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Abstract: With the development of deep learning, medical image segmentation technology has made 
significant progress in the field of computer vision. The Unet is a pioneering work, and many 
researchers have conducted further research based on this architecture. However, we found that most 
of these architectures are improvements in the backward propagation and integration of the network, 
and few changes are made to the forward propagation and information integration of the network. 
Therefore, we propose a feedback mechanism Unet (FM-Unet) model, which adds feedback paths to 
the encoder and decoder paths of the network, respectively, to help the network fuse the information 
of the next step in the current encoder and decoder. The problem of encoder information loss and 
decoder information shortage can be well solved. The proposed model has more moderate network 
parameters, and the simultaneous multi-node information fusion can alleviate the gradient 
disappearance. We have conducted experiments on two public datasets, and the results show that FM-
Unet achieves satisfactory results. 
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1. Introduction  

In recent years, with the improvement of computer hardware performance, deep learning (DL) 
has been applied in many industrial fields and has demonstrated excellent performance. One of the 
most important areas is the application of medical image segmentation and classification [1–3]. 
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Compared with traditional machine learning and computer vision methods, DL has more significant 
advantages in segmentation accuracy [4–6].  

Over the past decade, medical image segmentation technology based on deep learning has focused 
on developing efficient and robust segmentation methods [7]. Unet is a milestone work [8]. It 
establishes an encoder-decoder convolutional network structure with a skip connection, which is 
simple and efficient for medical image segmentation with small required datasets. In recent years, the 
Unet-like structures have become the backbone of almost all leading medical image segmentation 
methods. Following Unet, many important extension networks have emerged, such as Unet++ [9], 
Res-Unet [10], AttentionUnet [11] and Trans-Unet [12]. 

Unet draws on the experience of the Fully convolutional network (FCN), and its network structure 
consists of two parts. The shrinking network on the left side captures the contextual information in the 
image, and the extended network on the right side achieves the purpose of accurate positioning of the 
required segmentation part of the image. Unet also uses skip connection for feature fusion, which 
combines the down-sampling features of the first half and the up-sampling features of the second half 
to obtain more accurate context information and a better segmentation effect. 

Zhou et al. proposed Unet++ [9], which is composed of a set of different depths Unet and decoders. 
These decoders are connected intensively with the same resolution through redesigned skip 
connections. Despite the improved performance, the Unet++ model is very complex, requires 
additional learnable parameters, and some of its components are redundant for specific tasks [13]. 
Inspired by the deep residual network (ResNet) [14] and Unet, Zhang et al. proposed the deep residual 
Unet (Res-Unet) [10]. Res-Unet is still based on the Unet architecture. A series of stacked residual 
units replace ordinary neural units as basic blocks to build deep Res-Unet, which effectively deepens 
the number of network training layers. But with the increase of network depth, the training time 
becomes very long. Researchers also consider introducing self-attention mechanisms into CNNs to 
improve network performance [15–17]. Ozan Oktay et al. integrated the skip connection of additional 
focus gates into the U-shaped structure for medical image segmentation [11]. The attention gates (AGs) 
mechanism implicitly generates soft region suggestions, highlighting salient features useful for 
specific tasks. The sensitivity and accuracy of the model for dense label prediction are improved by 
suppressing the features of irrelevant regions. Some researchers have attempted to minimize 
interference from extraneous regions by preprocessing data prior to network training. Rani et al. [18] 
discovered that bone structures in chest X-rays could interfere with feature extraction from lung 
regions, thereby reducing the accuracy of models in detecting, localizing, and visualizing infections 
during COVID-19 screening. To improve the overall accuracy of their model, they applied bone 
suppression and lung segmentation preprocessing methods. By preprocessing, the model can minimize 
the visibility of bones within the lung region while preserving maximum spatial information and 
resolution [19]. Subsequently, Rani et al. [20] used data augmentation, histogram equalization, and 
pre-segmentation of L1 vertebrae to calculate the vertebral center as a reference for kidney and ureter 
localization. The proposed KUB-UNet network was used to verify the effectiveness of this method in 
enhancing the segmentation of urinary organs in KUB X-ray images. 

