · · · , r − 1} and |S qr | = pk−1(p − 1).
3. |S piq j | = pk−i−1qr− j−1(p−1)(q−1), for i ∈ {1, · · · , k−1} and j ∈ {1, · · · , r−1}. |S pkq j | = qr− j−1(q−1),

and |S piqr | = pk−i−1(p − 1).

3. The offensive alliance number for Γ(Zn)

In this section, we calculate the offensive alliance number of a zero divisor graph over the ring Zn,
for n = pk, n = pkq with pk < q, and n = pqk with p < q, where p and q are distinct prime numbers,
and k ≥ 2 is an integer number.

Theorem 2. Let p and q be distinct prime numbers such that pk < q, where k ≥ 2 is an integer. Then,

αo(Γ(Zpkq)) =

⌊
pk − 1

2

⌋
+ 1.

Proof. Consider D ⊆ V , the set defined by D =

k−1⋃
i=1

S piq∪X, with X ⊆ S q such that |X| =
⌊

pk−1
2

⌋
−pk−1+2.

Observe that |D| =
⌊

pk−1
2

⌋
+ 1, and ∂(D) =

k⋃
i=1

S pi . To verify that D is an offensive alliance, take

v ∈ ∂(D). If v ∈
k−1⋃
i=1

S pi , then δD(v) ≥ p − 1, and δD(v) = 0. On the other hand, if v ∈ S pk , we get

δD(v) =
⌊

pk−1
2

⌋
+ 1 while δD(v) =

⌈
pk−3

2

⌉
. In any case, v satisfies the offensive alliance condition, and

hence αo(Γ(Zpkq)) ≤
⌊

pk−1
2

⌋
+ 1.

We claim that any offensive alliance A with |A| ≤
⌊

pk−1
2

⌋
+ 1 is such that S pk ⊆ ∂(A). Indeed, if there

is a vertex v ∈ S pk and v < ∂(A), then v ∈ A, or v ∈ (V − A) − ∂(A). We proceed by cases: If v ∈ A,
we get two subcases. If there is a vertex u ∈ S q such that u ∈ ∂(A), it should satisfy the offensive
alliance condition, yielding |A| ≥

⌊
q−1

2

⌋
+ 1; and if S q does not contain vertices of ∂(A), then S q ⊆ A,

yielding |A| ≥ pk−1(p − 1) + 1. In both cases, we get a contradiction. Now, if v ∈ (V − A) − ∂(A), then

A ⊆
k⋃

i=1

S pi , and S pk−1q ⊆ ∂(A), yielding |A| ≥
⌊

qpk−1−1
2

⌋
+ 1, a contradiction.
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Finally, taking v ∈ S pk ⊆ ∂(A), we get δA(v) ≥
⌊

pk−1
2

⌋
+ 1, which implies |A| ≥

⌊
pk−1

2

⌋
+ 1. Therefore,

αo(Γ(Zpkq)) =
⌊

pk−1
2

⌋
+ 1. �

Theorem 3. Let p be a prime number and k ≥ 2 is an integer. Then,

γo(Γ(Zpk)) =


p

k−1
2 − 1 i f k is odd,⌈

p
k
2 −1
2

⌉
i f k is even.

Proof. Let k ≥ 2 be an integer. Now, we analyze the following two cases. First, suppose k is odd, and

let D =

k−1⋃
i= k+1

2

S pi , with |D| = p
k−1

2 − 1. Notice that D =

k−1
2⋃

i=1

S pi is an independent set and that any v ∈ D is

adjacent to every element of S pk−1 , yielding δD(v) ≥ p− 1 and δD(v) = 0, that is, D is a global offensive
alliance, and γo(Γ(Zpk)) ≤ p

k−1
2 − 1.

Now, observe that any global offensive alliance A, with |A| < |D|, is contained in D. Indeed, if v ∈

D−A implies that v ∈ A the global offensive alliance condition will be satisfied yielding |A| ≥
⌊

p
k+1

2 −1
2

⌋
,

which is a contradiction. Thus, the said alliance does not exist. Hence, γo(Γ(Zpk)) = p
k−1

2 − 1.

