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Abstract: A mathematical model is developed for describing malaria transmission in a population
consisting of infants and adults and in which there are users of counterfeit antimalarial drugs. Three
distinct control mechanisms, namely, effective malarial drugs for treatment and insecticide-treated
bednets (ITNs) and indoor residual spraying (IRS) for prevention, are incorporated in the model
which is then analyzed to gain an understanding of the disease dynamics in the population and to
identify the optimal control strategy. We show that the basic reproduction number, R0, is a decreasing
function of all three controls and that a locally asymptotically stable disease-free equilibrium exists
when R0 < 1. Moreover, under certain circumstances, the model exhibits backward bifurcation. The
results we establish support a multi-control strategy in which either a combination of ITNs, IRS and
highly effective drugs or a combination of IRS and highly effective drugs is used as the optimal strategy
for controlling and eliminating malaria. In addition, our analysis indicates that the control strategies
primarily benefit the infant population and further reveals that a high use of counterfeit drugs and low
recrudescence can compromise the optimal strategy.

Keywords: malaria; structured population; reproduction numbers; backward bifurcation; optimal
control; counterfeit drugs

1. Introduction

Malaria, although preventable and treatable, continues to be one of the most prevalent and lethal
human infections worldwide [1]. Globally, 627,000 deaths were recorded in 2020, with Sub-Saharan
Africa accounting for almost 96% of them [2]. Children under 5 years become the most vulnerable
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to infection and death after losing their maternal antibodies, which protect them during their first six
months [3, 4].

A massive deployment of effective prevention and treatment tools by the World Health Organization
(WHO) in 2000 has led to a reduction of cases in the Americas and the Western Pacific Region, no
indigenous cases in the European Region, a decline of 66% in all age mortality rates in Africa and 663
million cases being averted in Sub-Saharan Africa from 2001 to 2015 [5, 6]. During this period, it
is estimated that Sub-Saharan Africa saved US$900 million in case management costs. In 2019, the
governments of the endemic countries and their international partners invested funding estimated at
US$ 3.0 billion for malaria control and elimination [2].

Early treatment of infected humans with effective antimalarial drugs gives complete recovery and
prevents the transmission of infection to mosquitoes during a blood meal, recrudescence, severe
malaria and even death [7]. Recrudescence is common in Plasmodium falciparum infection and may
occur when parasites, which remain in the red blood cells after an episode of malaria, start
multiplying and cause the recurrence of the clinical symptoms due to treatment failure in the
patient [8]. P. falciparum is the most deadly species of malaria parasite globally and the most
prevalent in Africa. In most Sub-Saharan countries, after P. falciparum resistance was identified, the
treatment for uncomplicated malaria was changed to artemisinin-based combination therapy
(ACT) [7, 9]. WHO recommends that an entire course of highly effective ACT must be used by both
semi-immune and non-immune malaria patients to have a complete cure from both sexual and asexual
forms of the parasites and partial immunity [5, 7].

The availability, distribution, trade and use of monotherapies and other substandard antimalarial
drugs continue throughout most malaria-endemic countries [10–16]. It is estimated that about a third
of antimalarial drugs that end up in Africa are counterfeit [13, 15]. These antimalarial drugs may
contain too few or too many required active ingredients and may fail to be adequately absorbed by
the body [17]. Recently, evidence has shown that counterfeit antimalarial drugs pose a public health
threat of prolonging the illness, incomplete recovery, treatment failure, recrudescence, severe disease,
spreading drug resistance and asymptomatic infection carriers, resulting in more than 122,000 deaths
of African children under five years annually [7, 12, 15, 17, 18]. According to [4, 13], the use of these
drugs may jeopardize the success made so far in controlling and eliminating malaria, particularly in
Sub-Saharan Africa.

Several mathematical models have considered the effects of effective treatment [19–23], recovery
or immunity [19, 24–28], reinfection [27, 29, 30] and age-structure [21, 22, 31, 32] on the dynamics
of malaria. In particular, [19, 24–28, 33] incorporated into their models recovered or semi-immune
humans, who are reservoirs of infection to mosquitoes. In addition, [27] assumed that the recovered
humans could relapse. Evidence has shown that in most malaria-endemic areas in Sub-Saharan
Africa, symptomatic humans often use counterfeit and effective drugs for treatment [4, 9, 11–16]. The
aforementioned models did not consider the effect of both effective and counterfeit antimalarial drugs
on the dynamics of malaria.

Many studies have also been carried out to examine the impact of control strategies on the
transmission of malaria infection. The potential impact of personal protection, treatment and possible
vaccination on the transmission dynamics of malaria was theoretically assessed in [20]. The optimal
control theory has been successfully used in decisions concerning the cost minimization of several
control intervention models after implementing Pontryagin’s maximum principle [34]. The studies
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[23, 24, 35–38] applied optimal control theory to determine the impact of control strategies on the
transmission dynamics of malaria. The studies investigated optimal strategies for controlling the
spread of malaria disease using treatment, treated bednets and spraying of mosquito insecticide in
models with mass action [24], standard [23, 37] or non-linear [36] incidence rates and
cost-effectiveness [23] of the controls. Other studies [38] used optimal control problem strategies to
study how genetically modified mosquitoes should be introduced into the environment. The
aforementioned studies did not consider optimal control in age-structured models, especially where
the treatment can be either effective or ineffective due to using effective or counterfeit antimalarial
drugs. Optimal control has, however, been applied to an age-structured model for HIV [39].

This paper seeks to answer the following question: What optimal control strategy best eliminates
P. falciparum malaria infection in an age-structured population where counterfeit drug use persists?
We do this by developing a deterministic model for malaria transmission incorporating the infant and
adult populations, counterfeit drug use and three of the malaria control measures adopted by most
endemic countries in Sub-Saharan Africa [4, 40], namely, use of highly effective antimalarial drugs
(HEAs), insecticide-treated bednets (ITNs) and indoor residual spraying (IRS). The paper is
organized as follows. Section 2 briefly describes the formulation of the model and its basic properties.
In Section 3, the dynamics of the model is presented. The analysis of the reproduction number is done
in Section 4. In Section 5, the analysis of the optimal control problem is undertaken to find the
conditions for optimal malaria control using Pontryagin’s maximum principle, and the numerical
simulations of the model are illustrated. The discussion of results and conclusion are presented in
Sections 6 and 7, respectively.

2. Model formulation

The transmission model for malaria in human and female anopheles mosquito populations is
formulated with the total population sizes at time t given by Nh(t) and Nm(t), respectively. The human
population is divided into two mutually exclusive age subgroups: infants aged 0–5 years and adults
above five. Each age subgroup is divided into susceptible, infectious, counterfeit antimalarial drug
users and effective antimalarial drug users epidemiological classes. The mosquito population is
divided into susceptible and infectious epidemiological classes. Figure 1 shows the flows between the
classes. We let S A(S B), IA(IB), UA(UB) and TA(TB) represent infants (adults) who are susceptible,
infectious, counterfeit drug users and effective drug users, respectively. For the mosquito population,
S m and Im denote the susceptibles and infectives, respectively. The total human population Nh(t) at a
time t is given by

Nh(t) = NA(t) + NB(t) = S A(t) + IA(t) + UA(t) + TA(t) + S B(t) + IB(t) + UB(t) + TB(t).

The total mosquito population Nm(t) at a given time t is given by Nm(t) = S m(t) + Im(t).
Susceptible humans are those with no merozoites or gametocytes in their bodies. Infectious

humans show clinical symptoms of malaria and can infect feeding mosquitoes. Users of effective
antimalarial drugs recover from malaria either naturally or due to using an effective antimalarial drug.
These humans have partial immunity and become susceptible when this immunity wanes. Counterfeit
drug users are humans who are removed from the infectious class due to using counterfeit drugs to
treat malaria. They are asymptomatic, can infect mosquitoes (at a lower rate compared to the
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infectious humans) and can recrudesce into the infectious class. Adult counterfeit drug users can
become susceptible due to the high level of acquired immunity resulting from their repeated
exposures to malaria [3]. The susceptible mosquitoes have no sporozoites in their body. Infective
mosquitoes can infect humans during a blood meal. It is assumed that the infective stage of the
mosquitoes ends with their death due to their short life cycle. Merozoites are the parasites released
into the human bloodstream when a hepatic or erythrocytic schizont bursts, and gametocytes are the
sexual stages of malaria parasites that infect anopheline mosquitoes when taken up during a blood
meal. On the other hand, sporozoites are the motile malaria parasites inoculated by feeding female
anopheline mosquitoes to invade the human hepatocytes [7].

The susceptible infants class, S A, is generated by the recruitment of newborns at a birth rate αh

and the loss of post-treatment prophylaxis by effectively treated infants at a per capita rate ϕA. This
class is decreased when infants in it die naturally, mature into susceptible adults or get infected, at a
per capita natural death rate µh, per capita rate τ of maturing and per capita infection rate of infants
(1 − u1)ρnλA, respectively. The control u1 represents the effort of preventing malaria with insecticide-
treated bednets (ITNs), so (1 − u1) describes the failure probability of this prevention effort. The daily
survival probability of a human is assumed to be ρ1 = e−µh . The probability of survival of a human
over the average latent period of length nh to be infectious is given by ρn = e−µhnh . λA is the force of
infection in infants.

Figure 1. Schematic diagram of malaria transmission: (A) infants – humans five years old
and younger, (B) adults – humans older than 5 years and (C) female Anopheles mosquitoes.
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The infectious infants class, IA, is generated by the per capita rate of acquiring infection (1−u1)ρnλA

and per capita recrudescence rate, ξA, of infants who used counterfeit drugs. This class is reduced by
the per capita natural death rate µh, per capita disease-induced death rate δA, per capita removal rate
due to the use of counterfeit drugs ηA, per capita recovery rate due to the use of a highly effective
antimalarial and natural recovery u2γA + γ1, and per capita rate of maturing into infectious adults
τ of infants in it. The control u2 represents the treatment efforts with highly effective antimalarials
and involves diagnosing patients, administering drug intake and follow-up of drug management. The
recovery rate in infants due to using a highly effective antimalarial drug is γA, and γ1 is the natural
recovery rate in infants.

The infant class of counterfeit drug users, UA, increases at a per capita removal rate ηA of infectious
infants due to counterfeit drug use and decreases at a per capita recrudescence rate ξA into infectious
infants, per capita natural death rate µh and per capita rate of maturing into adults τ of infants who used
counterfeit malaria drugs.

The infant class of effective drug users, TA, increases with the per capita recovery rate u2γA + γ1 of
infectious infants. This class decreases due to the loss of post-treatment prophylaxis at a per capita rate
ϕA, natural death at a per capita natural death rate µh and maturing into adults at a per capita rate τ of
infants in it.

The susceptible adults class, S B, is generated when the susceptible infants mature above 5 years,
recovered adults lose their partial immunity and post-treatment prophylaxis at a per capita rate ϕB, and
counterfeit drug users become susceptible at a per capita rate θ. This class is decreased by natural
death and infections, with, respectively, per capita natural death rate µh and per capita rate of acquiring
infection from infectious mosquitoes (1 − u1)ρnλB, where λB is the force of infection in adults.