Currently, Transformer, designed for the sequence-to-sequence prediction, has become an 
alternative architecture with a global self-attention mechanism [21–25]. Chen et al. proposed Trans-
Unet [12], which has the advantages of both Transformers and Unet. On the one hand, the transformer 
encoders the tokenized image blocks from the CNN feature map into an input sequence to extract the 
global context. On the other hand, the decoder up-samples the encoded feature and then combines 
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them with a high-resolution CNN feature map for accurate positioning. 
The encoder-decoder structure and the skip connection of Unet have been proved to be efficient 

and stable network structures [26–29]. As mentioned above, many novel network structures based on 
Unet structure have been proposed. However, these are improvements proposed on the backward 
propagation and fusion of the network, with few changes on the forward propagation of the network 
and forward fusion of information. In order to improve receptive field and pixel level prediction in 
Unet network, there must be a series of up-sampling and down-sampling operations. However, these 
operations will inevitably cause information loss and underutilization. Based on this disadvantage, we 
design a feedback mechanism Unet (FM-Unet) in this paper, adding a feedback path to the encoder 
and decoder paths of the network to help the network integrate the following step information in the 
current encoder and decoder. The main contributions of this paper are summarized as follows: 

1) A feedback mechanism Unet model for semantic segmentation of medical images is proposed. A 
feedback path is introduced into the Unet, which integrates the context information of the convolutional 
blocks and can compensate for the loss of information to improve the segmentation accuracy. 

2) Compared with most of the improved networks based on Unet, the FM-Unet model has smaller 
parameters, which can reduce the cost of computing time and space to a certain extent. 

3) In FM-Unet, the concatenation of the feedback path context feature map, the concatenation of 
the encoder-decoder primary path feature map and the feedback path feature map, and the 
concatenation of the same node at different time points can better fuse information at each scale and 
alleviate the problem of gradient disappearance. 

The rest of this paper is organized as follows: Section 2 reviews Unet-based segmentation 
networks and related techniques. Section 3 describes the proposed method. Section 4 gives the 
experimental results and analysis. Finally, a summary of the proposed model is presented. 

2. Related work 

2.1. Unet architecture 

Unet, whose network structure is shaped like the letter ‘U’, is composed of convolution, down-
sampling, up-sampling, skip connection and other operations, including the down-sampling 
contraction path on the left and the up-sampling expansion path on the right. Unet contraction path 
extracts image semantic information, reduces image resolution and expands the receptive field. The 
network consists of five blocks, each containing two 3 × 3 convolutional layers. After each convolution 
layer, there is a RELU activation function and a down-sampling operation for the input of the next 
block. The expansion path predicts pixel by pixel, accurately locates the target position, and restores 
the image to the size similar to the input image. The extension path contains four blocks, and each 
block also contains 3 × 3 convolution layers, RELU and up-sampling operation. The skip connection 
is added between the contraction path and the expansion path. Unet uses concatenation to the crop feature 
map of the contraction path to the same size as the expansion path and then performs the concatenation 
operation, which can help the network learn some details lost before the contraction path.  

2.2. Residual idea 

He et al. proposed the residual network [14], which introduces a constant mapping design to solve 
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the degradation and gradient disappearance problem in multilayer neural networks. For a stacking layer 
structure, when the input is x, the learned feature is H(X), and the residual network function can be 
obtained as F(X) = H(X) - X. Currently, the learning feature can be expressed as H(X) = F(X) + X. In 
this way, the optimal solution of the network can be obtained by adjusting the residual function F(X), 
which is easier than directly learning the original feature H(X). The residual structure in the residual 
network uses a shortcut connection method, which can also be understood as a quick connection 
channel so that the feature matrix is added by the interlayers. It is important to note that the F(X) and 
X shapes should be the same, so the input X is often dimensioned with a 1 × 1 convolution kernel on 
the Shortcut path. And here is done by adding the numbers in the same position of the feature matrix. 

