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Abstract: Human motion capture (mocap) data is of crucial importance to the realistic character
animation, and the missing optical marker problem caused by marker falling off or occlusions often
limit its performance in real-world applications. Although great progress has been made in mocap data
recovery, it is still a challenging task primarily due to the articulated complexity and long-term depen-
dencies in movements. To tackle these concerns, this paper proposes an efficient mocap data recovery
approach by using Relationship-aggregated Graph Network and Temporal Pattern Reasoning (RGN-
TPR). The RGN is comprised of two tailored graph encoders, local graph encoder (LGE) and global
graph encoder (GGE). By dividing the human skeletal structure into several parts, LGE encodes the
high-level semantic node features and their semantic relationships in each local part, while the GGE
aggregates the structural relationships between different parts for whole skeletal data representation.
Further, TPR utilizes self-attention mechanism to exploit the intra-frame interactions, and employs
temporal transformer to capture long-term dependencies, whereby the discriminative spatio-temporal
features can be reasonably obtained for efficient motion recovery. Extensive experiments tested on pub-
lic datasets qualitatively and quantitatively verify the superiorities of the proposed learning framework
for mocap data recovery, and show its improved performance with the state-of-the-arts.

Keywords: mocap data recovery; relationship-aggregated graph network; temporal pattern
reasoning; self-attention mechanism

1. Introduction

Mocap (mocap) technology aims to capture highly precise recordings of the real movements, which
is popularized in a variety of purposes including computer games, augmented reality, movie produc-
tion, human-computer interactions and so forth [1]. Often, these systems utilize a large number of
attached optical markers to record the human motion track [2]. Nevertheless, even with the highly
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professional capturing equipments and the most sophisticated software available, the current mocap
systems still suffer from the incomplete motion recordings due to the sensor noise, marker falling off

or occlusion problem. Prior to use, some users select to simply discard the missing recordings. How-
ever, the simple removal of these missing information often fail to retain a continuous data flow and
may lose lots of valuable information significantly.

In general, human mocap data is acquired by the highly articulated movements that collected from
the fixed markers [3], and it is reasonable to utilize the kinematic constraints within the human skeletal
data to handle the missing marker problem. For instance, the surrounding markers that share the
kinematic relationships with the missing markers is capable of assisting the missing entry estimation.
Along this line, some filtering techniques and motion matrix analysis approaches have been proposed
to restore the missing joints. Nevertheless, it is still a challenging task to automatically recovery the
missing joints, and the main reasons are three-fold: 1) Non-linear property: the articulated human
motions are always non-linearly correlated, which make it difficult to learn the underling data structure
for motion recovery; 2) Randomicity: the distribution of missing joints is often unknown and arbitrary,
which make it hard to adaptively recover the missing joints. 3) Long-term dependency: the human
motions always contain various kinds of different actions, and the long-term temporal dependencies
with a large part of missing markers may not be easily captured for precise motion recovery.

The spatial dependency of skeleton joints in the current frame and the temporal dependency of
the same joint among the neighboring frames are of crucial importance to the mocap data analysis.
In recent years, some research works have attempted different deep neural networks to simulate the
spatio-temporal correlation within the human motions, and propose various models to recover the
missing joints, e.g., convolutional autoencoder [4] and bi-directional long short-time memory network
(BLSTM) [5]. Although these approaches have achieved significant performances, their recovery ac-
curacies may degrade rapidly over a long period of motion sequence and still face two challengings:
1) The skeleton joints within the human motions are articulated with each other, and it is difficult to
learn the spatio-temporal features in a reliable way. 2) The current deep models often fail to capture
the long-term temporal dependency due to the accumulated training errors.

Until recently, the graph models are effectively to represent the objects and their relationships
interpretably, and have promptly become a powerful tool in high-level representation understanding
tasks [6,7]. Inspired by the great success of graph models that can flexibly learn the high-level seman-
tic information, this paper proposes an efficient mocap data recovery approach by using Relationship-
aggregated Graph Network and Temporal Pattern Reasoning (RGN-TPR). In summary, the proposed
framework provides the following three contributions:

• An efficient relationship-aggregated graph model is proposed to aggregate both of the local node-
level relationship and global body-level relationship within the human body, which can be well
utilized to discriminatively model the human skeletal data.
• A temporal pattern reasoning module is efficiently addressed to exploit the intra-frame interac-

tions and temporal correlation within the human motion, whereby the temporal dynamics and
long-term dependency can be well obtained for efficient motion recovery.
• Extensive experiments verify the superiorities of the proposed framework under various motion

recovery tasks, and show its improved performance over the state-of-the-arts.