Now, suppose k is even, and let D ⊆ V be the set given by D =

k−1⋃
i= k

2 +1

S pi ∪ X, with X ⊆ S
p

k
2

and

|X| = (p − 1)p
k
2−1 −

⌊
p

k
2 −1
2

⌋
. Notice that |D| =

⌈
p

k
2 −1
2

⌉
. We affirm that D is a global offensive alliance.

In effect, with an analysis similar to the odd case, we ensure that vertices of

k
2−1⋃
i=1

S pi satisfy the global

offensive alliance condition. If v ∈ S
p

k
2
− X, then δD(v) =

⌈
p

k
2 −1
2

⌉
and δD(v) =

⌊
p

k
2 −1
2

⌋
− 1. Thus,

δD(v) ≥ δD(v) + 1,

that is, D is a global offensive alliance and γo(Γ(Zpk)) ≤
⌈

p
k
2 −1
2

⌉
.

Observe that any global offensive alliance A, with |A| < |D|,
k−1⋃

i= k
2 +1

S pi ⊆ A. Indeed, if there is v ∈

k−1⋃
i= k

2 +1

S pi such that v ∈ A, the global offensive alliance condition will be satisfied yielding |A| ≥
⌈

p
k
2 +1
−1

2

⌉
,

which is a contradiction. Thus, the said alliance does not exist. Hence, γo(Γ(Zpk)) =

⌈
p

k
2 −1
2

⌉
.

�

Corollary 4. Let p be a prime number and k ≥ 2 is an integer. Then,

αo(Γ(Zpk)) = γo(Γ(Zpk)).
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Proof. First, note that the set D considered in the last proof turns out to be an offensive alliance, and
thus αo(Γ(Zpk)) ≤ p

k−1
2 − 1.

Now, suppose that A is an offensive alliance contained in D, with |A| ≤ |D|. Then, v ∈ ∂(A) for each
vertex v ∈ S pk−1 , and this implies |A| ≥ pk−1−1

2 > |D|, which is a contradiction. Consequently, A contains
elements of D. Moreover, |A| < |D| implies that there exists a vertex v ∈ D − A, that is v ∈ ∂(A),
since v the global offensive alliance condition will be satisfied, we have δA(v) ≥ δA(v) + 1, getting

|A| ≥
⌊

p
k+1

2 −1
2

⌋
> p

k−1
2 − 1, which is not possible. Hence, αo(Γ(Zpk)) = p

k−1
2 − 1.

The proof for even k is analogous. �

Theorem 5. Let p and q be distinct prime numbers such that pk < q, and k ≥ 2 is an integer. Then,

γo(Γ(Zpkq)) = pk − 1.

Proof. Let D =

k−1⋃
i=1

S piq∪S q, and note that |D| = pk−1. Observe that D =

k⋃
i=1

S pi is an independent set

and that each v ∈ D is adjacent to every element of S pk−1q, and |S pk−1q| = (p − 1) ≥ 1. Thus, δD(v) ≥ 1,
and δD(v) = 0, which implies

δD(v) ≥ δD(v) + 1,

that is, D is a global offensive alliance, and γo(Γ(Zpkq)) ≤ pk − 1.
Now, observe that any global offensive alliance A, with |A| < |D|, is contained in D. Indeed, if there is

a vertex v ∈
k−1⋃
i=1

S piq ∪ S q such that v ∈ A, it should satisfy the global offensive alliance condition. If

v ∈
k−1⋃
i=1

S piq, then |A| ≥
⌊

pq−1
2

⌋
+ 1; and if v ∈ S q, we have |A| ≥ q−1

2 +
pk−1

2 + 2. In both cases, we get a

contradiction. Hence, γo(Γ(Zpkq)) = pk − 1. �

Theorem 6. Let p < q be prime numbers and k ≥ 2 is an integer. Then,

γo(Γ(Zpqk)) =

{
pq

k−1
2 − 1 i f k is odd,

(p − 1)q
k
2−1 + q

k
2 − 1 i f k is even.