2.3. Dense structure 

Huang et al. proposed the DenseNet model [30], its basic idea is consistent with ResNet, but it 
establishes a dense connection between all the preceding layers and the following layers, and its name 
comes from this. Another major feature of DenseNet is feature map reuse through the connecting 
features on the channel. These features enable DenseNet to achieve better performance than ResNet 
with fewer parameters and computing costs. Compared with ResNet, DenseNet proposes a more 
radical mechanism of dense connectivity: connecting all layers. In DenseNet, each layer is connected 
with all previous layers in the channel dimension (the size of the feature map of each layer is the same 
here) and used as the input of the next layer. 

The output of traditional network at the layer l is xl = Hl (xl-1), that is, only the previous layer is 
used as input. In DenseNet, all previous layers will be connected as input xl = Hl ([x0, x1, x2, ···, xl-1]), 
which xl = Hl (·) represents a nonlinear transformation function, and it is a combined operation and 
includes a series of Batch Normalization (BN), ReLU, Pooling and Conv operations. 

2.4. Feedback mechanism 

The concept of feedback in cybernetics involves adjusting the input based on the change in the 
output. Researchers have incorporated this idea into Unet networks to enhance the accuracy of medical 
image segmentation. Shibuya et al. [31] proposed a Feedback U-Net with convolutional LSTM, where 
the second round of input is fed back through the first round of Unet output, and convolutional LSTM 
is used to extract features based on those obtained in the first round. However, this approach only 
implements feedback between two stages. This kind of long-distance feedback inevitably has a semantic 
gap, limiting the transfer of features learned in the first stage to the second stage. Lin et al. [32] proposed 
Refine U-Net. In order to alleviate the semantic gap in the skip connection, the global refinement 
module of the middle layer was added to the Unet skip connection. To this end, the encoder output is 
progressively upsampled as feedback features, and they are fused with the corresponding decoder-side 
output features. However, this work only jump-connects the feedback feature map of the encoder to 
the decoder, and does not consider the feedback of the decoder information. Furthermore, these works 
seldom consider the feedback of encoder-inside and decoder-inside information. 

2.5. Variants of Unet architecture 

Zhou et al. proposed Unet++ [9], which is composed of a set of Unet with different depths and 
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decoders. These decoders are connected intensively with the same resolution through redesigned skip 
connections. Inspired by the Inception module for CNNs to achieve more efficient computing, Nabil 
et al. introduced MultiResUnet [33], an enhanced Unet architecture that uses a convolutional layer 
chain with residual connections, rather than simply connecting features from the encoder path to the 
decoder path. These residual connections not only reduce the semantic gap between encoder and 
decoder features, but also make learning easier while segmenting images from various modalities 
robustly at different scales. Valanarasu et al. argued that Unet has poor performance in detecting small 
anatomical structures with fuzzy noise boundaries and proposed Ki-Net [34], an overcomplete network 
architecture that can project data onto high dimensions. When combined with Unet, Ki-Net can capture 
details and perform target segmentation better than Unet. The introduction of the self-attentive 
mechanism also improves the performance of the network [35,36]. Oktay et al. integrated the skip 
connection of additional focus gates into the U-shaped structure for medical image segmentation [11]. 
At the same time, people are trying to combine CNNs and Transformer. Chen et al. combined 
Transformer and CNNs to form a powerful encoder for 2D medical image segmentation [12]. The 
complementarity of Transformer and CNN is used to improve the segmentation capability of the model. 

Although these variants of Unet architecture show good results in biomedical image segmentation, 
the problem of information loss due to convolution operation in the encoder and decoder paths still 
exists, which affects the final segmentation accuracy. 

3. Methods 

3.1. Proposed network architecture 

FM-Unet utilizes the classic U-shaped network as the basic network architecture. By introducing 
a feedback mechanism, the output feature map of the next convolution block is updated through the 
feedback convolution block, as shown in Figure 1(a). At the same time, the feedback output in the 
feedback path will also be output to the next feedback convolution block through down-sampling 
or up-sampling. The feedback mechanism of the coder-decoder designed in FM-Unet is shown in 
Figure 1(b),(c). 