The infectious adults class, IB, increases when infectious infants mature above 5 years, and adults
recrudesce at per capita rate ξB and acquire infection at rate (1 − u1)ρnλB. The class is reduced at per
capita natural death rate µh, per capita disease-induced death rate δB, per capita removal rate ηB due
to counterfeit drugs use and recovery at per capita rate u2γB + γ2 of adults in it. The recovery rate of
adults due to using an effective malarial drug is γB, and γ2 is the natural recovery rate of adults.

The adult class of counterfeit drug users, UB, increases when infants who used counterfeit drugs
mature above 5 years and when the infectious adults who used counterfeit drugs are removed at a per
capita rate ηB. This class decreases by natural death, recrudescence and reverting to the susceptible
class of adults in it, with, respectively, per capita natural death rate µh, recrudescence rate ξB and
susceptibility of adults θ.

The adult class of effective drug users, TB, increases when infants in the infant class of effective
drug users mature above 5 years and when the infectious adults recover at a per capita rate u2γB + γ2.
This class decreases by natural death, loss of immunity and post-treatment prophylaxis of adults with,
respectively, per capita natural death rate µh and per capita loss of partial immunity and post-treatment
prophylaxis rate ϕB.

Susceptible female Anopheles mosquitoes are recruited at a per capita rate αm(1 − Nm
K ), where αm is

the birth rate of mosquitoes, and K is the environmental carrying capacity of pupa [41]. They die at a
per capita natural death rate µm and a per capita indoor residual spraying (IRS) induced death rate φu3.
The control u3 represents the prevention effort with the IRS and includes spraying with insecticide and
surveillance. φ is the proportion of mortality induced by IRS. We assume that the mosquito population
does not go extinct, and hence rm=αm − µm − φu3 > 0. Most of the analysis is redundant if rm < 0.
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The mosquitoes become infected by humans in the infectious and counterfeit drug users class at a rate
(1 − u1)ρmλm, where λm is the force of infection rate in mosquitoes. The daily survival probability of a
mosquito is assumed to be ρ2 = e−µm . The probability of survival of a mosquito over the average latent
period of length nm and becoming infectious is given by ρm = e−µmnm .

The infective mosquito population increases when mosquitoes acquire infection from humans at
a per capita rate (1 − u1)ρmλm. It decreases with a per capita natural death rate µm and a per capita
IRS-induced death rate φu3.

Differences have been observed in malaria transmission rates, degree of infectivity, recovery and
immunity due to strains, exposure, locality, age and treatment [3, 4, 7, 42, 43]. In humans, the
gametocyte rate and density [42], as well as the parasite rate [42, 44], have been found to decrease
with age. Thus, we assume that infants have higher infectiousness to mosquitoes than adults. The
degree of infectivity in the human population is denoted by the parameter πi, i = 1, 2, 3, where π1, π2

and π3 are associated, respectively, with IB,UA and UB such that 0 < π3 < π2 < π1 < 1. Further, the
transmission probabilities in infants, adults and mosquitoes are denoted by βA, βB and βm,
respectively. The average numbers of mosquito bites per infant and adult per time unit are denoted by
a and b, respectively, and c is the average number of bites given by a mosquito per time unit.

Usually, the recruitment of children is dependent on the adult population. At the same time, the
children mature and move to the adult population. If the population of adults is much larger than that
of children, we can assume that it is constant and not affected by the latter. In this case, the total birth
rate αh is just the per capita birth rate in the adult population αB multiplied by NB, αh = αBNB.

The above formulations and assumptions give the following system of ordinary differential
equations for the structured malaria model:

dS A

dt
= αh + ϕATA − (e−µhnh(1 − u1)λA + τ + µh)S A, (2.1)

dS B

dt
= τS A + ϕBTB + θUB − (e−µhnh(1 − u1)λB + µh)S B, (2.2)

dIA

dt
= e−µhnh(1 − u1)λAS A + ξAUA − d1IA, (2.3)

dIB

dt
= τIA + e−µhnh(1 − u1)λBS B + ξBUB − d2IB, (2.4)

dUA

dt
= ηAIA − d3UA, (2.5)

dUB

dt
= τUA + ηBIB − d4UB, (2.6)

dTA

dt
= (u2γA + γ1)IA − (ϕA + τ + µh)TA, (2.7)

dTB

dt
= τTA + (u2γB + γ2)IB − (ϕB + µh)TB, (2.8)

dS m

dt
= αm

(
1 −

Nm

K

)
Nm − (e−µmnm(1 − u1)λm + µm + φu3)S m, (2.9)

dIm

dt
= e−µmnm(1 − u1)λmS m − (µm + φu3)Im, (2.10)
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with initial conditions

S A(0) > 0, S B(0) > 0, IA(0) ≥ 0, IB(0) ≥ 0,UA(0) ≥ 0,UB(0) ≥ 0,TA(0) ≥ 0,TB(0) ≥ 0, S m(0) > 0, Im(0) ≥ 0,

where

λA =
aβA

Nh
Im, λB =

bβB

Nh
Im, λm =

cβm

Nh
(IA + π1IB + π2UA + π3UB),

d1 = δA + ηA + u2γA + γ1 + τ + µh, d2 = δB + ηB + u2γB + γ2 + µh,

d3 = ξA + τ + µh and d4 = ξB + θ + µh.

The parameter values of the malaria control model are shown in Table 1 in Section 5. The
age-structured models (2.1)–(2.10) is an extension of the malaria model developed in [45], by
including differentiated susceptibility, infectivity and infectiousness of infant and adult populations
and control measures to malaria.

2.1. Basic properties of the structured model

The first step in showing that the malaria models (2.1)–(2.10) makes sense epidemiologically is to
prove that the populations remain non-negative, that is, that all solutions of systems (2.1)–(2.10) with
positive initial conditions will remain positive for all times t > 0. We define a feasible region Ω, such
that

Ω =

{
(S A, S B, IA, IB,UA,UB,TA,TB, S m, Im) ∈ ℜ10

+ :

0 < Nh ≤
αh

µh
; 0 < Nm ≤

rmK
αm

}
. (2.11)

Theorem 2.1. The feasible region Ω is positively invariant and attracting.

Proof. The right-hand side of models (2.1)–(2.10) is continuous with continuous partial derivatives
in Ω. Since S A(0) > 0, S B(0) > 0, the Picard theorem gives the existence of solutions at least on
some (maximum) interval [0, ω). It can be seen that S

′

A ≥ 0 if S A = 0, S
′

B ≥ 0 if S B = 0, I
′

A ≥ 0
if IA = 0, I

′

B ≥ 0 if IB = 0, U
′

A ≥ 0 if UA = 0, U
′

B ≥ 0 if UB = 0, T
′

A ≥ 0 if TA = 0, T
′

B ≥ 0 if
TB = 0, S

′

m ≥ 0 if S m = 0, and I
′

m ≥ 0 if Im = 0. Therefore, given the initial condition, the solutions
(S A, S B, IA, IB,UA,UB,TA,TB, S m, Im) are nonnegative on [0, ω). We let 0 < δh = min{δA, δB}. Adding
the first eight and last two equations of (2.1)–(2.10) gives, respectively,

dNh

dt
= αh − µhNh − δAIA − δBIB ≤ αh − µhNh, (2.12)

that is,

αh − (µh + δh)Nh ≤
dNh

dt
≤ αh − µhNh, (2.13)

and

dNm

dt
= (αm − µm − φu3)Nm −

αm

K
N2

m = rmNm −
αm

K
N2

m. (2.14)

Mathematical Biosciences and Engineering Volume 20, Issue 7, 11895–11938.



11902

Solving the inequality (2.13) and Eq (2.14) gives

Nh(0)e−(µh+δh)t +
αh

(µh + δh)
(1 − e−(µh+δh)t) ≤ Nh(t) ≤

αh

µh
+

(
Nh(0) −

αh

µh

)
e−(µh+δh)t,

and

Nm(t) =
rmKNm(0)

αmNm(0) + [rmK − αmNm(0)]e−rmt . (2.15)

Thus, we see that if Nh(0) > 0 and Nm(0) > 0, then neither Nh nor Nm can become 0 at any finite
time (in particular, on [0, ω)). Then, for 0 < Nh(0) ≤ αh

µh
and 0 < Nm(0) ≤ rmK

αm
, we see that on [0, ω),

0 < Nh(t) ≤
αh

µh
, 0 < Nm(t) ≤

rmK
αm
,

and thus, by the nonnegativity, the solution (S A,S B,IA,IB,UA,UB,TA,TB,S m,Im) is a priori bounded, and
hence it is defined for all t ≥ 0 and stays in Ω. Thus, the region is positively invariant. Further, if
Nh(0) > αh

µh
or Nm(0) > rmK

αm
, then they are also isolated from zero, and lim supt→∞ Nh(t) ≤ αh

µh
,

limt→∞ Nm(t) = rmK
αm

. Hence, Nh(t) either becomes smaller than αh
µh

or approaches αh
µh

, while Nm(t)
converges to rmK

αm
. Therefore, the region attracts the solutions in ℜ10

+ with Nh(0) > αh
µh

and
Nm(0) > rmK

αm
. □

Since the region Ω is positively invariant and attracting, it is sufficient to consider the dynamics of
the flow generated by the model in Ω.

3. Model dynamics

3.1. Disease-free equilibrium

The disease-free equilibrium (DFE) of the models (2.1)–(2.10) is given by

E0 = (S ∗A, S
∗
B, I
∗
A, I
∗
B,U

∗
A,U

∗
B,T

∗
A,T

∗
B, S

∗
m, I

∗
m) =

(
αh

τ + µh
,
ταh

µh(τ + µh)
, 0, 0, 0, 0, 0, 0,

rmK
αm
, 0
)
. (3.1)

The local stability of E0 is established by applying the next generation matrix method [46] to (2.1)–
(2.10). It follows that the basic reproduction number, R0, of the age-structured malaria systems (2.1)–
(2.10) is given by R0 = ρ(FV−1) where ρ represents the spectral radius. The associated matrices F, V
and FV−1 are given in Appendix A.1. This way, we obtain

R0 =
√

RA + RB, (3.2)

where

RA =
ac(1 − u1)2e−µhnhe−µmnmβAβmµ

2
hrmK(d3 + π2ηA)

αhαm(µm + φu3)(τ + µh)(d1d3 − ηAξA)

+
ac(1 − u1)2e−µhnhe−µmnmβAβmτµ

2
hrmK[π1(d3d4 + ηAξB) + π3(ηBd3 + ηAd2)]

αhαm(µm + φu3)(τ + µh)(d1d3 − ηAξA)(d2d4 − ηBξB)
(3.3)

Mathematical Biosciences and Engineering Volume 20, Issue 7, 11895–11938.



11903

and

RB =
bc(1 − u1)2e−µhnhe−µmnmβBβmτµhrmK(π1d4 + π3ηB)

αhαm(µm + φu3)(τ + µh)(d2d4 − ηBξB)
. (3.4)

We note that d1d3 − ηAξA > 0 and d2d4 − ηBξB > 0.
The result below follows from Theorem 2 of [46].

Lemma 1. The DFE, E0, of (2.1)–(2.10) is locally asymptotically stable if R0 < 1 and unstable if
R0 > 1.