Proof. First, suppose k is odd, and let D =

k−1⋃
i= k+1

2

S pqi ∪

k⋃
i= k+1

2

S qi . Then |D| = pq
k−1

2 − 1. Observe that

D =

k−1
2⋃

i=1

S pqi ∪

k−1
2⋃

i=1

S qi ∪ S p is an independent set and that each v ∈ D is adjacent to every element of

S pqk−1 or S qk . By cases: If v ∈

k−1
2⋃

i=1

S pqi ∪

k−1
2⋃

i=1

S qi , note that v is adjacent to every element of S pqk−1 , and

|S pqk−1 | = (q − 1) ≥ 2. Thus, δD(v) ≥ (q − 1), and δD(v) = 0, which implies

δD(v) ≥ δD(v) + 1.
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if v ∈ S p is adjacent to every element S qk , then δD(v) = (p − 1), and δD(v) = 0. Thus,

δD(v) ≥ δD(v) + 1,

that is, D is a global offensive alliance, and γo(Γ(Zpqk)) ≤ pq
k−1

2 − 1.
Now, observe that any global offensive alliance E, with |E| < |D|, is contained in D. Indeed, if there is

a vertex v ∈
k−1⋃

i= k+1
2

S pqi ∪

k⋃
i= k+1

2

S qi such that v ∈ E, it should satisfy the global offensive alliance condition.

If v ∈
k−1⋃

i= k+1
2

S pqi , then |E| ≥
⌈

pq
k+1

2 −1
2

⌉
; and if v ∈

k⋃
i= k+1

2

S qi , we have |E| ≥ q
k−1

2 (q+p−2)
2 + 2. In both cases,

we get a contradiction. Thus, there is v ∈ D such that v < E is adjacent to every element of S
pq

k−1
2

and

δE(v) < pq
k−1

2 − 2, while δE(v) ≥ q
k−1

2 (q − 1), yielding

δE(v) ≤ pq
k−1

2 − 2 ≤ q
k−1

2 (q − 1) ≤ δE(v) + 1,

which implies that E is not a global offensive alliance. Hence γo(Γ(Zpqk)) = pq
k−1

2 − 1.

Finally, note that for even k the proof is analogous to the odd case, taking D =

k−1⋃
i= k

2

S pqi ∪

k⋃
i= k

2 +1

S qi . �

4. The independent offensive alliance number for Γ(Zn)

In this section we give closed formulas for the independent offensive alliance number of Γ(Zn) for
the cases of n = pk, pkq with pk < q and pqk with p < q.

Theorem 7. Let p be a prime number and k ≥ 2 is an integer. Then,

αi(Γ(Zpk)) =

⌈
pk−1 − 1

2

⌉
.

Proof. Let D ⊆ S p be an independent set, with |D| =
⌈

pk−1−1
2

⌉
. Notice that ∂(D) = S pk−1 and that

v ∈ ∂(D) satisfies δD(v) =
⌈

pk−1−1
2

⌉
and δD(v) =

⌊
pk−1−1

2

⌋
− 1. Thus,

δD(v) ≥ δD(v) + 1,

which implies that D is an independent offensive alliance and that αi(Γ(Zpk)) ≤
⌈

pk−1−1
2

⌉
.

Now, suppose k is even and observe that any independent offensive alliance A, with |A| < |D|, is

contained in

k
2−1⋃
i=1

S pi . Indeed, if there is v ∈
k−1⋃
i= k

2

S pi such that v ∈ A, then there exists u ∈ S
p

k
2

and

u ∈ ∂(A). Hence, δA(u) = 1, and δA(u) = p
k
2 − 3, a contradiction. The situation is analogous if k is

odd. Finally, we have S pk−1 ⊆ ∂(A). Thus, any vertex should satisfy the independent offensive alliance
condition, that is, δA(v) ≥

⌈
pk−1−1

2

⌉
, which is a contradiction. Hence, αi(Γ(Zpk)) =

⌈
pk−1−1

2

⌉
. �
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Theorem 8. Let p and q be distinct prime numbers such that pk < q, and k ≥ 2 is an integer. Then,

αi(Γ(Zpkq)) =

⌊
pk − 1

2

⌋
+ 1.

Proof. Consider D ⊆ S q, with |D| =
⌊

pk−1
2

⌋
+ 1, and observe that it is an independent set. Notice that

∂(D) = S pk , and that every v ∈ ∂(D) satisfies δD(v) =
⌊

pk−1
2

⌋
+ 1, and δD(u) =

⌊
pk−1

2

⌋
− 1. Thus,

δD(v) > δD(v) + 1,

which implies that D is an independent offensive alliance, and αo(Γ(Zpkq)) ≤
⌊

pk−1
2

⌋
+ 1.