The mechanism integrates not only the output feature map of the next convolution block in the 
primary path, but also the output feature map of the last convolution block in the feedback path. The 
structure is well fused with the information of the context and less information can be lost. The 
complete structure of the FM-Unet includes a basic Unet architecture primary path (yellow block in 
Figure 1) and a feedback path (green block in Figure 1). In the encoder of Figure 1(b), layer I of the 
primary path receives FXi-1_0, down-sampling feature map, and the output Xi_0 of this layer is obtained. 
At the same time, Xi_0 down-sampling is used for the next layer operation to get Xi+1_0 on the primary 
path. The feedback path convolution block receives the output Xi+1_0 from the next layer of the primary 
path and the output Xi-1_1 from the previous layer of the feedback path. According to a short skip 
connection, the feedback path output Xi_1 is concatenated with the original primary path convolutional 
block output Xi_0 in the channel dimension (green dashed line in Figure 1). This short skip connection 
can allow the concatenated two feature maps to have a smaller semantic gap and low training 
difficulty [37]. The feature map after feedback concatenation is the FXi_0, the feedback output of the 
primary path will completely replace the previous Xi_0, which will be used for the next operation. The 
feedback structure of the decoder is shown in Figure 1(c). The basic implementation process is similar 
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to the feedback structure of the encoder. The detailed implementation diagram of the designed 
feedback mechanism can refer to Figures 2 and 3.  
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Figure 1. Schematic diagram of overall architecture and each module. (a) Architecture of 
FM-Unet, (b) Encoder feedback mechanism, (c) Decoder feedback mechanism. 

3.2. Encoder feedback mechanism 

In the encoder path, the detailed implementation diagram of the feedback mechanism is shown in 
Figure 2.  

First, the primary path receives the input H×W×C feature map, which is obtained by 2 × 2 max 
polling of the previous convolution block FXi-1_0 (step 1). It should be noted that if the feature map is 
the initial input image, then the received input feature map is not obtained from the down-sampling of 
the previous module, it is the original input image with 1 channel or 3 channels. Every convolutional 
block consists of two convolutional layers and the corresponding activation function. At this node, we 
get the primary path output Xi_0. The output of the convolution block passes through 2 × 2 max polling 
as the input of the next layer in the primary path (step 2), the convolution block output of this layer 
will be up-sampling into the feedback path (step 3), The input to the feedback path may also come 
from a layer above the feedback path (step 4). This output of the feedback convolution block gives a 
feature map incorporating contextual information. The feedback feature map obtained here will be 
concatenated with the previously output feature map of the primary path of the current layer in the 
channel dimension (steps 5 and 6), then the concatenated feature map is used as input of the current 
primary path convolution block. The feature map from this convolution block is the updated feature map 
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of the primary path layer. We get the output FXi_0 after the primary path is updated. And this feature 
map will completely replace the previous output feature map of the layer for subsequent operations.  

The Encoder Feedback Mechanism that we designed enables the first layer node in the encoder 
to perform feedback updates on its original output, Xi_0. The feedback output, Xi_1, is obtained by 
capturing the information Xi+1_0 of the next layer in the primary path, and the information Xi-1_1 of the 
upper layer in the feedback path at the feedback node. The feedback output, Xi_1, is concatenated with 
the original output, Xi_0, and updated after passing through the convolution block, culminating in the 
primary path returning the output FXi_0. This operation achieves the shrinking network on the left that 
captures the image’s contextual information, thus mitigating information loss. 
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④ MaxPooling
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Figure 2. Detailed implementation diagram of encoder feedback mechanism. 

3.3. Decoder feedback mechanism 

In the decoder path, the detailed implementation diagram of the feedback mechanism is shown in 
Figure 3.  