3.2. Existence of endemic equilibrium

The conditions for the existence of an endemic equilibrium Ee for the model (2.1)-(2.10) are
established in this section. Here, Ee = (S ∗∗A , S

∗∗
B , I

∗∗
A , I

∗∗
B ,U

∗∗
A ,U

∗∗
B ,T

∗∗
A ,T

∗∗
B , S

∗∗
m , I

∗∗
m ), and the forces of

infection λ∗A, λ
∗
B and λ∗A are non-zero. Expressing S ∗∗A , S ∗∗B , I∗∗A , I∗∗B , U∗∗A , U∗∗B , T ∗∗A , T ∗∗B , S ∗∗m , I∗∗m , λ∗m and

λ∗B in terms of λ∗A, we get

S ∗∗A =
C7

D1λ
∗
A + B1J1J2

, I∗∗A =
C6λ

∗
A

D1λ
∗
A + B1J1J2

, U∗∗A =
ηAC6λ

∗
A

d3(D1λ
∗
A + B1J1J2)

,

T ∗∗A =
(u2γA + γ1)C6λ

∗
A

J2(D1λ
∗
A + B1J1J2)

, S ∗∗B =
K3λ

∗
A

3 + K2λ
∗
A

2 + K1λ
∗
A + K0

K4λ
∗
A

4 + K5λ
∗
A

3 + K6λ
∗
A

2 + K7λ
∗
A + K8

,

I∗∗B =
C1λ

∗
A

2 +C2λ
∗
A

C3λ
∗
A

2 +C4λ
∗
A +C5

, U∗∗B =
L1λ

∗
A

3 + L2λ
∗
A

2 + L3λ
∗
A

d3d4(E4λ
∗
A

3 + E5λ
∗
A

2 + E6λ
∗
A + E7)

,

T ∗∗B =
L4λ

∗
A

3 + L5λ
∗
A

2 + L6λ
∗
A

J2J3(E4λ
∗
A

3 + E5λ
∗
A

2 + E6λ
∗
A + E7)

, λ∗B = σλ
∗
A,

S ∗∗m =
Kmd3d4E8λ

∗
A

3 + E9λ
∗
A

2 + E10λ
∗
A + αhE7

F4λ
∗
A

3 + F5λ
∗
A

2 + F6λ
∗
A + F7

,

I∗∗m =
F1λ

∗
A

3 + F2λ
∗
A

2 + F3λ
∗
A

(µm + φu3)(F4λ
∗
A

3 + F5λ
∗
A

2 + F6λ
∗
A + F7)

,

λ∗m =
µhβm(E1λ

∗
A

3 + E2λ
∗
A

2 + E3λ
∗
A)

d3d4(E8λ
∗
A

3 + E9λ
∗
A

2 + E10λ
∗
A + αhE7)

,

where σ; B1; Ci and Fi, i = 1, 2, 3, 4, 5, 6, 7; Di, i = 1, 2, 3, 4, 5; Ei, i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;
Gi, i = 1, 2, 3; Ji, i = 1, 2, 3; Ki, i = 0, 1, 2, 3, 4, 5, 6, 7, 8; Li, i = 1, 2, 3, 4, 5, 6 are shown in Appendices
A.2 and A.3.

Substituting I∗∗m , I
∗∗
A and I∗∗B into the expression for λ∗A, we obtain the following equation for λ∗A:

f (λ∗A) = P6λ
∗
A

6
+ P5λ

∗
A

5
+ P4λ

∗
A

4
+ P3λ

∗
A

3
+ P2λ

∗
A

2
+ P1λ

∗
A + P0 = 0, (3.5)

where Pi, i = 0, 1, 2, 3, 4, 5, 6, are given in Appendix A.3.
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Lemma 2. The malaria models (2.1)–(2.10) has at least one endemic equilibrium, Ee, when R0 > 1.

Proof. From Eq (3.5) we see that f (λ∗A) is continuous on [0,∞). We have that limλ∗A→∞ f (λ∗A) = ∞
(since P6 > 0) and f (0) = P0 < 0, when R0 > 1. This implies that (3.5) admits at least one positive
solution λ∗A > 0. □

Lemma 2 ensures that there exists at least one endemic equilibrium provided R0 > 1. There is also
the possibility of multiple endemic equilibria when R0 > 1 or R0 < 1, as f (λ∗A) is a sextic polynomial.
The maximum number of positive roots of Eq (3.5) can be identified using Descartes’s rules of signs.
It can be determined that when R0 > 1, f (λ∗A) will have one, three or five positive roots. On the
other hand, when R0 < 1, there will be zero, two, four or six positive roots. The possibility of the
existence of multiple endemic equilibria when R0 < 1 suggests that a backward bifurcation may occur
[29, 30, 36, 45].

3.3. Backward bifurcation

We explore the possibility and establish the conditions that ensure the existence of backward
bifurcation in the systems (2.1)–(2.10) using the center manifold theory (Theorem 4.1, [47]). To do
so, we introduce new variables and consider βm as a bifurcation parameter with βm = β∗m
corresponding to R0 = 1.

Let x1 = S A, x2 = S A, x3 = IA, x4 = IB, x5 = UA, x6 = UB, x7 = TA, x8 = TB, x9 = S m, x10 = Im so that
Nh = x1+ x2+ x3+ x4+ x5+ x6+ x7+ x8 and Nm = x9+ x10. Let X = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)T

and dX
dt = ( f1, f2, f3, f4, f5, f6, f7, f8, f9, f10)T so that (2.1)–(2.10) can be written in the form

dx1

dt
= f1 = αh + ϕAx7 −

[a(1 − u1)e−µhnhβAx10∑8
i=1 xi

+ τ + µh

]
x1, (3.6)

dx2

dt
= f2 = τx1 + ϕBx8 + θx6 −

[b(1 − u1)e−µhnhβBx10∑8
i=1 xi

+ µh

]
x2, (3.7)

dx3

dt
= f3 =

a(1 − u1)e−µhnhβAx10∑8
i=1 xi

x1 + ξAx5 − d1x3, (3.8)

dx4

dt
= f4 = τx3 +

b(1 − u1)e−µhnhβBx10∑8
i=1 xi

x2 + ξBx6 − d2x4, (3.9)

dx5

dt
= f5 = ηAx3 − d3x5, (3.10)

dx6

dt
= f6 = τx5 + ηBx4 − d4x6, (3.11)

dx7

dt
= f7 = (u2γA + γ1)x3 − (ϕA + τ + µh)x7, (3.12)

dx8

dt
= f8 = τx7 + (u2γB + γ2)x4 − (ϕB + µh)x8, (3.13)

dx9

dt
= f9 = αm

(
1 −

(x9 + x10)
K

)
(x9 + x10) − H2x9, (3.14)

dx10

dt
= f10 = (1 − u1)e−µmnm H1x9 − (µm + φu3)x10, (3.15)

with H1 =
cβm(x3+π1 x4+π2 x5+π3 x6)∑8

i=1 xi
and H2 = (1 − u1)e−µmnm H1 + µm + φu3.
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The bifurcation parameter β∗ for which R0 = 1 is given by

β∗m =
αhαm(µm + φu3)(τ + µh)(d1d3 − ηAξA)(d2d4 − ηBξB)

c(1 − u1)2e−µhnhe−µmnmµhrmK(H3 + H4)
,

where H3 = aβAµh[(d2d4 − ηBξB)(d3 + π2ηA) + τ(π1(d3d4 + ηAξB) + π3(ηBd3 + ηAd2))],
and H4 = bβBτ(d1d3 − ηAξA)(π1d4 + π3ηB).

The Jacobian matrix, JE0 , of the transformed systems (2.1)–(2.10) evaluated at the DFE, E0, with
βm = β

∗
m, is given in Appendix A.2, where, in addition, explicit expressions are provided for the right

and left eigenvectors, w = (w1,w2,w3,w4,w5,w6,w7,w8,w9,w10)T and
v = (v1, v2, v3, v4, v5, v6, v7, v8, v9, v10), respectively, corresponding to the zero eigenvalue of JE0 . The
associated non-zero partial derivatives of f evaluated at the DFE are also listed in Appendix A.2.

Using the approach in [47], we have the expressions for a1 and b1 as

a1 =

10∑
k,i, j=1

vkwiw j
∂2 fk

∂xi∂x j
(E0) =

2mβ∗mµh

αh
v10g1

[
−

rmKµh

αhαm
g2 + w9

]
(3.16)

and

b1 =

10∑
k,i=1

vkwi
∂2 fk

∂xi∂β∗m
(E0) =

mrmKµh

αhαm
v10g1, (3.17)

where

w1 < 0,w2 < 0,w9 < 0, w3 > 0,w4 > 0,w5 > 0,w6 > 0,w7 > 0,w8 > 0, v10 > 0,

and

g1 = w3 + π1w4 + π2w5 + π3w6 > 0, g2 =

8∑
i=1

wi,

with g2 < 0 if w1 + w2 > w3 + w4 + w5 + w6 + w7 + w8 or g2 ≥ 0 otherwise.
Clearly, b1 > 0, and hence it follows from (Theorem 4.1, [47]) that the direction of the bifurcation

of the transformed systems (3.6)–(3.15) at R0 = 1 is determined by the sign of a1 : if a1 > 0, then it
will be backward, and if a1 < 0, then it will be forward.

To determine the sign of a1, we expand the terms in parentheses in (3.16) and obtain

a1 =
rmKµh(w1 + w2) − (rmKµh(w3 + w4 + w5 + w6 + w7 + w8) + αhαmw9)

αhαm
. (3.18)

We note that a1 > 0 if

αh < α
∗
h =

rmKµh(w1 + w2 − w3 − w4 − w5 − w6 − w7 − w8)
αmw9

. (3.19)

The above result is summarized below.

Theorem 3.1. The models (2.1)–(2.10) exhibits backward bifurcation at R0 = 1 when (3.19) holds.
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Remark 1. We note that in this particular case, the existence of backward bifurcation can be proved
in a more elementary way. Consider again

f (λ∗A, βm) := P6λ
∗6
A + P5λ

∗5
A + P4λ

∗4
A + P3λ

∗3
A + P2λ

∗2
A + P1λ

∗
A + P0. (3.20)

We considered a bifurcation parameter βm, such that R0 and all coefficients Pi can be expressed as
functions of this parameter. In particular, we defined β∗m by R0(β∗m) = 1. Here, P0(βm) = KhE7F7(1 −
R2

0(βm)) (KhE7F7 are independent of βm) and P1 = F7(KhE6 −G3) + KhE7F6 − uaβA(E7F2 + E6F3).We
see that the equation

f (λ∗A, β
∗
m) = 0

has an isolated single root λ∗A = λA(β∗m) = 0 as soon P1(β∗m) , 0. Using the implicit function theorem,
for βm close to β∗m (that is, R0 close to 1), there are differentiable solutions λA(βm), satisfying

f (λA(βm), βm) ≡ 0. (3.21)

Indeed,

∂ f (λ∗A, β
∗
m)

∂λ∗A

∣∣∣∣∣∣
λ∗A=0,βm=β

∗
m

= P1(β∗m) , 0.

Differentiating (3.21) with respect to βm, we obtain

∂ f (λ∗A, βm)
∂λ∗A

dλA(βm)
dβm

∣∣∣∣∣∣
λ∗A=0,βm=β

∗
m

+
∂ f (λ∗A, βm)
∂βm

∣∣∣∣∣∣
λ∗A=0,βm=β

∗
m

= P1(β∗m)
dλA(βm)

dβm

∣∣∣∣∣
λ∗A=0,βm=β

∗
m

− 2KhE7F7R′0(β∗m) ≡ 0.