Now, suppose k is even, and p > 2, or k > 2. Observe that any independent offensive alliance A, with

|A| < |D|, is contained in

k
2−1⋃
i=1

S piq ∪ S q. Indeed, if there is a vertex v ∈
k⋃

i=1

S pi ∪

k−1⋃
i= k

2

S piq such that

v ∈ A, then we proceed by cases: If v ∈
k⋃

i=1

S pi , then S pk−1q ⊆ ∂(A), and each vertex should satisfy

the offensive alliance condition, yielding |A| ≥
⌊

qpk−1−1
2

⌋
+ 1, a contradiction. If v ∈

k−1⋃
i= k

2

S piq, then there

is u ∈ S p k
2
⊆ ∂(A) such that δA(u) = 1, while δA(u) = p

k
2 − 2, for p > 2 or k > 2. In this case, the

independent offensive alliance does not exist. If p = 2 = k, we have two cases: The alliance consists
of vertices in S pq and v ∈ S q, yielding δA(u) = 1 and δA(u) = 0 for u ∈ S pk−1 and yielding δA(u) = 2
and δA(u) = 1 for u ∈ S pk . If the alliance consists of vertices in S q, we have S pk = ∂(A), yielding
δA(u) = 2 and δA(u) = 1 for u ∈ ∂(A). The situation is analogous if k is odd. On the other hand,
observe that S pk ⊆ ∂(A). Thus, u ∈ S pk satisfies δA(u) ≥

⌊
pk−1

2

⌋
+ 1, which is a contradiction. Therefore,

αi(Γ(Zpkq)) =
⌊

pk−1
2

⌋
+ 1. �

Lemma 9. In Zpqk , if p > 2 and p < q, then

|S q| ≥

k∑
i=2

|S qi | +

k−1∑
i=1

|S pqi | + 1.

Proof. By Lemma 1, we have
k∑

i=2

|S qi | = (p − 1)
[
qk−2 − 1

]
+ p − 1 and

k−1∑
i=1

|S pqi | = qk−1 − 1, which

implies
k∑

i=2

|S qi | +

k−1∑
i=1

|S pqi | = qk−1 + (p − 1)qk−2 − 1. (4.1)

Mathematical Biosciences and Engineering Volume 20, Issue 7, 12118–12129.
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We also have
|S q| = qk−2(p − 1)(q − 1)

= (p − 1)qk−1 − (p − 1)qk−2

=

(p−1)−times︷              ︸︸              ︷
qk−1 + · · · + qk−1 −

(p−1)−times︷                ︸︸                ︷(
qk−2 + · · · + qk−2

)
= qk−1 + q

(p−2)−times︷                ︸︸                ︷(
qk−2 + · · · + qk−2

)
−

(p−2)−times︷                ︸︸                ︷(
qk−2 + · · · + qk−2

)
−qk−2

= qk−1 + (q − 1)(p − 2)qk−2 − qk−2

= qk−1 + (q − 2)(p − 2)qk−2.

(4.2)

�

Theorem 10. Let p < q be prime numbers and k ≥ 2 is an integer. Then,

αi(Γ(Zpqk)) =

{
qk−1 i f p = 2,
pqk−1−1

2 i f p > 2.

Proof. First, suppose p > 2. Lemma 9 ensures the existence of D ⊆ S q, with |D| = pqk−1−1
2 , which is an

independent set. Note that ∂(D) = S pqk−1 and that every vertex v ∈ ∂(D) satisfies δD(v) =
pqk−1−1

2 − 1,
and δD(v) =

pqk−1−1
2 . Thus,

δD(v) = δD(v) + 1,

which implies that D is an independent offensive alliance, and αi(Γ(Zpqk)) ≤ pqk−1−1
2 .

Now, observe that any independent offensive alliance A, with |A| < |D|, is contained in
k⋃

i=1

S qi .