First, the primary path receives the bilinear interpolation up-sampling feature map of the decoder 
(step 1). Meanwhile, the feedback feature map after the decoder master path update is stitched by skip 
connection (step 2). The skip connection follows the standard Unet architecture. It concatenated two 
feature maps in the channel dimension. The output of this convolution block is up-sampled to the next 
layer of the decoder primary path (step 3), and this layer is similarly stitched together with the encoder 
primary path feature map (step 4) and the up-sampled feature map. The feature map in this layer will 
be down-sampled into the feedback path of the decoder (step 5), and the input in this feedback path 
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may also have the feature map from the previous layer of the decoder feedback path (step 6). The 
output of this feedback convolutional block will be connected to the primary path of the current layer 
via a short ship connection (step 7). Currently, the primary path needs to concatenate the feedback 
convolution block output feature map, the previous output feature map of the primary path of the 
current layer (step 8) and the skip connection encoder primary path feedback feature map (step 9). We 
get the output FYi_0 after the primary path is updated. The output of this input to the convolutional 
block is the current feedback feature map of that layer of the primary path and, like the encoder, 
completely replaces the previous output of that layer for subsequent operations.  

We designed the Decoder feedback mechanism to enable the original output Yi_0 of the i-th layer 
node in the decoder to be updated with feedback. The feedback output Yi_1 is obtained by capturing the 
information Yi+1_0 of the next layer of the primary path, and the information Yi-1_1 of the upper layer of 
the feedback path in the feedback node. The feedback path output Yi_1, the original output Yi_0 and the 
encoder primary path feedback output FXi_0 are concatenated after the convolution block to obtain the 
updated primary path feedback output FYi_0. This operation allows the extended network on the right 
to accurately locate the segmented part of the image required and provide more detailed information. 
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Figure 3. Detailed implementation diagram of decoder feedback mechanism. 

4. Experiments 

In this section, we conduct extensive experiments to evaluate the performance of the proposed 
image segmentation framework and compare it with the baseline model on several benchmark datasets. 
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4.1. Datasets 

Breast Ultra Sound Images (BUSI) [38] is a medical images dataset of breast cancer by ultrasound 
scans. The BUSI dataset collected included breast ultrasound images of women aged 25 to 75 collected 
in 2018. The number of patients is 600 women. The dataset consists of 780 images, all of which are 
cropped to different sizes to remove unused and unimportant borders from the images. The images are 
in PNG format and divided into three categories: normal, benign and malignant. Each image has its 
ground truth (mask image). Both benign and malignant images are used in the experiments. To 
standardize network input sizes and take advantage of GPU parallelization, we resized 647 images 
to 256 × 256 RGB.  

The International Skin Imaging Collaboration 2018 (ISIC 2018) [39] is the world’s largest skin 
image analysis challenge and has organized the world’s largest public dermoscope image library. This 
challenge was divided into three image analysis tasks: lesion segmentation, lesion attribute detection 
and disease classification. We performed only the lesion segmentation task. There are 2594 images in 
the dataset containing three different categories, including 20.0% melanoma, 72.0% nevus, and 8.0% 
seborrheic keratosis. The dataset consists of images of various resolutions, and we adapt all images 
to 512 × 512 RGB images for the same reason. 

The STARE [40] dataset was first introduced by Michael Goldbaum in 1975 as a color fundus 
image database designed for retinal vessel segmentation. This dataset comprises 20 fundus images, 
among which 10 have lesions and the remaining 10 do not have any lesions. The images in the dataset 
have a resolution of 605 × 700. To avoid overfitting the model, we randomly cropped each picture to 
a size of 256 × 256 four times, and introduced random noise to the images. This approach not only 
enhances the number of datasets, but also satisfies standardized network input sizes and GPU parallel 
processing of data requirements. 

4.2. Implementation details 

All experiments were run on a Tesla P40 (24 GB) graphics card. FM-Unet is developed based on 
Python 3.8 framework using an SGD optimizer with learning rate of 0.001, momentum of 0.9, and 
weight decay of 0.0001. SGD optimizer was bound to a cosine annealing decay learning rate controller 
with a minimum learning rate of 0.00001 and a cosine function period (T_max) of one epoch. The 
batch size is set to 4 and a total of 100 epochs are performed. We split the dataset by a random factor 
according to the training set of 70% and validation set of 30%. In order to increase the diversity of 
training samples, the training model has a stronger generalization ability. We also expanded the data 
with random rotations and random adjustments of hue, brightness and cropping of the images. 