Since, by (3.2)–(3.4), R0 is an increasing function of βm, if we assume that P1(β∗m) < 0, then dλA
dβm

(β∗m) < 0,
that is, βm 7→ λA(βm) is decreasing (in some neighborhood of βm = β

∗
m). Since λA(β∗m) = 0, we see that

λA(βm) > 0 whenever βm < β
∗
m is sufficiently close to β∗m, that is, whenever R0 < 1 is sufficiently close

to 1. For such βm < β
∗
m we have f (0, βm) > 0, f (λA(βm), βm) = 0, and, from the above, we see that

∂ f (λ∗A,βm)
∂λ∗A

∣∣∣∣
λ∗A=λA(βm)

< 0. Therefore, f (λ∗A, βm) < 0 for some λ∗A > λA(βm). Since lim
λ∗A→∞

f (λ∗A, βm) = ∞, it

follows that there is another positive solution to f (λ∗A, βm) = 0, and consequently, we have backward
bifurcation.
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Figure 2. An illustration of the behavior of the function f when P0 = 0 (R0 = 1) (solid line)
and P0 = 0.2 (R0 < 1) (dashed line). We see the emergence of a new positive solution, giving
rise to at least two endemic equilibria for R0 < 1 and hence to backward bifurcation.

Previous malaria studies [29, 30, 45] have shown the existence of backward bifurcation, with some
attributing this to the use of the standard incidence function instead of mass action, and also to partial
immunity, repeated infection and a high disease death rate. Our result in Theorem 3.1 indicates that
increasing the birth rate of the population above the threshold (α∗h) can remove the backward
bifurcation.

4. Analysis of the reproduction number

The formula for R0 in (3.2)–(3.4) can also be expressed in the form (4.1) given below to provide
some insight into the adult, infant and mosquito malaria transmission and control. When a newly
infected mosquito is introduced into a completely susceptible human population, during its average
infectious period, 1

(µm+φu3) , it will infect humans (infants and adults) who are not using ITNs at the rate
(1−u1)aβAS ∗A

N∗h
+

(1−u1)bβBS ∗B
N∗h

. Humans survive the latent period with probability e−µhnh and become infectious.
Thus, the total number of infants and adults who become infectious due to this mosquito during its
entire infectious period is approximately equal to RImh =

e−µhnh (1−u1)(aβAµh+bβBτ)
(µm+φu3)(τ+µh) .

Similarly, for humans, during the average infant’s (adult’s) infectious period, d3
d1d3−ηAξA

(
d4

d2d4−ηBξB

)
, the

infant (adult) will infect mosquitoes at the rate (1−u1)cβmS ∗m
N∗h

(
(1−u1)π1cβmS ∗m

N∗h

)
. The mosquitoes survive the

latent period with probability e−µmnm and become infective, and hence the total number of mosquitoes
who become infective due to this infant (adult) during the infectious period is approximately equal to
RIAm =

e−µmnm (1−u1)cβmd3µhrmK
αhαm(d1d3−ηAξA)

(
RIBm =

e−µmnm (1−u1)cβmπ1d4µhrmK
αhαm(d2d4−ηBξB)

)
.

Additionally, when an infant (adult) who used a counterfeit drug is infectious with a degree π2(π3),
then he/she has a probability ηAd3

d1d3−ηAξA

(
ηBd4

d2d4−ηBξB

)
of surviving the infectious period using the

counterfeit drug, and 1
d3

(
1
d4

)
is the average time of using the drug. This infant (adult) will infect

mosquitoes at the rate (1−u1)π2cβmS ∗m
N∗h

(
(1−u1)π3cβmS ∗m

N∗h

)
. The infected mosquitoes survive the latent period

with probability e−µmnm and then become infective. Hence, the total number of mosquitoes that
become infective due to the infant (adult) counterfeit drug user is approximately equal to
RUAm =

e−µmnm (1−u1)cβmπ2ηAµhrmK
αhαm(d1d3−ηAξA)

(
RUBm =

e−µmnm (1−u1)cβmπ3ηBµhrmK
αhαm(d2d4−ηBξB)

)
.

Mathematical Biosciences and Engineering Volume 20, Issue 7, 11895–11938.



11908

Finally, when an infant who is infectious (or used a counterfeit drug) matures to an adult during
the infectious period, the total number of mosquitoes that become infective due to it is approximately
RIABm =

e−µmnm (1−u1)cβmπ1τµhrmK(d3d4+ηAξB)
αhαm(d1d3−ηAξA)(d2d4−ηBξB)

(
RUABm =

e−µmnm (1−u1)cβmπ3τµhrmK(ηBd3+ηAd2)
αhαm(d1d3−ηAξA)(d2d4−ηBξB)

)
. Therefore,

R2
0 = (RIAm + RIBm + RUAm + RUBm + RIABm + RUABm) × RImh (4.1)

represents the average number of secondary infections in a completely susceptible human population
resulting from introducing one infective human who generates infections in a fully susceptible
mosquito population [25].

4.1. Effects of control strategies on R0

The effective use of the control measures by infants leads to a reduction in R0 since all local
reproduction numbers RIAm , RUAm , RIABm and RUABm will decrease. Similarly, adults using control
measures will reduce R0 because RIBm and RUBm will also decrease. We analyze the impact of
insecticide-treated bednets (ITNs) on R0 when highly effective antimalarial drugs (HEAs) and indoor
residual spraying (IRS) are absent. Let us find the difference between the reproduction number with
no control measure and with only ITNs as control, and the partial derivative with respect to u1 of the
reproduction number when ITNs are used. By (3.2)–(3.4), we obtain

R0|u1=u2=u3=0 − R0|u1,0,u2=u3=0 = u1R0|u1=u2=u3=0, (4.2)

and
∂R0|u1,0,u2=u3=0

∂u1
= −

R0|u1,0,u2=u3=0

(1 − u1)
. (4.3)

We find that R0|u1=u2=u3=0 − R0|u1,0,u2=u3=0 > 0 and
∂R0 |u1,0,u2=u3=0

∂u1
< 0 for all u1 ∈ [0, 1). Hence, if

humans sleep under the ITNs, contact between mosquitoes and humans will become difficult, reducing
transmission to and from mosquitoes and hence R0.

On the other hand, treating infectious humans (infants and adults) will decrease the average length
of the infection period and transmission period, causing decreases in R0 and the disease incidence.
The duration of the infection can be reduced if a highly effective antimalarial drug is used [7, 48] and
also if the recovery rate due to using an effective antimalarial drug is increased [19, 45]. Even though
using counterfeit drugs for treatment reduces disease symptoms and may prevent death, it creates
and increases a reservoir of infection. This is because humans who use such drugs can still transmit
parasites (gametocytes) to feeding mosquitoes and also can recrudesce. Hence, if more humans opt for
counterfeit drugs, then it will be difficult to control malaria transmission. On the other hand, if both
infants and adults use only highly effective antimalarial drugs for the treatment of malaria, then RUAm ,
RUBm and RUABm will equal zero, and R0 will be vastly reduced.

Lastly, the effects of the IRS on R0 are considered. We let RImh denote the local reproduction number
from mosquitoes to humans. Taking the difference between this reproduction number without control
and with the IRS control only, and the partial derivative with respect to u3 of this reproduction number
with the IRS control, yields

RImh |u1=u3=0 − RImh |u1=0,u3,0 =
e−µhnh(aβAµh + bβBτ)

(τ + µh)
φu3

(µm + φu3)µm
(4.4)
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and
∂RImh |u1=0,u3,0

∂u3
= −

e−µhnh(aβAµh + bβBτ)φ
(µm + φu3)2(τ + µh)

. (4.5)

Since RImh |u1=u3=0 − RImh |u1=0,u3,0 > 0 and
∂RImh
∂u3
< 0 for all φ > 0 and u3 > 0, using IRS also reduces R0.

5. Application of optimal control

This section uses control theory to derive optimal prevention and treatment methods to curtail
malaria infection in an endemic area while minimizing the implementation cost. We apply
Pontryagin’s maximum principle to determine the necessary conditions for the optimal control of the
age-structured model. The controls used are based on treatment and preventive tools adopted by most
endemic countries in Sub-Saharan Africa [4, 40].

5.1. Analysis of optimal control

Together with the malaria models (2.1)–(2.10), we consider an optimal control problem with the
objective (cost) functional given by

J(u1, u3, u3) =
∫ t f

0
[z1IA + z2IB + z3UA + z4UB + z5Nm + Y1u1

2 + Y2u2
2 + Y3u3

2]dt, (5.1)

where t f is the final time, and the coefficients z1, z2, z3, z4 and z5 represent, respectively, the positive
weight constants of the infectious infants and adults, infants and adults who used counterfeit drugs,
and the total mosquito population. On the other hand, the coefficients Y1, Y2 and Y3 are positive
constant weights for prevention efforts with insecticide-treated bednets (ITNs), treatment efforts with
highly effective antimalarial drugs (HEAs) and prevention effort with indoor residual spraying (IRS),
respectively, which regularize the optimal control. The terms z1IA, z2IB, z3UA, z4UB and z5Nm are the
costs of infection in infants, adults and in the total mosquito population. It is assumed that the cost
of prevention and treatment, given in the quadratic form in (5.1), that is, Y1u1

2,Y3u3
2 and Y2u2

2, are
the costs of prevention with ITNs, IRS and treatment with HEAs, respectively. The cost of prevention
is associated with the purchase and use of ITNs and IRS. Similarly, the cost of treatment is the cost
associated with the diagnosis or medical examination, HEAs and hospitalization.

Note that for bounded Lebesgue measurable controls and non-negative initial conditions,
non-negative bounded solutions to the state system exist [49]. Our goal is to minimize the number of
infectious humans, counterfeit drug users, the total number of mosquitoes and the cost of
implementing the controls u1(t), u2(t) and u3(t). Hence, we seek to find optimal controls u1

∗, u2
∗ and

u3
∗ such that

J(u∗1, u
∗
2, u
∗
3) = min{J(u1, u2, u3)|u1, u2, u3 ∈ Γ} (5.2)

where the control set is Γ = {(u1, u2, u3) such that u1, u2, u3 are Lebesgue measurable with 0 ≤ u1 ≤ 1,
0 ≤ u2 ≤ 1, 0 ≤ u3 ≤ 1 for t ∈ [0, t f ]}.

The necessary conditions that an optimal solution must satisfy come from the Pontryagin maximum
principle [34]. This principle converts (2.1)–(2.10) and (5.1) into a problem of minimizing pointwise
the Hamiltonian H, given below, with respect to u1, u2 and u3.

H = z1IA + z2IB + z3UA + z4UB + z5Nm + Y1u1
2 + Y2u2

2 + Y3u3
2
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+ λS A{αh + ϕATA − (S 1 + τ + µh)S A} + λS B{τS A + ϕBTB + θUB − (S 3 + µh)S B}

+ λIA{S 1S A + ξAUA − d1IA} + λIB{τIA + S 3S B + ξBUB − d2IB}

+ λUA{ηAIA − d3UA} + λUB{τUA + ηBIB − d4UB}

+ λTA{(u2γA + γ1)IA − (ϕA + τ + µh)TA} + λTB{τTA + (u2γB + γ2)IB − (ϕB + µh)TB}

+ λS m{αmNm −
αm

K
N2

m − (S 5 + µm + φu3)S m} + λIm{S 5S m − (µm + φu3)Im}, (5.3)

where S 1 = e−µhnh(1−u1)aβA
Nh

Im, S 3 = e−µhnh(1−u1) bβB
Nh

Im, S 5 = e−µmnm(1−u1) cβm
Nh

(IA+π1IB+π2UA+

π3UB), and λS A , λS B , λIA , λIB , λUA , λUB , λTA , λTB , λS m and λIm are the adjoint variables.