The remaining part of this paper is organized as follows: Section 2 surveys the existing mocap
data recovery works, and Section 3 introduces the proposed framework in detail. The experiments
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and comparisons with the state-of-the-arts are stated in Section 4. Finally, we draw a conclusion in
Section 5.

2. Related work

Human mocap data primarily records the 3D position and orientation information about the moving
body, and the missing marker problem often degrades the motion quality. In the past, various mocap
data recovery methods have been developed, which can be broadly divided into two branches: data-
structure based methods and data-driven based methods.

2.1. Data-structure based methods

The data-structure based methods mainly employs the neighboring available markers or statistical
structure property to recover the missing joints, which have the advantages of low computational cost
and fast implementation. Intuitively, motion filtering is able to complete the missing values in the data
sequence. Along this line, Ristidou et al. [8] utilize the relevant information from neighboring markers
and select Kalman filter to supplement continuous flow related to rigid body motions. Similarly, Wu et
al. [9] propose a piecewise linear Kalman filter to predict the location of missing markers, while Burke
et al. [10] combine the Kalman filter and motion smoothing operation to recover the missing markers
in a low dimensional Kalman smoothing space. Note that, these methods generally need to define the
inherent kinematic constraints within the available joint information in advance, which often tend to
produce unreasonable results for significantly corrupted motion sequences. Besides, these approaches
are often performed with the assistance of a significant amount of human intervention, which inevitably
require the manual tuning of the filter parameters to handle different motions.

Alternatively, the missing marker problem has been traditionally formulated as a matrix completion
task, which mainly explore the linear or non-linear properties of motion matrix to restore the missing
markers. For instance, Lai et al. [11] utilize low-rank prior to recover the damaged human motion
matrix, in which the singular value threshold operation is selected to solve the rank minimization
problem. Tan et al. [12] first divide the mocap data into a group of trajectory-based segments, and then
perform local matrix completion to achieve missing entry estimation. Feng et al. [13] first consider
the low-rank structure and the temporal properties of the motion data, and then utilize robust matrix
completion problem to refine the recovered motion sequence. In addition, Peng et al. [14] decompose
the underling human skeleton data into several blocks, and utilize the adaptive nonnegative matrix
factorization to achieve incomplete human mocap data recovery. These approaches are able to well
restore the simple motion with limited missing entries, but which may be unsuitable to tackle the
complex motions with a large portion of missing joints for an extended period of time.

2.2. Data-driven based methods

Data-driven based approaches primarily learn the motion model from the available dataset to re-
construct the missing entries. Along this line, Herda et al. [15] exploit a sophisticated human model
to learn a precise representation of the skeleton data, whereby the 3D location of markers can be well
predicted. Li et al. [16] investigate some hidden variables from the observed mocap data and learn the
latent variables to estimate the missing values. Recently, Xiao et al. [17] design a sparse representation
of the incomplete observations and further utilize such sparse representation to predict the missing
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markers. These methods have been proved to be effective in recovering the missing entries, but which
may change the topological structure within the raw mocap data such that some restored frames may
exist unnatural movements.

With the rapid development of deep learning, there is a potential feasibility in applying deep learn-
ing techniques for synthesizing the complete motion data. For instance, Holden et al. [4] utilize the
convolutional autoencoder to extract human motion manifold structure for motion synthesis. By con-
sidering the dynamic characteristics of mocap data, Cui et al. [5] embed the attention mechanism of
bidirectional long-short term memory network (BLSTM) structure in the encoding and decoding stage,
which can adaptively extract the relevant information at each time step for human motion recovery. Ji
et al. [18] address a least square filtering to optimize the long-short term memory network and utilize
the attention mechanism to model the temporal property of human mocap data. Although these deep
models take into account the spatial-temporal characteristics of motion sequences, they still suffer from
performance degradation with a significant portion of missing markers and the increase of sequence
length. Therefore, it is necessary to develop a more robust deep model for mocap data recovery.
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Figure 1. The pipeline of the proposed motion recovery framework.