Indeed, if there is a vertex v ∈
k−1⋃
i=1

S pqi ∪ S p such that v ∈ A, then S qk ⊆ ∂(A), and each vertex should

satisfy the independent offensive alliance condition yielding |A| ≥ qk−1
2 , a contradiction. Analogously,

an independent offensive alliance of minimal cardinality cannot contain elements of S p. Note also that
S pqk−1 ⊆ ∂(A) and that any vertex should satisfy the independent offensive alliance condition yielding
δA(v) ≥ pqk−1−1

2 , which is a contradiction. Hence, αi(Γ(Zpqk)) =
pqk−1−1

2 .

Now, suppose p = 2, and consider D =

k⋃
i=1

S qi . Observe that |D| = qk−1 and ∂(D) =

k−1⋃
i=1

S pqi ∪ S p. It

is not difficult to verify that D is an independent set. To show that D is an offensive alliance note, that
for every vertex v ∈ ∂(D), we have

δD(v) = δD(v) + 1.

Hence, αi(Γ(Zpqk)) ≤ qk−1. Finally, the proof of the other inequality is analogous to the case p > 2. �

In [25] we have the following result.

Lemma 11. Let p be a prime number and let k ≥ 2 be an integer. Then,

1. If k = 2, then α(Γ(Zpk)) = 1.

Mathematical Biosciences and Engineering Volume 20, Issue 7, 12118–12129.
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2. If k is an odd integer that is greater than two, then we have

α(Γ(Zpk)) = p
k−1

2 (p
k−1

2 −1).
3. If k is an even integer that is greater than two, then we have
α(Γ(Zpk)) = pk−1 − p

k
2 + 1.

Let p be a prime number and k is an even integer, with p ≥ 3 or k ≥ 4. By the previous lemma,

α(Γ(Zpk)) = pk−1 − p
k
2 + 1. Observe that I =

k
2−1⋃
i=1

S pi ∪ {u} is the only independent set of maximal

cardinality, where u ∈ S
p

k
2
. Consider J ⊆ I and notice that for every v ∈ (S

p
k
2
− u) ⊆ J, we have

δJ(v) = p
k
2 − 2, while δJ(v) = 0. Therefore, there are no independent global offensive alliances in

these graphs. Observe that for p = 2 and k = 2, the graph of Z4 consists of just one vertex. Therefore
γi(Γ(Zpk)) = 1.

Theorem 12. Let p be a prime number and k ≥ 3 is an odd integer. Then,

γi(Γ(Zpk)) = pk−1 − p
k−1

2 .

Proof. Let D =

k−1
2⋃

i=1

S pi and observe that |D| = pk−1 − p
k−1

2 . Notice that D =

k−1⋃
k+1

2

S pi , and |D| = p
k−1

2 − 1.

Moreover, for every vertex v ∈ D, we have δD(v) = p
k−1

2 − 2, and δD(v) ≥ (p − 1)p
k−1

2 . Thus

δD(v) > δD(v) + 1.

Hence, γi(Γ(Zpk)) ≤ pk−1 − p
k−1

2 .

Now, observe that any independent global offensive alliance A, with |A| < |D|, is contained in D.

Indeed, if there is a vertex v ∈
k−1⋃

i= k+1
2

S pi such that v ∈ A, then any vertex u ∈ S
p

k−1
2
⊆ A should satisfy

the global offensive alliance condition, yielding δA(u) = 1 and δA(u) ≥ p
k−1

2 − 1. Thus, there is v ∈ D
such that v < A, and δA(v) ≥ p − 1, while δA(v) = 0, which implies that A is not an independent global
offensive alliance. Therefore γi(Γ(Zpk)) = pk−1 − p

k−1
2 . �

Theorem 13. Let p and q be distinct prime numbers such that pk < q and k ≥ 2 is an integer. Then,

γi(Γ(Zpkq)) =


3 i f k = 2 and p = 2,
(q − 1)(pk−1 − p

k−2
2 ) + pk − p

k
2 i f k ≥ 4 and even,

q(pk−1 − p
k−1

2 ) + pk−1(p − 1) i f k is odd.