Theorem 5.1. Given the solutions S A, S B, IA, IB, UA, UB, TA, TB, S m and Im of the state system (2.1)–
(2.10) and optimal controls u∗1, u∗2, u∗3 that minimize J(u1, u2, u3) over Γ, there exist adjoint variables
λS A , λS B , λIA , λIB , λUA , λUB , λTA , λTB , λS m and λIm satisfying

dλS A

dt
= −

(
λS A[−S 1 + S 2 − (τ + µh)] + λS B[τ + S 4] + λIA[S 1 − S 2]

+ λIB[−S 3] + (λS m − λIm)[S 6]
)
,

dλS B

dt
= −

(
λS A[S 2] + λS B[S 4 − S 3 − µh] + λIA[−S 2] + λIB[S 3 − S 4]

+ (λS m − λIm)[S 6]
)
,

dλIA

dt
= −

(
z1 + λS A[S 2] + λS B[S 4] + λIA[−S 2 − d1] + λIB[τ − S 4] + λUA[ηA]

+ λTA[u2γA + γ1] + (λS m − λIm)[S 6] + (λS m − λIm)[−S 7]
)
,

dλIB

dt
= −

(
z2 + λS A[S 2] + λS B[S 4] + λIA[−S 2] + λIB[−S 4 − d2] + λUB[ηB]

+ λTB[u2γB + γ2] + (λS m − λIm)[S 6] + (λS m − λIm)[−π1S 7]
)
,

dλUA

dt
= −

(
z3 + λS A[S 2] + λS B[S 4] + λIA[−S 2 + ξA] + λIB[−S 4] + λUA[−d3]

+ λUB[τ] + (λS m − λIm)[S 6] + (λS m − λIm)[−π2S 7]
)
,

dλUB

dt
= −

(
z4 + λS A[S 2] + λS B[S 4 + θ] + λIA[−S 2] + λIB[−S 4 + ξB] + λUB[−d4]

+ (λS m − λIm)[S 6] + (λS m − λIm)[−π3S 7]
)
,

dλTA

dt
= −

(
λS A[ϕA + S 2] + λS B[S 4] + λIA[−S 2] + λIB[−S 4] + λTA[−(ϕA + τ + µh)]

+ λTB[τ] + (λS m − λIm)[S 6]
)
,

dλTB

dt
= −

(
λS A[S 2] + λS B[ϕB + S 4] + λIA[−S 2] + λIB[−S 4] + λTB[−(ϕB + µh)]

+ (λS m − λIm)[S 6]
)
,

dλS m

dt
= −

(
z5 + λS m[αm − 2

αm

K
Nm − (µm + φu3)] + (λS m − λIm)[−S 5]

)
,

dλIm

dt
= −

(
z5 + λS A[−

S 1S A

Im
] + λS B[−

S 3S B

Im
] + λIA[

S 1S A

Im
] + λIB[

S 3S B

Im
]

+ λS m[αm − 2
αm

K
Nm] + λIm[−(µm + φu3)]

)
,
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where

S 2 =
S 1S A

Nh
, S 4 =

S 3S B

Nh
, S 6 =

S 5S m

Nh
and S 7 =

S 5S m

(IA + π1IB + π2UA + π3UB)
,

with transversality conditions

λi(t f ) = 0, (5.4)

for i = S A, S B, IA, IB,UA,UB,TA,TB, S m and Im. Furthermore, the controls u∗1, u
∗
2, u
∗
3 satisfy the

optimality condition

u∗1 = max
{
0,min

{
1,

e−µhnhaβAImS A(λIA − λS A) + e−µhnhbβBImS B(λIB − λS B)
2Y1Nh

+
e−µmnmcβm(IA + π1IB + π2UA + π3UB)S m(λIm − λS m)

2Y1Nh

}}
,

u∗2 = max
{
0,min

{
1,
γAIA(λIA − λTA) + γBIB(λIB − λTB)

2Y2

}}
, (5.5)

u∗3 = max
{
0,min

{
1,
φ(S mλS m + ImλIm)

2Y3

}}
.

Proof. Corollary 4.1 in [50] gives the existence of an optimal control on account of the convexity of
the integrand of J with respect to u1, u2, u3, a priori boundedness of the state solutions and the Lipschitz
property of the state system with respect to the state variables. The differential equations governing
the adjoint variables are obtained by differentiating the Hamiltonian, evaluated at the optimal control.
Then, the adjoint system can be written as

dλi

dt
= −
∂H
∂i
, (5.6)

for i = S A, S B, IA, IB,UA,UB,TA,TB, S m and Im. To obtain the optimality conditions (5.5), we also
differentiate the Hamiltonian with respect to (u1, u2, u3) ∈ Γ and set it equal to zero. Thus,

∂H
∂u1

= 2Y1u1 + e−µhnh
aβA

Nh
ImS A(λS A − λIA) + e−µhnh

bβB

Nh
ImS B(λS B − λIB)

+ e−µmnm
cβm

Nh
(IA + π1IB + π2UA + π3UB)S m(λS m − λIm),

∂H
∂u2

= 2Y2u2 − γAIAλIA + γAIAλTA − γBIBλIB + γBIBλTB ,

∂H
∂u3

= 2Y3u3 − φ(S mλS m + ImλIm).

Solving for the optimal control, we obtain

u∗1 =
e−µhnhaβAImS A(λIA − λS A) + e−µhnhbβBImS B(λIB − λS B)

2Y1Nh

+
e−µmnmcβm(IA + π1IB + π2UA + π3UB)S m(λIm − λS m)

2Y1Nh
,
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u∗2 =
γAIA(λIA − λTA) + γBIB(λIB − λTB)

2Y2
,

u∗3 =
φ(S mλS m + ImλIm)

2Y3
.

By standard control arguments involving the controls’ bounds, we conclude that

u∗1 =


0 if X∗1 ≤ 1
X∗1 if 0 < X∗1 < 1
1 if X∗1 ≥ 1

, u∗2 =


0 if X∗2 ≤ 1
X∗2 if 0 < X∗2 < 1
1 if X∗2 ≥ 1

, u∗3 =


0 if X∗3 ≤ 1
X∗3 if 0 < X∗3 < 1
1 if X∗3 ≥ 1

,

where

X∗1 =
e−µhnhaβAImS A(λIA − λS A) + e−µhnhbβBImS B(λIB − λS B)

2Y1Nh

+
e−µmnmcβm(IA + π1IB + π2UA + π3UB)S m(λIm − λS m)

2Y1Nh
,

X∗2 =
γAIA(λIA − λTA) + γBIB(λIB − λTB)

2Y2
,

X∗3 =
φ(S mλS m + ImλIm)

2Y3
.

□

The optimality system consists of the state systems (2.1)–(2.10) with initial conditions, the adjoint
system (5.4) with transversality conditions (5.4) and the optimality condition (5.5).

Table 1. Parameter values for the age-structured malaria models (2.1)–(2.10).

Parameter Value/Range Unit References Parameter Value/Range Unit References
αh 0.3002 day−1 Estimated π1 0.5/[0,1] Assumed
αm 0.2 day−1 Estimated π2 0.2/[0,1] Assumed
τ 1

5×365 day−1 Estimated π3 0.1/[0,1] Assumed
a 11/[1-34] day−1 [52–55] ηA [1

7 - 1
30 ] day−1 [7,9,48]

b 5/[1-34] day−1 [52–55] ηB [1
7 - 1

30 ] day−1 [7]
c 3 day−1 [35] γA

1
4 /[

1
3 - 1

30 ] day−1 [7, 9]
βA 0.0005 Estimated γB

1
4 /[

1
3 - 1

30 ] day−1 [7]
βB 0.0005 Estimated ξA [1

7 - 1
30 ] day−1 [7]

βm 0.1 Estimated ξB [1
7 - 1

30 ] day−1 [7]
nh 12/[9 − 17] days [24, 25] ϕA

1
30 /[

1
14 - 1

180 ] day−1 [7]
nm 11 days [25] ϕB

1
180 /[

1
14 - 1

730 ] day−1 [7]
γ1

1
365 day−1 Assumed γ2

1
180 /[

1
58 - 1

714 ] day−1 [20, 25]
δA 1.476×10−5 day−1 [56] θ 1

365 day−1 Assumed
δB 8.209×10−5 day−1 [5] µh

1
64×365 day−1 [57]

φ 0.09 day−1 Estimated µm
1

30 day−1 [25]
K 17500 Estimated
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5.2. Numerical simulation

As mentioned in the introduction, our next objective is to investigate numerically the optimal
control strategies that can eliminate malaria infection in the age-structured population using two main
scenarios, namely, the population without counterfeit drug use, i.e., ηA = ηB = ξA = ξB = θ = 0, and
the population with counterfeit drugs. For the first scenario, we use the following control strategies:
(i.) insecticide-treated bednets only, (u1, 0, 0), (ii.) highly effective antimalarial drugs only, (0, u2, 0),
(iii.) indoor residual spraying only, (0, 0, u3), (iv.) insecticide-treated bednets and highly effective
antimalarial drugs only, (u1, u2, 0), (v.) insecticide-treated bednets and indoor residual spraying only,
(u1, 0, u3), (vi.) highly effective antimalarial drugs and indoor residual spraying, (0, u2, u3) and (vii.)
insecticide-treated bednets, highly effective antimalarial drugs and indoor residual spraying,
(u1, u2, u3). For the second scenario, we shall use the best control strategy results from the first
scenario and incorporate the effects of counterfeit drug use considering the following sub-categories:
(i) high removal rate and high recrudescence rate using ηA =

1
7 , ηB =

1
7 , ξA = 1

7 , ξB =
1
7 , (ii) high

removal rate and low recrudescence rate using ηA =
1
7 , ηB =

1
7 , ξA = 1

30 , ξB =
1
30 , (iii) low removal rate

and high recrudescence rate using ηA =
1

30 , ηB =
1

30 , ξA = 1
7 , ξB =

1
7 and (iv) low removal rate and low

recrudescence rate using ηA =
1

30 , ηB =
1

30 , ξA = 1
30 , ξB =

1
30 . A fourth-order Runge-Kutta iterative

scheme is used to solve the optimality system. The state system is solved forward in time with initial
conditions (S A, S B, IA, IB,UA,UB,TA,TB, S m, Im)=(508, 6505, 100, 300, 0, 0, 0, 0, 14583, 300), and the
adjoint system is solved backwards in time with transversality conditions (5.4). The initial total
populations are estimated using (2.15) and the parameter values in Table 1. At first, the state system
and the adjoint system are solved with an initial guess for the control (u1(t), u2(t), u3(t)) = (0, 0, 0).
The control functions are updated using the optimality conditions given by (5.5), and the process is
repeated. This iterative process terminates when the values converge sufficiently: the differences
between the current state, adjoint and control values and the previous state, adjoint and control values
are negligibly small [51]. The current values are then taken as the solution. The numerical values of
the parameters used for solving the optimality system to obtain the optimal solution are given in Table
1. Most of the parameter values are taken from the literature on Ghana. Other parameter values not
directly found in the literature were estimated using the assumptions made during the model
formulation and following literature indications. The following weight constants were used:
Y1 = 20,Y2 = 40,Y3 = 25 and z1 = 30, z2 = 25, z3 = 20, z4 = 15, z5 = 20. The control is applied over 5
years (1825 days).