3. Methodology

The human skeleton data is generally recorded by a group of articulated joints, and the articulated
complexity of human mocap data often make it difficult for motion recovery. To address this issue,
we present an efficient mocap data recovery approach by relationship-aggregated graph network and
temporal pattern reasoning, and the architecture of the proposed framework is shown in Figure 1.
The proposed framework is comprised of two tailored graph encoders, local graph encoder (LGE)
and global graph encoder (GGE). By dividing the human skeletal structure into several parts, LGE
module encodes the high-level semantic node features and their semantic relationships in each local
part, while the GGE module aggregates the structural relationships between different parts for whole
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skeletal data representation. Further, the temporal pattern reasoning module utilizes self-attention
mechanism to exploit the intra-frame interactions, and employs temporal transformer to capture long-
term dependencies, whereby the discriminative spatio-temporal features can be reasonably obtained
for efficient motion recovery. This section first clarifies the notations and formal definitions of motion
recovery. Then, the proposed network architecture and its learning modules are introduced in tandem.
Finally, the recovery of missing mocap data and its optimization process are explicitly provided.

3.1. Problem formulation and notation

Mocap data mainly consists of a group of motion frames, which are connected by highly articulated
joints [19]. In general, each frame records the 3D position of every joint, and mocap data can be
formulated as X = {x1, x2, . . . , xt, . . . , xN} ∈ R

N×3J, where xt ∈ R
1×3J represent the t-th frame, J and

N are respectively the joint number in the human skeleton model and the total frame number in the
motion sequence. Without loss of generality, let Xcor = [xcor

1 , xcor
2 , · · · , xcor

N ] ∈ RN×3J be a corrupted
motion sequence with missing joint values, we utilize a binary mask matrix M ∈ RN×3J to indicate
the missing positions (Mi j = 0) and normal positions (Mi j = 1), and it is easily to obtain the data
relationship Xcor = X � M, where the symbol � is element-wise product. Accordingly, the motion
recovery problem can be transformed into optimizing the functions g and f to minimize the difference
between the recovered motion f (g(Xcor)) and the complete motion sequence X:

min
f ,g
‖X − f (g(Xcor))‖ (3.1)

where encoder g(Xcor) is designed to map the observation Xcor into a high-level spatio-temporal repre-
sentation, and the decoder f (g(Xcor)) transforms the output back into the input manifold to reconstruct
the original data.

3.2. Relationship-aggregated graph model

The skeleton data is always represented as a sequence of feature vectors, and each vector char-
acterizes the 3D coordinates that are relevant to the corresponding human joint. Besides, the bone
information, which represents the directions and lengths of bones, has also been proved to be valuable
for skeleton-based motion analysis. In this section, a relationship-aggregated graph model, consisting
of two tailored graph encoders, local graph encoder (LGE) and global graph encoder (GGE), are re-
spectively proposed to encode the node-level relationship and body-level relationship for skeleton data
representation.

3.2.1. Local graph encoder

Graphs are particularly effective in modeling the complex structured data, and graph convolu-
tional network (GCN) has achieved remarkable performance mainly due to its efficient representa-
tion in modeling the dependencies in skeletal data. Nevertheless, some joints located in different
parts of the body may not have the direct physical dependencies between each other, and the global
topology of the graph model may not well characterize the complex mocap data due to its inher-
ent articulated complexity. To tackle these problems, we decompose the underling human skele-
ton model into K parts (e.g., K = 5 referred to work [14]), and the partition groups are denoted
as: P={spine, left hand, right hand, left leg, right leg}. Let x̄p

t denote the feature representation of the
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nodes contained in the p-th partition, we construct a graph Gp(Vp,Ep) to characterize the p-th parti-
tion, where Vp∈x̄p

t is a set of joint feature vector, Ep denotes the relationship among two connected
joints and weighted by adjacent matrix A(p) ∈ Rnp×np . Note that, the weight of the edge represents the
relationship degreebetween two joints, and the weighted edge ep

i j between the joint vp
i and joint vp

j is
calculated as follows:

ep
i j = ReLU((vp

i Wp
1 + bp

1)(vp
j W

p
2 + bp

2)T) (3.2)

where {Wp
1 ,b

p
1 ,W

p
2 ,b

p
2} are the trainable parameters. Accordingly, the weighted adjacent matrix is

defined as:

Ap
(i, j) =

{
ep

i j, (i, j) ∈ Ep

0, otherwise
, (3.3)

Accordingly, the local graph Gp can be well constructed for p-th partition, which can well model
the joint relationships in each part. Meanwhile, each joint aggregates significant information that
connected to each other. Therefore, these graph nodes are aggregated with other connected joints by:

vp
i = ReLU(

np∑
j=1

Ap
(i, j) × (vp

j W
p
3 + bp

3) + vp
i ) (3.4)

where vp
i is the i-th node in Gp, and {Wp

3 ,b
p
3} are the trainable convolution parameters. Further, these

updated node features {vp
1 , v

p
2 . . . v

p
np} inGp are further normalized with l2 norm: Vp =

∥∥∥{vp
1 , v

p
2 . . . v

p
np}

∥∥∥
2
.

For the i-th frame, we fuse these relationship-aggregated node features into a single feature vector to
characterize each body part:

V
p
t = flatten(Vp) (3.5)

3.2.2. Global graph encoder

The skeleton joints located in different body parts often coordinate with each other to form different
poses. For example, walking requires not only the legs to walk, but also involves the swinging of
the arms to coordinate the balance of the body. To model the correlation of different body parts, we
proposes a global graph encoder to aggregate the relationships between different body parts. Since
the human skeleton model is divided into K parts, we construct an undirected graph Gg = (Vg,Eg) to
aggregate the correlation between these local parts, where Vg∈Vt is the set of feature vectors derived
from the local body parts, Eg denotes the relationship between two parts and weighted by adjacent
matrix Ag ∈ RK×K . The weighted edge eg

i j between the i-th part vg
i and the j-th part vg

j is computed by:

eg
i j = ReLU((vg

i Wg
1+bg

1)(vg
jW

g
2+bg

2)T) (3.6)

where {Wg
1,b

g
1,W

g
2,b

g
2} are the trainable parameters to calculate the weights of graph edges. Accord-

ingly, the weighted adjacent matrix can be defined as:

Ag
(i, j) =

eg
i j, i, j

0, otherwise
, (3.7)

The global graph is capable of modeling the semantic relationship between different body parts, and
each graph node can aggregate mutually relevant important information by using weighted edges:

vg
i = ReLU(

K∑
j=1

Ag
(i, j)×(vg

jW
g
3 + bg

3) + vg
i ) (3.8)
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where {Wg
3,b

g
3} are the trainable convolution parameters. Further, the relationship-aggregated body

features are further normalized with l2 norm: Vg =
∥∥∥vg

1, v
g
2 . . . v

g
k

∥∥∥
2
. Finally, we concatenate these

relationship-aggregated body features to characterize the spatial structure of each frame:

x(rg)
t = fs(concat(vg

1, v
g
2 . . . v

g
k)) (3.9)

where fs(·) is a linear layer. Accordingly, the motion sequences are encoded by a sequence of
relationship-aggregated feature vectors X(rg) = [x(rg)

1 , . . . , x(rg)
N ].
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Figure 2. The architecture of the encoding and decoding networks. Left: Temporal pattern
reasoning network for modeling the dynamic characteristics. Right: Feature decoding net-
work for motion recovery.

3.3. Temporal pattern reasoning network

The temporal modeling of dynamic skeletons is of crucial importance to the discriminative motion
analysis. On the one hand, the existing recurrent neural network (RNN) and long short-time memory
network (LSTM) often fail to capture the long-term dependencies between the skeletons, mainly due
to the uncertainty and diversity of human motion. Under such circumstances, the long-term tempo-
ral dependencies with a significant portion of missing markers may not be easily captured for precise
motion recovery. On the other hand, not all frames contribute equally to the informative motion mod-
eling, and it is necessary to focus on the informative frames in the sequence, and ignore the effects of
the irrelevant frames. To alleviate these concerns, we propose a temporal pattern reasoning network
(TPRN) to model the dependencies and dynamic information in the motions. As shown in Figure 2(a),
a scaled multi-head self-attention layer is utilized to the updated node feature matrix X(rg), and each
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head h ∈ {1, . . . ,h} is defined as:

headh = softmax

X(rg)
Qh

(X(rg)
Kh

)
T

d

 X(rg)
Vh

(3.10)

where X(rg)
Qh

, X(rg)
Kh

and X(rg)
Vh

are head projections of feature matrix X(rg) and d is a normalization factor.
Note that, the softmax-function is often referred to as the attention weight matrix [20]. Finally, the
updated feature matrix via multi-head self-attention mechanism is obtained by:

MSA(X(rg)) = (head1 ‖ · · · ‖ headh) Wo + bo (3.11)

where Wo and bo are trainable parameters for the outputs. Note that, the temploral self-attention
mechanism relates different positions of input sequence, which can provide a simple and powerful
reasoning mechanism to reason the hidden links between the vector entities. Let Z1 = MSA(X(rg)),
the encoder is able to stack multiple instances of the same architecture, and the temporal transformer
encoder with L layers is denoted as follows:

Z′l = MSA(`(Zl−1)) + Zl−1, l = 2, . . . , L (3.12)

Zl =M(`(Z′l)) + Z′l, l = 2, . . . , L (3.13)

T = `(ZL) (3.14)

where `(·) denotes the layer normalization operator, andM(·) is multilayer perceptron operator. Ac-
cordingly, the discriminative spatio-temporal features are denoted as: T = {t1, . . . , tN} ∈ R

N×d.

3.4. Feature decoding network

After all the frames are encoded, we can obtain a representation for the corrupted motion. As shown
in Figure 2, a feature decoding network (FDN) is further designed to map the feature vector back into
a recovered human motion. Similar to the encoding network, we also utilize multi-head self-attention
mechanism to mine the most informative frames. Given the spatio-temporal features T = {t1, . . . , tN},
the FDN with L layers can be represented as follows:

T ′l = MSAd(`(Tl−1)) + Tl−1, l = 2, . . . , L (3.15)

Tl =Md(`(T ′l)) + T ′l, l = 2, . . . , L (3.16)

Xrec = `(TL) (3.17)

where MSAd(·) andMd(·) are respectively the multi-head self-attention operation and multilayer per-
ceptron operation in decoder network, which share the same network structure with the encoding pro-
cess. Accordingly, the reconstructed motion sequence with the same size as the input motion can
be obtained, i.e., Xrec = {xrec

1 , xrec
2 , . . . , xrec

N }. Finally, the recovered motion can be derived from the
following formula:

X∗ = ||M � Xcor + (1 −M) � Xrec|| (3.18)

where X∗ is the weighted sum of Xcor and Xrec. That is, only the missing joint is restored and the other
parts are equal to the input.
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3.5. Optimization

The encoding and decoding process enhances the robustness of the motion recovery results. It
should be noted that the refined results should semantically match the input motion to maintain the
naturalness. To this end, the reconstruction loss and bone length loss are utilized to regularize the
learning model and train the network.

Reconstruction Loss: It aims to ensure the network model to preserve the information from the
visible part of the motion sequence, and the Root Mean Squared Error (RMSE) [21] is utilized to
measure the reconstruction loss:

Lrec = ||M � Xcor + (1 −M) � Xrec − X|| (3.19)

Bone Length Loss: The bone length of kinematic model should be consistent across all frames.
Therefore, we take the invariance property of the bone length to regularize the learning model:

Lbone =

N∑
i=1

J∑
j=1

||lrec
i, j − li, j||2 (3.20)

where the li, j denotes the j-th bone length of i-th frame, Lrec
i, j is the corresponding recovered bone

length. As a result, the total loss is the sum of reconstruction loss and bone length loss:

L joint = Lrec + λLbone (3.21)

where hyper-parameter λ is utilized to balance the contributions of two parts. It is noted that the missing
joint is only reconstructed and the other parts are set as the equal value to the input data. Under such
circumstances, some moving trajectories may be unsmooth between the recovered motion frames. To
tackle this problem, we further utilize a sliding window to linearly smooth the local linearity of human
motion trajectories. As a result, the smooth trajectories with spatio-temporal consistency can be well
obtained with naturality and higher quality.

4. Experiments

In this section, we conduct a series of quantitative experiments to evaluate the efficiency of the pro-
posed motion recovery framework. The experimental results and comparison analysis will be detailed
in the following subsection.