FM-Unet uses a combination of binary cross-entropy and dice coefficients as the loss function for 
all of the above dataset training. The cross-entropy loss function is described as shown in Eq (1). 

𝐵𝐶𝐸ሺ𝑌, 𝑌෠ሻ ൌ െ ∑ 𝑌ሺ𝑥௜ሻ ⋅ 𝑙𝑜𝑔𝑌෠ሺ𝑥௜ሻே
௜ୀଵ        (1)  

where 𝑌 and 𝑌෠ are the true image label and the predicted image respectively, and 𝑥௜ is the i-th pixel 
of the image. The calculation formula of the Dice coefficient is shown in Eq (2). 

𝐷𝑖𝑐𝑒 ൌ  ଶ⋅|௒∩௒෠|

|௒|ା|௒෠|
          (2) 
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where 𝑌 ∩ 𝑌෠  denotes the intersection of the sets 𝑌 and 𝑌෠, |𝑌| and |𝑌෠| denote the number of their 

elements. For the segmentation task, 𝑌 and 𝑌෠ denote the Ground Truth (GT) and predict mask of 
the segmentation. The DiceLoss is DiceLoss = 1-Dice, which is calculated as shown in Eq (3). 

𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠ሺ𝑌, 𝑌෠ሻ ൌ 1 െ ଶ⋅|௒∩௒෠|

|௒|ା|௒෠|
        (3) 

The combination of binary cross entropy and dice coefficients between 𝑌 and 𝑌෠ is used as the 
final loss function. The loss function is expressed as Eq (4). 

𝐿 ൌ 0.5𝐵𝐶𝐸ሺ𝑌, 𝑌෠ሻ ൅ 𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠ሺ𝑌, 𝑌෠ሻ       (4) 

In order to evaluate the performance of the proposed framework relative to the baseline approach, 
we use F1_score and Intersection-Over-Union (IOU) as evaluation metrics. F1-score is a measure of 
classification problems. F1-score is often used as the final measure in some multi-classification and 
binary classification problems. It is the harmonic average of the accuracy rate and recall rate, with a 
maximum of 1 and a minimum of F1-score is defined as shown in Eq (5). 

𝐹ଵ ൌ 2 ⋅ ௒⋅௒෠

௒ା௒෠
          (5) 

The IOU is a standard performance measure for object segmentation problems, and its definition 
is shown in Eq (6). Given a set of images, IOU gives the similarity between the predicted regions and 
GT of the objects present in the set. 

IOU ൌ |௒∩௒෠|

|௒∪௒෠|
          (6) 

where | ∙ |  denotes the base of the set. IOU is the area of overlapping between the predicted 
segmentation and GT divided by the joint area between the predicted segmentation and GT. For binary 
or multi-class segmentation, the average IOU is calculated by taking the IOUs of all classes and 
averaging them. The IOU index ranges from 0 to 1, where 1 represents a perfect match between GT 
and predicted segmentation, and 0 indicates a complete mismatch between them. 

4.3. Comparisons with state-of-the-art methods 

In this section, FM-Unet is compared with existing models to verify the effectiveness of the 
method. We choose the classical and more popular models for medical image segmentation: Unet [8], 
Unet++ [9], ResUnet [10], Attention Unet [11], TransUnet [12], MedFormer [41] and UNeXt [42]. 

4.3.1. Validation of model performance 

Figure 4 shows the experimental results of FM-Unet and other models on the BUSI dataset, the 
parameter of loss function on the training set and the evaluation index on the validation set within 100 
epochs are compared. We performed a random split in the BUSI dataset by training set 70% and 
validation set 30%. We also augmented the dataset with random rotation, adjustment of hue, brightness 
and cropping of the images. 
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(a)                                          (b) 

  

      (c) 

Figure 4. Demonstration of validation performance within 100 epochs: (a) IOU, (b) F1-
score and (c) DiceLoss. We record the value of the IOU and F1-score on the validation set 
after each epoch. 