5.3. Simulation results

5.3.1. The control strategies without counterfeit antimalarial drug use

We investigate the effect of each of the seven control strategies mentioned above on the dynamics
of the population when no counterfeit antimalarial drugs are used (i.e., ηA = ηB = ξA = ξB = θ = 0).

1) Insecticide-treated bednets only:

The strategy considers insecticide-treated bednets (u1) as the only control. The highly effective
antimalarial drugs (u2) and indoor residual spraying (u3) are set to zero to optimize the objective
function (5.1). The benefits of using ITNs are seen in the reduction of the number of infectious
individuals in both mosquito and human populations, as compared to when there is no control, as
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shown in Figure 3(a)–(c). Also, the number of susceptible mosquitoes is higher than when no control
is used (Figure 3(d)). The control profile in Figure 3(e) indicates that, in this case, the coverage of
insecticide-treated bednets (u1) should be maintained at 75% for the entire duration of the
intervention.

2) Highly effective antimalarial drugs only:

Here, only highly effective antimalarial drugs (u2) are used to optimize the objective function (5.1),
while the insecticide-treated bednets (u1) and indoor residual spraying (u3) are absent. From the results
in Figure 4(a)–(c), we observe a significant decrease in the numbers of the infectious human and
mosquito populations as compared to when no control is used. The results also show an increase in
the susceptible mosquito population. (Figure 4(d)). From the control profile shown in Figure 4(e),
we observe that strategy (u2) should be maintained at coverage of 75% for 148 days, then gradually
reduced to 25% by day 350 and maintained at this level for the remaining intervention period.

3) Indoor residual spraying only:

We use indoor residual spraying (u3) to optimize the objective function (5.1), while
insecticide-treated bednets (u1) and highly effective antimalarial drugs (u2) are absent. The results
reveal a reduction in the number of infectious humans IA, IB and mosquitoes IA when the control is
applied as compared to the case without control, as observed in Figure 5(a)–(c). The graph in Figure
5(d) also shows an increase in the susceptible mosquito population. We observe from the control
profile shown in Figure 5(e) that the IRS (u3) only strategy should be maintained at coverage of 75%
for the total duration of the intervention.

4) Insecticide-treated bednets and highly effective antimalarial drugs:

We use the strategy which has both insecticide-treated nets (u1) and highly effective antimalarial
drugs (u2) as controls while setting the indoor residual spraying to zero (u3 = 0) and optimize the
objective function (5.1). Figure 6(a)–(d) shows a significant decrease in the number of infectious
humans and mosquitoes and a considerable increase in the number of susceptible mosquitoes due to
the application of this control. Its profile in Figure 6(e) also reveals that to be optimal, the highly
effective antimalarial drugs coverage should be at 75% for 74 days, and then gradually be reduced to
25% on day 230 for the rest of the duration, while the insecticide-treated net’s coverage should begin
at 44%, then increase to 45% from day 91 to day 1735 and finally be reduced gradually to 25% by the
end of the intervention.

5) Insecticide-treated bednets and indoor residual spraying:

When the insecticide-treated bednets (u1) and indoor residual spraying (u3) are used to optimize
the objective function (5.1) without highly effective antimalarial drugs (u2 = 0), we observe a reduced
number of infectious humans IA, IB and mosquitoes Im and an increased number of susceptible
mosquitoes (Figure 7(a)–(d)) as compared to the populations with no control. The control profile in
Figure 7(e) shows that for this strategy to be optimal, the insecticide-treated bednets and the indoor
residual spraying must both be maintained at 75% coverage for the total duration of the intervention.
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(a) (b)

(c) (d)

(e)

Figure 3. Numerical simulation of the dynamics of (a) infectious infants, (b) infectious
adults, (c) infectious mosquitoes, (d) susceptible mosquito population and (e) control profile
when the optimal strategy (insecticide-treated nets only) is used without counterfeit drugs.
The parameter values used are shown in Table 1.
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(a) (b)

(c) (d)

(e)

Figure 4. Graphs showing the effect of the optimal strategy (highly effective antimalarial
drugs only) on the dynamics of the (a) infectious infants, (b) infectious adults, (c) infectious
mosquitoes, (d) susceptible mosquitoes and (e) the control profile, in the absence of
counterfeit antimalarial drug use. The parameter values used are shown in Table 1.
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(a) (b)

(c) (d)

(e)

Figure 5. Graphs showing the effect of the optimal strategy (indoor residual sprayig only),
in the absence of counterfeit antimalarial drug use, on the dynamics of (a) infectious infants,
(b) infectious adults, (c) infectious mosquitoes, (d) susceptible mosquitoes and (e) the control
profile. The parameter values used are shown in Table 1.
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(a) (b)

(c) (d)

(e)

Figure 6. The graphs show the effect of the optimal strategy (both insecticide-treated nets and
highly effective antimalarial drugs) in the absence of counterfeit antimalarial drug use on (a)
infectious infants, (b) infectious adults, (c) infectious mosquitoes, (d) susceptible mosquitoes
and (e) the control profile. The parameter values are given in Table 1.
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(a) (b)

(c) (d)

(e)

Figure 7. Simulation results of the optimal strategy (both insecticide-treated bednets and
indoor residual spraying) in the absence of counterfeit drugs on the transmission of malaria
on (a) infectious infants, (b) infectious adults, (c) infectious mosquitoes, (d) susceptible
mosquitoes and (e) the control profile. The parameter values used are shown in Table 1.
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(a) (b)

(c) (d)

(e)

Figure 8. Simulation results of the effect of the optimal strategy (highly effective antimalarial
drugs and indoor residual spraying), in the absence of counterfeit antimalarial drug use,
on the transmission of malaria in (a) infectious infants, (b) infectious adults, (c) infectious
mosquitoes, (d) susceptible mosquitoes and (e) the control profile. The parameter values
used are shown in Table 1.
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(a) (b)

(c) (d)

(e)

Figure 9. Simulation results of the optimal strategy (insecticide-treated bednets, highly
effective antimalarial drugs and indoor residual spraying), in the absence of counterfeit drug
use, on the transmission of malaria on (a) infectious infants (b) infectious adults (c) infectious
mosquitoes (d) susceptible mosquitoes and (e) the control profile. The parameter values used
are shown in Table 1.
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6) Highly effective antimalarial drugs and indoor residual spraying:

Here, we use highly effective antimalarial drugs (u2) and indoor residual spraying (u3) while setting
the control on insecticide-treated bednets to zero (u1 = 0) to optimize the objective function (5.1). As
shown in Figure 8(a)–(d), with this control, the infectious populations IA, IB and Im are significantly
smaller, and the susceptible mosquitoes population S m is larger, as compared to the populations without
control. The control profile in Figure 8(e) shows that the coverage of indoor residual spraying should
be maintained at 75% for the whole duration of the intervention. At the same time, administration of
highly effective antimalarial drugs should begin with 75% coverage for 61 days before being reduced
to 25% by day 132 and maintained at this level for the remaining treatment time.

7) Insecticide-treated bednets, highly effective antimalarial drugs and indoor residual spraying:

We explore the combination of all three controls by using insecticide-treated bednets (u1), highly
effective antimalarial drugs (u2) and indoor residual spraying (u3) to optimize the objective
function (5.1). The benefits of this strategy are a significant decrease in the populations of infectious
humans and mosquitoes and a significant increase in the number of susceptible mosquitoes in
comparison to when no controls are used (Figure 9(a)–(d)). The control profile indicates that for the
strategy to be optimal, the indoor residual spraying coverage at 75% should be maintained for the
entire intervention period, the insecticide-treated bednets should be applied with coverage of 32%
between day 1 to day 1769 and then reduced gradually to 25%, and, lastly, highly effective
antimalarial drugs should be administered with coverage of 75% for the first 47 days and then reduced
to 25% by day 105 and maintained at this level to the end of the period (Figure 9(e)).

5.3.2. The effect of counterfeit drugs on the best control strategy

In this section, we examine the impact of four possible cases resulting from counterfeit drug use
on the performance of the best control strategies discussed in Section 5.3.1, i.e., the insecticide-treated
bednets, highly effective antimalarial drugs and indoor residual spraying.

1) Counterfeit drug with high removal rate and high recrudescence rate:

As the control we use insecticide-treated bednets (u1), highly effective antimalarial drugs (u2) and
indoor residual spraying (u3) and set the per capita removal rates ηA =

1
7 and ηB =

1
7 and the per capita

recrudescence rate ξA = 1
7 and ξB =

1
7 for both infants and adults. Figures 10(a)–(g) show significant

increases in the populations of susceptible humans S A and S B and significant decreases in the numbers
of infectious individuals IA, IB, Im and counterfeit antimalarial drug users UA, UB when the control is
used. The control profile in Figure 10(h) shows that maintaining indoor residual spraying coverage at
75% for the whole intervention period, highly effective antimalarial drugs coverage at 75% for the first
94 days and gradually reduced to 25% by day 191, and, lastly, the insecticide-treated bednets coverage
at 36%, reduced to 35% on day 1744 and then gradually to 25%, is optimal.

2) Counterfeit drug with high removal and low recrudescence rates:

Similarly, we use the insecticide-treated bednets (u1), highly effective antimalarial drugs (u2) and
indoor residual spraying (u3) control to optimize the objective function (5.1) and take the per capita
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removal rates ηA =
1
7 and ηB =

1
7 and the per capita recrudescence rates ξA = 1

30 and ξB =
1

30 for
both infants and adults. We observe in Figure 11(a)–(g) that the control strategy causes a significant
difference in the populations. Namely, the number of susceptibles increases while that of the infectious
and counterfeit drug users decreases, as compared to when no control is used. The control profile
in Figure 11(h) shows that it is optimal to use the indoor residual spraying coverage at 75% for the
entire intervention period, the insecticide-treated bednets coverage at 60%, reduced to 55% by day 27,
increased to 57% until day 1532 and again gradually reduced to 25%, and, lastly, starting with highly
effective antimalarial drugs coverage at 75% for 258 days and then gradually reducing it to 25% on
day 575 and maintaining this level to the end of the period.

3) Counterfeit drug with low removal and high recrudescence rates:

We use insecticide-treated bednets (u1), highly effective antimalarial drugs (u2) and indoor residual
spraying (u3) to optimize the objective function (5.1) and take the per capita removal rates ηA =

1
30 ,

ηB =
1

30 and the per capita recrudescence rates ξA = 1
7 , ξB =

1
7 . The control produces an increase in the

susceptible population compared to when no control is applied (Figure 12(a),(b)). Also, the infectious
and counterfeit antimalarial drug users populations are observed to decrease (Figure 12(c)–(g)). Figure
12(h) illustrates that indoor residual spraying with coverage of 75% for the entire intervention period,
insecticide-treated bednets coverage at 33% at the beginning, then reduced and maintained at 32% for
1794 days and reduced again to 25%, and, lastly, highly effective antimalarial drugs coverage at 75%
for the first 61 days and reduced to 25% by day 127 is optimal for disease control.