4.1. Dataset and evaluation metric

The public available CMU and HDM05 mocap datasets are selected for evaluation [14]. These
datasets capture a large number of human actions with different semantics, such as walking, basketball,
running, boxing and dance. Specifically, as shown in Table 1, ten representative sequences are chosen
to evaluate the motion recovery performance. To simulate the random missing of motion frames in the
sequence, we utilize the missing rate (MR) from 10% to 40% to control the proportion of missing joint
entries, and randomly remove a certain number of active joints. Such processing ensures randomness in
the position of missing joints and randomness in the position of missing frames in the motion sequence.
In addition, we set K at 5 and fix the λ value to be 1.
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Table 1. The statistical information about the tested mocap sequences.
Motion description (CMU) Frames Mark Motion description (HDM05) Frames Mark
Swordplay 2240 C1 Dancing 8336 H1
Tai Chi 17,792 C2 Kicking and punching 6823 H2
Box 4800 C3 Throwing 3219 H3
Dancing 3136 C4 Badminton 2859 H4
Run 8384 C5 Clapping and waving 5607 H5
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Figure 3. Representative recovery frames selected from CMU and HDM05 databases.

The proposed RGN-TPR model is compared with the state-of-the-art competing methods, including
long short-time memory network (LSTM) and fully connected neural network (FCNN) [5], bidirec-
tional recurrent autoencoder (BRA) [22], attention-based LSTM network (A-LSTM) and least-squares
(LS) constraint(A-LSTM+LS) [18]. Specifically, we utilize the same parameters as the authors have
shared in their raw papers to recover the incomplete mocap sequences. To quantitatively evaluate the
motion recovery performance, we utilize the reconstructed root mean square error (RMSE) to mea-
sure the difference between the reconstructed motion data and the original motion data. Meanwhile,
the normalized position error, defined as the normalized 3D coordinate distance between the restored
frame joints and ground truth, is utilized to evaluate the recovering performance.

4.2. Performance analysis and comparison

In the experiments, we randomly select some motion frames within significant missing joints for
visual illustration, and representative incomplete motion recovering results are displayed in Figure 3. It
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Table 2. Quantitative results obtained by different approaches under different missing rates.
Methods BRA FCNN LSTM A-LSTM+LS Ours

Motion C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

MR 10% 1.01 0.95 1.03 1.01 1.17 1.14 1.12 1.24 1.21 1.38 1.09 0.98 1.09 1.05 1.20 0.79 0.71 0.81 0.72 0.96 0.42 0.31 0.41 0.33 0.51
MR 20% 1.23 1.01 1.22 1.30 1.30 1.58 1.44 1.35 1.77 1.62 1.26 1.14 1.27 1.44 1.33 1.05 0.81 0.99 1.08 1.01 0.57 0.40 0.51 0.42 0.52
MR 30% 1.44 1.22 1.44 1.70 1.41 1.69 1.56 1.86 1.88 1.87 1.52 1.36 1.51 1.80 1.59 1.09 0.94 1.08 1.26 1.17 0.58 0.43 0.52 0.48 0.55
MR 40% 1.81 1.66 1.73 1.76 1.85 2.22 2.04 2.05 2.23 2.37 1.97 1.78 1.96 1.90 2.08 1.66 1.21 1.60 1.51 1.58 0.63 0.44 0.54 0.51 0.59

Methods BRA FCNN LSTM A-LSTM+LS Ours

Motion H1 H2 H3 H4 H5 H1 H2 H3 H4 H5 H1 H2 H3 H4 H5 H1 H2 H3 H4 H5 H1 H2 H3 H4 H5

MR 10% 2.01 1.65 1.31 3.56 1.57 2.89 2.15 1.66 4.03 1.88 2.53 1.74 1.45 3.74 1.66 1.61 1.32 1.28 1.81 1.28 0.52 0.62 0.49 0.66 0.60
MR 20% 2.48 1.81 1.62 4.12 1.72 3.44 2.16 2.08 4.72 1.92 2.94 1.93 1.77 4.35 1.74 1.87 1.56 1.30 2.21 1.61 1.14 1.14 0.89 1.02 1.02
MR 30% 3.39 1.84 2.19 5.08 1.97 4.11 2.29 2.76 6.04 2.32 3.58 1.97 2.36 5.32 1.92 1.95 1.57 1.31 2.24 1.66 1.36 1.45 1.07 1.35 1.39
MR 40% 4.35 1.98 2.20 5.96 2.06 4.93 2.40 2.85 7.46 2.87 4.88 2.16 2.46 7.28 2.25 2.59 1.67 1.53 2.49 1.73 1.47 1.45 1.10 1.45 1.40

Table 3. Quantitative comparisons with different motion sequences.