Figure 4(a)–(c) show the changes in the loss function, IOU coefficients and F1-score of each 
model on the validation set with the increase of iterations in 100 epochs. In Figure 4(a), we can see 
that the loss function of FM-Unet decreases the fastest and tends to be stable around 70 epochs. At the 
same time, in Figure 4(b),(c), it can be seen that FM-Unet performs best in both the IOU coefficient 
and F1-score, and achieves good results in less iterations. FM-Unet has achieved a better IOU 
coefficient and F1-score at 50 epochs. Compared with TransUnet and AttentionUnet, FM-Unet can 
achieve better segmentation results on a smaller number of iterations. Compared with Unet, Unet++ 
and ResUnet, IOU coefficients and F1-score of FM-Unet are steadily increasing in the early training 
period, while the remaining networks have very large jumps in IOU coefficients and F1-score, 
especially Unet network, which has the most drastic oscillation. It proves that FM-Unet is more 
adaptable, robust and effective, and the whole network design is more scientific. 
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4.3.2. Validation of model performance 

Table 1 shows the Params data for FM-Unet, Unet and its improved architecture model, which 
shows the spatial complexity and relative computation time of the model. We obtained the data in 
Table 1 on an input tensor of 256 × 256 × 3. From Table 1, we can find that the Params of the Unet 
are about 31.13 MB. UNet++ halves the output channels of the Unet network and consolidates Unet 
structures of different sizes into one network. Its Params are about 9.16 MB, more than three times 
smaller than Unet. The Res-Unet and Att-Unet are also improvements based on Unet, but there are 
relatively large increases on Params, 62.74 MB and 51.99 MB, respectively. With the explosion of 
Transformers in the last year, Trans-Unet, a fusion of Transformers and Unet networks, has seen a huge 
increase in Params. Nowadays, most medical image segmentation research focuses on attention 
mechanisms and Transformers, but this neglects computation time and graphics capacity in the pursuit 
of better segmentation performance. FM-Unet has a little more than the Params of Unet, and the 
Params data is still in a small range. However, the params are still in the smaller range of 48.03 MB 
than the more popular attention-based and Transformers-related networks, 3.96 MB smaller than Att-
Unet and 57.29 MB smaller than Trans-Unet. 

Table 1. Comparison of model parameters. 

Networks Params (in MB) 
Unet 31.13 

Unet++ 9.16 
Res-Unet 62.74 
Att-Unet 51.99 
Trans-Unet 105.32 
MedFormer 28.07 
UNeXt 1.47 
FM-Unet 48.03 

4.3.3. Quantitative comparisons on different datasets 

a) Results on Breast Ultra Sound Images (BUSI) dataset 
Table 2 shows the experimental results of several of the most popular segmentation networks on 

the BUSI segmentation dataset. As shown in Table 2, FM-Unet obtained the highest IOU and F1-score 
scores with 70.21% and 80.53%, respectively. Compared with the results of the other seven models, 
IOU coefficients of FM-Unet improved by 8.16%, 7.49%, 5.39%, 4.96%, 3.29%, 8.95% and 3.26%, 
respectively, F1-score improved by 4.51%, 4.10%, 3.06%, 3.03, 1.23%, 6.05% and 1.16%, respectively. 
It shows that FM-Unet achieves better results than other models and achieves state-of-the-art. 

b) Results on International Skin Imaging Collaboration (ISIC 2018) dataset 
Table 2 also shows the experimental results of several advanced segmentation networks on the 

ISIC 2018 segmentation dataset. I experimental results show that FM-Unet obtained IOU the highest 
IOU and F1-score with 82.14% and 89.95%, respectively. Compared with the results of the other seven 
models, IOU coefficients of FM-Unet improved by 9.45%, 7.90%, 8.98%, 7.04%, 1.63%, 1.00% 
and 0.44%, respectively, F1-score improved by 6.22%, 5.51%, 5.88%, 4.57, 1.04%, 0.97% and 0.25%, 
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respectively. It indicates that FM-Unet achieves better results than other models on ISIC 2018 dataset 
and achieves state-of-the-art. 