4) Counterfeit drug with low removal and low recrudescence rates:

Finally, we use insecticide-treated bednets (u1), highly effective antimalarial drugs (u2) and indoor
residual spraying (u3) to optimize the objective function (5.1) and take the per capita removal rates
ηA =

1
30 and ηB =

1
30 and the per capita recrudescence rates ξA = 1

30 and ξB =
1

30 . The control
produces significant decreases in the infectious classes IA, IB, Im and also in the number of counterfeit
antimalarial users in the classes UA, UB (Figure 13(c)–(g)) in comparison with the populations without
control. The control profile indicates that maintaining the indoor residual spraying coverage at 75%
for the entire intervention period, beginning with the insecticide-treated bednets coverage of 37%, then
reducing it and maintaining it at 36% from day 4 to day 1735 and reducing it to 25% by the end of the
intervention period, and lastly, administering the highly effective antimalarial drugs with coverage of
75% for 127 days before reducing it to 25% by day 308 is optimal for disease control (Figure 13(h)).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10. Simulation of the optimal strategy (ITN, highly effective antimalarial drugs
and IRS) with parameters values in Table 1, when counterfeit antimalarial drugs have high
removal rate and high recrudescence rate – (a) S A, (b) S B, (c) IA, (d) IB, (e) Im, (f) UA, (g) UB

and (h) the control profile.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11. Simulations of counterfeit antimalarial drugs with high removal and low
recrudescence rates, the optimal strategy (ITN, highly effective antimalarial drugs and IRS),
and values in Table 1 – (a) S A, (b) S B, (c) IA, (d) IB, (e) Im, (f) UA, (g) UB and (h) control
profile.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 12. Simulation of the optimal strategy (ITN, highly effective antimalarial drugs and
IRS) and counterfeit drugs with low removal rate and high recrudescence rate – (a) S A, (b)
S B, (c) IA, (d) IB, (e) Im, (f) UA, (g) UB and (h) the control profile. The parameter values are
in Table 1.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 13. Simulations of low removal and recrudescence rates due to the counterfeit drugs
in the scenario of the optimal strategy (ITN, highly effective antimalarial drugs and IRS)
with values in Table 1 – (a) S A, (b) S B, (c) IA, (d) IB, (e) Im (f) UA, (g)UB and (h) the control
profile.
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5.3.3. Comparison of control strategies

The simulation results from all seven control strategies without counterfeit drugs (in Figures 3–9)
reveal that all the strategies reduce the populations of infectious humans and infectious mosquitoes and
increase the susceptible populations.

When counterfeit drug use is absent in the population, we observe that any strategy with highly
effective antimalarial drugs achieves a 100% reduction in the infectious population. Still, any strategy
without highly effective antimalarial drugs reduces the numbers of infectious adults and infectious
mosquitoes significantly more than the number of infectious infants. Also, a strategy with only one
prevention control measure, either IRS or ITNs, may be insufficient to reduce the disease burden in
humans and to control malaria unless they are combined with the other controls.

Comparing the four strategies with highly effective antimalarial drugs, we observe similar benefits
of the 100% reduction in the infectious populations (Figures 4, 6, 8 and 9). However, the four strategies
differ in the increase in the susceptible mosquito population and the control profiles. The two strategies,
(I) highly effective antimalarial drugs and indoor residual spraying and (II) insecticide-treated bednets,
highly effective antimalarial drugs and indoor residual spraying, give the smallest increases in the
susceptible mosquitoes numbers, which is a part of the objective of our optimal control problem. From
the control profiles, the duration of the coverage of highly effective antimalarial drugs in (I) must be
longer than in (II) (Figures 8(e) and 9(e)).

We observe that using the different sub-categories of counterfeit drugs without control significantly
reduces the population of susceptible infants (in Figures 10–13). However, when the combination of
insecticide-treated bednets, highly effective antimalarial drugs and indoor residual spraying is used as
control, we observe a considerable increase in that population. We also observe that a combination of
insecticide-treated bednets, highly effective antimalarial drugs and indoor residual spraying achieves a
100% reduction in the infectious population even when counterfeit drug use persists. From the control
profiles in Figures 9(e), 10–13(h), we observe that the required intervention periods with high coverage
are more extended when there is counterfeit drug use. This is particularly visible when applying
highly effective antimalarial drugs or insecticide-treated bednets as controls. On the other hand, the
rates of removal or recrudescence of counterfeit drugs seem to have no impact on the increases in the
susceptible population.

Ranking the effect of the four subcategories of counterfeit drugs on the performances of the best
control strategy, we see that when the counterfeit drugs used have a high removal rate and low
recrudescence rate, then the control strategy has to be applied for the most extended period to achieve
the elimination; this is followed by counterfeit drugs with low removal and recrudescence rates, then
counterfeit drugs with high removal and recrudescence rates and, finally, counterfeit drugs with low
removal rate and high recrudescence rate. Thus, counterfeit drugs with low removal and high
recrudescence rates are the easiest to deal with using the considered control strategies (Figure 12(h)).

6. Discussion

A deterministic model for P. falciparum malaria infection in a structured human population that
uses counterfeit drugs was developed. The model incorporates the infant and adult populations, users
of counterfeit drugs and three malaria control measures adopted by most endemic countries in Sub-
Saharan Africa, namely, highly effective antimalarial drugs (HEAs), insecticide-treated bednets (ITNs)
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and indoor residual spraying (IRS). The model was developed to comprehensively understand disease
transmission dynamics in children under five years, adults and mosquitoes and identify the best control
strategy for disease elimination. We performed a standard analysis of the reproduction number R0 and
the equilibria. Our model revealed the possible existence of a backward bifurcation.

The R0 and bifurcation analysis indicate that to control malaria transmission from the infectious
population to others, it is necessary to reduce the value of R0 below 1. However, this approach may
not be sufficient for elimination when backward bifurcation is present. We found that a backward
bifurcation occurs in our model when the birth rate of humans is lower than a determined threshold.
Further, the analysis of R0 showed that the control measures negatively impact malaria transmission.
Thus, increasing coverage of the three control measures in the endemic setting through easy access,
affordable pricing and individual adherence will reduce R0 and hence the malaria burden.

Also, the optimal control analysis revealed that using any strategy without counterfeit drugs
reduces the size of the infectious populations while increasing the susceptible populations, especially
infants. For infectious diseases, when the infectious population is reduced, there is a reduction in the
disease and the value of R0. We also found that the ITNs-only or IRS-only strategy was less effective
than the highly effective antimalarial drugs-only strategy for reducing disease in humans and
mosquitoes. Thus, the ITNs-only and IRS-only strategies are only effective when used together or
with highly effective antimalarial drugs. This result is supported by the evidence from previous
studies [6, 7, 26], which showed that in an endemic region, where P. falciparum malaria infection is
common, intervention strategies that involve highly effective antimalarial drugs are very effective in
reducing the disease burden. In particular, our results suggest that the combination of highly effective
antimalarial drugs and indoor residual spraying, and the combination of insecticide-treated bednets,
highly effective antimalarial drugs and indoor residual spraying, have the best impact on malaria
control and elimination. These strategies eliminate the infection from the population of infants, adults
and mosquitoes, giving the highest increase in the susceptible human population and the smallest
increase in the susceptible mosquito population. The study in [24] also confirmed that the
combination of the three controls was the most effective, and the study in [23] even proved that the
combination of highly effective antimalarial drugs and indoor residual spraying was the most
cost-effective. Considering which of these two strategies should be adopted must be guided by the
availability of resources, possible levels of coverage and their cost.

Finally, we observed that using the combination of insecticide-treated bednets, highly effective
antimalarial drugs and indoor residual spraying as a control strategy, where counterfeit drugs persist,
requires an increase in the duration of the coverage, especially for highly effective antimalarial drugs
and insecticide-treated bednets, to achieve elimination. This increase is the highest when counterfeit
drugs have high removal and low recrudescence rates. Since the counterfeit drug users remain
asymptomatically infectious and may not seek further treatment, if many people in a community are
using counterfeit drugs as an alternative to highly effective antimalarial drugs, then more resources,
effort, time and funds will be required to control and possibly eliminate the disease [2]. Efforts to
determine the level of use of counterfeit drugs are thus necessary to decide how an intervention can be
properly implemented, especially when resources are scarce [58].

Our results exposed the negative impact of counterfeit drugs, even when the best control strategies
were used. Hence, we conjecture that the effects will worsen when other strategies are used. The
counterfeit drug effects could also be further compounded when factors such as the effects of
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environment, weather and movement of both humans and mosquitoes [25, 33, 54, 59, 60] on the
disease dynamics and control are considered.

7. Conclusions

The control and possible elimination of malaria can be achieved if the existing control strategies of
insecticide-treated bednets, vector control methods and prompt treatment of infected humans with
highly effective antimalarial drugs are accessible, affordable and duly implemented. This will also
relieve infants under five years of the burden of the disease. However, the widespread use of
counterfeit drugs may jeopardize the timely achievement of the malaria elimination milestones,
especially in endemic areas.
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Appendix

A.1.

The associated non-negative matrix F and the non-singular M-matrix V of (2.1)–(2.10) are,
respectively, given by

F =


0 0 0 0 q1

0 0 0 0 q2

0 0 0 0 0
0 0 0 0 0
q3 π1q3 π2q3 π3q3 0


,V =


d1 0 −ξA 0 0
−τ d2 0 −ξB 0
−ηA 0 d3 0 0

0 −ηB −τ d4 0
0 0 0 0 µm + φu3


,

where

q1 = a(1 − u1)e−µhnhβA
µh

(τ + µh)
, q2 = b(1 − u1)e−µhnhβB

τ

(τ + µh)
, q3 = c(1 − u1)e−µmnmβ∗m

rmKµh

αhαm
,

d1 = δA + ηA + u2γA + γ1 + τ + µh, d2 = δB + ηB + u2γB + γ2 + µh, d3 = ξA + τ + µh, d4 = ξB + θ + µh.
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Further calculation gives V−1, FV−1 and ρ(FV−1) as follows:

V−1 =



d3

d1d3 − ξAηA
0

ξA
d1d3 − ξAηA

0 0

τ(ξBηA + d3d4)
(d1d3 − ξAηA)(d2d4 − ξBηB)

d4

d2d4 − ξBηB

τ(d1ξB + d4ξA)
(d1d3 − ξAηA)(d2d4 − ξBηB)

ξB

d2d4 − ξBηB
0

ηA

d1d3 − ξAηA
0

d1

d1d3 − ξAηA
0 0

τ(d2ηA + d3ηB)
(d1d3 − ξAηA)(d2d4 − ξBηB)

ηB

d2d4 − ξBηB

τ(ξAηB + d1d2)
(d1d3 − ξAηA)(d2d4 − ξBηB)

d2

d2d4 − ξBηB
0

0 0 0 0
1

µm + φu3


,

and

FV−1 =


0 0 0 0 Z1

0 0 0 0 Z2

0 0 0 0 0
0 0 0 0 0
Z3 Z4 Z5 Z6 0


,

with
Z1 =

q1

µm + φu3
, Z2 =

q2

µm + φu3
, Z3 =

q3d3 + q3π2ηA

d1d3 − ξAηA
+

q3π1τ(d3d4 + ξBηA) + q3π3τ(d2ηA + d3ηB)
(d1d3 − ξAηA)(d2d4 − ξBηB)

,

Z4 =
q3π1d4 + q3π3ηB

d2d4 − ξBηB
, Z5 =

q3ξA + q3π2

d1d3 − ξAηA
+

q3π1τ(d1ξB + d4ξA) + q3π3τ(d1d2 + ξAηB))
(d1d3 − ξAηA)(d2d4 − ξBηB)

and Z6 =
q3π1d2 + q3π3ηB

d2d4 − ξBηB
.