Proof. First, suppose p = 2, and k = 2. Let D = S 2q ∪ S q, with |D| = 3. It is not difficult to verify
that D is an independent set, so we just show that D is a global offensive alliance. Note that every
vertex v ∈ D = S 2 ∪ S 4 satisfies δD(v) ≥ 1 and δD(v) = 0. Thus γi(Γ(Zpkq)) ≤ 3. Now, observe that
any independent global offensive alliance A, with |A| < |D|, is contained in D. Indeed, if there is a
vertex v ∈ S 2 ∪ S 4 such that v ∈ A, then any vertex v ∈ S 2q ⊆ A satisfies the global offensive alliance
condition, yielding |A| ≥ q, a contradiction. Thus, there is v ∈ D such that v < A. If v ∈ S 2q, then
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δA(v) = 0 while δA(v) = 2(q − 1); and if v ∈ S q, then δA(v) = 0 while δA(v) = q − 1. In both cases, the
global offensive alliance condition is not satisfied. Hence, γi(Γ(Zpkq)) = 3.

Next, suppose that k ≥ 4 is an even integer, and let D =

k
2−1⋃
i=1

S piq∪

k
2⋃

i=1

S pi ∪S q, with |D| = (q−1)(pk−1−

p
k−2

2 ) + pk − p
k
2 . We may note that D is an independent set, so we just show that D is a global offensive

alliance. Let v ∈ D and proceed by cases: If v ∈
k−1⋃
i= k

2

S piq, then δD(v) = (q − 1)p
k−2

2 − p
k
2 − 2, while

δD(v) ≥ (q − 1)(p − 1)p
k−2

2 ; If v ∈
k−1⋃

i= k
2 +1

S pi , then δD(v) = p
k
2 − 1, and δD(v) ≥ p

k
2 (p − 1). If v ∈ S pk , then

δD(v) = p
k
2 − 1, while δD(v) = p

k
2 (p

k
2 − 1). In any case, the condition δD(v) ≥ δD(v) + 1 is satisfied, that

is, γi(Γ(Zpkq)) ≤ (q − 1)(pk−1 − p
k−2

2 ) + pk − p
k
2 .

Now, notice that any global offensive alliance A, with |A| < |D|, is contained in D. Indeed, suppose

that there is a vertex v ∈
k−1⋃
i= k

2

S piq ∪

k⋃
i= k

2 +1

S pi such that v ∈ A. By cases: If v ∈
k−1⋃
i= k

2

S piq, then for any vertex

u ∈ S
p

k
2
⊆ A we have δA(u) = 1, while δA(u) = p

k
2 − 2. If v ∈ S

p
k
2 +i , with 1 ≤ i ≤ k

2 , and v ∈ A, then

S p j ⊆ A, for j = 1, . . . , k
2 + i. Otherwise, if u ∈ S

p
k
2 +i and u < A, then δE(u) = 0 < δE(u) + 1, which is

not possible. Thus

k
2 +i⋃
j=1

S p j ⊆ A, yielding |A| ≥ (q − 1)(pk−1 − p
k
2−2) + pk − p

k
2 +1, a contradiction. Now,

if there is v ∈ D − A, then δA(v) ≥ p − 1, while δA(v) = 0, which implies that A is not an independent
global offensive alliance. Hence, γi(Γ(Zpkq)) = (q − 1)(pk−1 − p

k−2
2 ) + pk − p

k
2 .

Finally, we may observe that for odd k the proof is analogous to the even case, taking D =

k−1
2⋃

i=1

S piq ∪

k−1
2⋃

i=1

S pi ∪ S q. �

5. Conclusion

Since a couple of decades ago, when alliances in graphs were introduced for the first time [1], a lot
of researchers have focused on studying various parameters of different types of alliances in graphs.
In this paper, we computed the number of offensive alliances (global, independent and independent
global) of the zero-divisor graph of the ring Zn, for n = pk, n = pkq, with pk < q, and n = pqk, with
p < q, where p and q are distinct prime numbers, and k > 2 is an integer number. Among the open
problems raised by our results, the following are of particular interest.

1. Generalize these results for offensive (defensive, powerful) k-alliances of the zero-divisor graph
of the ring Zn.

2. Explore upper offensive (defensive) alliances on these graphs.
3. Since offensive alliances can be used to model real-world situations, it is worthwhile to find algo-

Mathematical Biosciences and Engineering Volume 20, Issue 7, 12118–12129.



12128

rithms (which could even be non-polynomial for some values of k) together with some heuristics
that allow the making of some implementations.
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