c) Results on Structured Analysis of the Retina (STARE) dataset 
Table 2 also shows the experimental results of several advanced segmentation networks on the 

STARE segmentation dataset. The experimental results show that FM-Unet obtained IOU the highest 
IOU and F1-score with 66.13% and 79.47%, respectively. Compared with the results of the other seven 
models, IOU coefficients of FM-Unet improved by 2.41%, 1.51%, 1.71%, 2.61%, 0.69%, 1.63% 
and 1.86%, respectively, F1-score improved by 1.68%, 1.01%, 0.64%, 1.94%, 0.41%, 1.09% and 1.26%, 
respectively. It indicates that FM-Unet achieves better results than other models on STARE dataset and 
achieves state-of-the-art. 

Table 2. Segmentation accuracy of different methods on the BUSI dataset, ISIC (2018) 
and STARE dataset.  

Networks 
BUSI ISIC 2018 STARE 

IOU (%) F1-score (%) IOU (%) F1-score (%) IOU (%) F1-score (%)

Unet 62.05 76.02 72.69 83.72 63.72 77.79 

Unet++ 62.72 76.43 74.24 84.76 64.62 78.46 

Res-Unet 64.82 77.47 73.16 84.07 64.42 78.83 

Att-Unet 65.25 77.50 75.10 85.38 63.52 77.53 

Trans-Unet 66.92 79.30 80.51 88.91 65.44 79.06 

MedFormer 61.26 74.48 81.14 88.98 64.50 78.38 

UNeXt 66.95 79.37 81.70 89.70 64.27 78.21 

FM-Unet 70.21 80.53 82.14 89.95 66.13 79.47 

4.3.4. Qualitative comparative analysis 

Quantitative evaluation to show performance differences may not be sufficient to fully understand 
the advantages of the proposed model. As shown in the evaluation index results in Table 2, FM-Unet 
achieves the best results, but visual observation is required to determine whether the proposed model 
works as expected. To this end, in Figure 5, we also give some visual comparison examples of the 
segmentation in BUSI dataset, ISIC 2018 dataset and STARE dataset. 

FM-Unet employs a feedback mechanism and achieves better results than other state-of-the-art 
segmentation networks. These visual segmentation results show that FM-Unet can recover finer 
segmentation details successfully, and unexpected segmentation results are less likely to occur for 
complex backgrounds. 
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) 

Figure 5. Qualitative comparisons. Row 1-ISIC dataset, Row 2-BUSI dataset, Row 3-
STARE dataset. (a) Input, (b) Ground Truth, (c) Unet, (d) UNet++, IRes-Unet, (f) Att-Unet, 
(g) Trans-UNet, (h) MedFormer, (i) UNeXt and (j) FM-Unet. 

5. Conclusions 

In this paper, we introduce a novel feedback encoder-decoder depth convolution network 
architecture based on the U-shaped structure for medical image segmentation. The core idea is to add 
an encoder feedback path and a decoder feedback path to the basic Unet framework. The proposed 
feedback path focuses on the information loss of up-sampling and down-sampling, which is well 
integrated with contextual information. And FM-Unet is efficiently modeled with less complexity and 
parameters in improved Unet-based networks. Experimental results show that our proposed 
architecture outperforms the state-of-the-art baselines on various benchmarks. In addition, our network 
achieves very excellent segmentation results in complex backgrounds. Our work has some limitations. 
We have developed FM-Unet, a network that relies entirely on convolutional operations. However, the 
localization and weight sharing of the receiver domain in convolutional operations make it difficult for 
our network to learn global information. For our future work, we plan to enhance the feedback 
mechanism’s information extraction mechanism so that the feedback module can have a global sensory 
field. Additionally, we aim to explore a more effective information fusion architecture between the 
primary and feedback paths.  
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