The spectral radius of FV−1 =
√

Z1Z3 + Z2Z4.

A.2.

The Jacobian matrix of the transformed systems (3.6)–(3.15) evaluated at the DFE, E0, with βm =

β∗m, is given by

JE0 =



−J1 0 0 0 0 0 ϕA 0 0 −q1

τ −µh 0 0 0 θ 0 ϕB 0 −q2

0 0 −d1 0 ξA 0 0 0 0 q1

0 0 τ −d2 0 ξB 0 0 0 q2

0 0 ηA 0 −d3 0 0 0 0 0
0 0 0 ηB τ −d4 0 0 0 0
0 0 u2γA + γ1 0 0 0 −J2 0 0 0
0 0 0 u2γB + γ2 0 0 τ −J3 0 0
0 0 −q3 −π1q3 −π2q3 −π3q3 0 0 −rm αm − 2rm

0 0 q3 π1q3 π2q3 π3q3 0 0 0 −(µm + φu3)



,

where rm = αm − µm − φu3, J1 = τ + µh, J2 = ϕA + τ + µh, J3 = ϕB + µh.
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The right eigenvector corresponding to the zero eigenvalue of JE0 is given by

w = (w1,w2,w3,w4,w5,w6,w7,w8,w9,w10)T ,

where

w1 =
ϕA(u2γA + γ1)d3 − J2B1

J1J2ηA
w5 < 0, w3 =

d3

ηA
w5, w4 =

τq1B4 + q2d4B1

q1ηAB2
w5,

w5 = w5, w6 =
τq1B5 + q2ηBB1

q1ηAB2
w5, w7 =

(u2γA + γ1)d3

J2ηA
w5, w10 =

B1

q1ηA
w5,

w2 =
τq1(B6 − J2J3B1B2) + q2J2B1(B7 − J3B2)

q1ηAB2J1J2J3µh
w5 < 0,

w8 =
q2(u2γB + γ2)d4J2B1 + τq1((u2γA + γ1)d3B2 + (u2γB + γ2)J2B4)

q1ηAJ2J3B2
w5

and

w9 = −

[B8 + (2rm − αm)B1B2

rmq1ηAB2

]
w5 < 0,

with B1 = d1d3 − ξAηA, B2 = d2d4 − ξBηB, B4 = d3d4 + ξBηA, B5 = d3ηB + d2ηA, B6 = (u2γA +

γ1)d3B2(J3ϕA + J1ϕB) + J1J2(J3θB5 + ϕB(u2γB + γ2)B4), B7 = J3ηBθ + ϕB(u2γB + γ2)d4 and B8 =

q1q3[B2(d3 + π2ηA) + τ(π1B4 + π3B5)] + q2q3B1(π1d4 + π3ηB).
We note that B6 − J2J3B1B2 < 0, B7 − J3B2 < 0, and B8 > (αm − 2rm)B1B2.

Similarly, the left eigenvector corresponding to the zero eigenvalue of JE0 is given by

v = (v1, v2, v3, v4, v5, v6, v7, v8, v9, v10),

where

v3 =
(µm + φu3)B2 − q2q3(π1d4 + π3ηB)

q1B2
v10, v4 =

q3(π1d4 + π3ηB)
B2

v10,

v5 =
ξA((µm + φu3)B2 − q2q3(π1d4 + π3ηB)) + τq1q3(π1ξB + π3d2) + π2q1q3B2

q1d3B2
v10,

v6 =
q3(π1ξB + π3d2)

B2
v10, v10 = v10 and v1 = v2 = v7 = v8 = v9 = 0.

For the transformed systems (3.6)–(3.15), the associated non-zero partial derivatives of f (evaluated at
the DFE), which are needed in the computation of a1 and b1, are given by

∂2 f10

∂x2
3

= −
2mβmrmKµ2

h

α2
hαm

,
∂2 f10

∂x3∂x4
=
∂2 f10

∂x4∂x3
= −

mβm(1 + π1)rmKµ2
h

α2
hαm

,

∂2 f10

∂x3∂x5
=
∂2 f10

∂x5∂x3
= −

mβm(1 + π2)rmKµ2
h

α2
hαm

,
∂2 f10

∂x3∂x9
=
∂2 f10

∂x9∂x3
=

mβmµh

αh
,

∂2 f10

∂x3∂x6
=
∂2 f10

∂x6∂x3
= −

mβm(1 + π3)rmKµ2
h

α2
hαm

,
∂2 f10

∂x2
4

= −
2mβmπ1rmKµ2

h

α2
hαm

,
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∂2 f10

∂x4∂x5
=
∂2 f10

∂x5∂x4
= −

mβm(π1 + π2)rmKµ2
h

α2
hαm

,
∂2 f10

∂x4∂x9
=
∂2 f10

∂x9∂x4
=

mβmπ1µh

αh
,

∂2 f10

∂x4∂x6
=
∂2 f10

∂x6∂x4
= −

mβm(π1 + π3)rmKµ2
h

α2
hαm

,
∂2 f10

∂x2
5

= −
2mβmπ2rmKµ2

h

α2
hαm

,

∂2 f10

∂x5∂x6
=
∂2 f10

∂x6∂x5
= −

mβm(π2 + π3)rmKµ2
h

α2
hαm

,
∂2 f10

∂x5∂x9
=
∂2 f10

∂x9∂x5
=

mβmπ2µh

αh
,

∂2 f10

∂x2
6

= −
2mβmπ3rmKµ2

h

α2
hαm

,
∂2 f10

∂x6∂x9
=
∂2 f10

∂x9∂x6
=

mβmπ3µh

αh
,

∂2 f10

∂x3∂β∗m
=

mrmKµh

αhαm
,
∂2 f10

∂x4∂β∗m
=

mπ1rmKµh

αhαm
,

∂2 f10

∂x5∂β∗m
=

mπ2rmKµh

αhαm
,
∂2 f10

∂x6∂β∗m
=

mπ3rmKµh

αhαm
,

where m = c(1 − u1)e−µmnm . For i = 1, 2, 7, 8,

∂2 f10

∂x3∂xi
=
∂2 f10

∂xi∂x3
= −

mβmrmKµ2
h

α2
hαm

,
∂2 f10

∂x4∂xi
=
∂2 f10

∂xi∂x4
= −

mβmπ1rmKµ2
h

α2
hαm

,

∂2 f10

∂x5∂xi
=
∂2 f10

∂xi∂x5
= −

mβmπ2rmKµ2
h

α2
hαm

,
∂2 f10

∂x6∂xi
=
∂2 f10

∂xi∂x6
= −

mβmπ3rmKµ2
h

α2
hαm

.

A.3.

The parameters in the endemic equilibrium, Ee, and (3.5) are defined as follows:

u = a(1 − u1)e−µhnh , σ =
bβB

aβA
, Kh =

αh

µh
, Km =

rmK
αm
,

C1 = ταhσD4u, C2 = ταh(σD2 + D5), C3 = D1D3σ, C4 = B2J3D1µh

+B1J1J2D3σ, C5 = B1B2J1J2J3µh, C6 = αhd3J2u, C7 = αhB1J2,

D1 = (B1J2 − ϕA(u2γA + γ1)d3)u, D2 = B1J2J3d4u, D3 = [B2J3 − (ϕB(u2γB + γ2)d4

+ηBθJ3)]u, D4 = [J2J3(B4 + θηA) + d3d4ϕB(u2γA + γ1)]u, D5 = J2J3B4µhu,

E1 = C3C6(d4(d3 + π2ηA) + τπ3ηA) +C1D1(d3(π1d4 + π3ηB)), E2 = C4C6(d4(d3 + π2ηA) +
τπ3ηA) + (C2D1 + B1J1J2C1)(d3(π1d4 + π3ηB)), E3 = C5C6(d4(d3 + π2ηA) +
τπ3ηA) + B1J1J2C2(d3(π1d4 + π3ηB)), E4 = C3D1, E5 = C4D1 + B1J1J2C3,

E6 = C5D1 + B1J1J2C4, E7 = B1J1J2C5, E8 = αhE4 − (δAC3C6 + δBC1D1),
E9 = αhE5 − (δAC4C6 + δB(C2D1 + B1J1J2C1)), E10 = αhE6 − (δAC5C6 + δBB1J1J2C2),
F1 = mKmµhβmE1, F2 = mKmµhβmE2, F3 = mKmµhβmE3,

F4 = mµhβmE1 + (µm + φu3)d3d4E8, F5 = mµhβmE2 + (µm + φu3)d3d4E9,

F6 = mµhβmE3 + (µm + φu3)d3d4E10, F7 = αh(µm + φu3)d3d4E7,

G1 = δAC3C6 + δBC1D1,G2 = δAC4C6 + δB(C2D1 + B1C1J1J2),G3 = δAC5C6 + δBB1C2J1J2,

K0 = τd3d4J2J3C5C7,K1 = τd3d4J2J3C4C7 + θJ2J3L3 + d3d4ϕBL6,
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K2 = τd3d4J2J3C3C7 + θJ2J3L2 + d3d4ϕBL5, K3 = θJ2J3L1 + d3d4ϕBL4, K4 = uσE4,

K5 = uσE5 + µhE4, K6 = uσE6 + µhE5, K7 = uσE7 + µhE6, K8 = µhE7,

L1 = τηAC3C6 + d3ηBC1D1, L2 = τηAC4C6 + d3ηBB1C1J1J2 + d3ηBC2D1,

L3 = τηAC5C6 + d3ηBB1C2J1J2, L4 = τ(u2γA + γ1)C3C6 + J2(u2γB + γ2)C1D1,

L5 = τ(u2γA + γ1)C5C6 + J2(u2γB + γ2)C2D1 + (u2γB + γ2)B1C1J1J2
2 ,

L6 = τ(u2γA + γ1)C5C6 + (u2γB + γ2)B1C2J1J2
2 .

The coefficients of (3.5) are defined as

P6 = F4(KhE4 −G1), P5 = F5(KhE4 −G1) + F4(KhE5 −G2) − uaβAE4F1,

P4 = F6(KhE4 −G1) + F5(KhE5 −G2) + F4(KhE6 −G3) − uaβA(E4F2 + E5F1),
P3 = F7(KhE4 −G1) + F6(KhE5 −G2) + F5(KhE6 −G3) + KhE7F4 − uaβA(E4F3

+E5F2 + E6F1), P2 = F7(KhE5 −G2) + F6(KhE6 −G3) + KhE5F7 − uaβA(E5F3

+E6F2 + E7F1), P1 = F7(KhE6 −G3) + KhE7F6 − uaβA(E7F2 + E6F3),
P0 = KhE7F7 − uaβAE7F3 = KhE7F7(1 − R2

0).
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