Motion
C1 C3 C5

short-term long-term short-term long-term short-term long-term
missing time 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
BRA 2.43 2.73 2.87 2.92 2.13 2.30 1.70 2.21 1.61 1.73 2.04 1.85
FCNN 2.92 2.96 3.15 3.19 2.42 2.98 2.64 2.42 1.71 1.86 2.12 2.94
LSTM 3.09 2.89 3.01 3.17 2.24 2.54 1.37 2.43 1.87 1.99 1.78 1.97
A-LSTM+LS 1.67 1.51 1.76 1.63 1.29 1.48 1.17 1.75 1.85 1.79 1.60 1.46
Ours 1.56 1.48 1.51 1.45 1.11 1.32 1.01 1.67 1.74 1.66 1.54 1.37

Motion
H1 H3 H4

short-term long-term short-term long-term short-term long-term
missing time 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
BRA 3.49 4.28 4.63 3.98 1.14 1.90 2.11 2.20 4.71 5.72 5.96 5.34
FCNN 4.35 4.11 4.98 4.63 2.27 2.76 2.96 3.15 6.11 6.96 7.31 7.56
LSTM 3.98 4.15 4.78 4.99 2.19 2.40 2.66 2.54 7.24 7.40 7.72 7.74
A-LSTM+LS 1.87 1.53 1.80 1.71 1.15 1.57 1.54 1.98 1.91 2.14 2.40 2.48
Ours 1.64 1.45 1.67 1.63 1.14 1.48 1.28 1.83 1.81 1.86 1.63 1.77

can be well observed that the incomplete mocap collections generally fail to show a precise recordings
of real human articulations. Although the missing markers are situated in a random and irregular way,
the proposed motion recovery framework is able to well restore the missing entries. Visually, even the
missing marker problem has significantly influenced the human poses, the completed motion frames
almost exhibit the similar representations with the raw motion frames perceptually. Importantly, the
recovered motions obtained by the designed RGN-TPR framework is able to well recover the real
moving trajectories, and extensive experiments show its outstanding performance.

The motion recovery performances tested on different datasets and evaluated with different MR rates
are list in Table 2, it can be found that the proposed RGN-TPR framework has delivered relatively
lower RMSE scores on both CMU and HDM05 datasets, and these scores are always less than the
results generated by the competing baselines. Under MR 30%, it can be found that the RMSE values
obtained by the BRA, FCNN, LSTM and A-LSTM+LS methods are all higher than 0.1 when tested
the sequences C1, C3, C4 and C5 on CMU dataset. It indicates that the recovered entries obtained by
these competing baselines may not exactly match the real poses. A plausible reason is that the BRA
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Table 3: Quantitative comparisons with different motion sequences.

Motion C1 C3 C5
short-term long-term short-term long-term short-term long-term

missing time 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
BRA 2.43 2.73 2.87 2.92 2.13 2.30 1.70 2.21 1.61 1.73 2.04 1.85

FCNN 2.92 2.96 3.15 3.19 2.42 2.98 2.64 2.42 1.71 1.86 2.12 2.94
LSTM 3.09 2.89 3.01 3.17 2.24 2.54 1.37 2.43 1.87 1.99 1.78 1.97

A-LSTM+LS 1.67 1.51 1.76 1.63 1.29 1.48 1.17 1.75 1.85 1.79 1.60 1.46
Ours 1.56 1.48 1.51 1.45 1.11 1.32 1.01 1.67 1.74 1.66 1.54 1.37

Motion H1 H3 H4
short-term long-term short-term long-term short-term long-term

missing time 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
BRA 3.49 4.28 4.63 3.98 1.14 1.90 2.11 2.20 4.71 5.72 5.96 5.34

FCNN 4.35 4.11 4.98 4.63 2.27 2.76 2.96 3.15 6.11 6.96 7.31 7.56
LSTM 3.98 4.15 4.78 4.99 2.19 2.40 2.66 2.54 7.24 7.40 7.72 7.74

A-LSTM+LS 1.87 1.53 1.80 1.71 1.15 1.57 1.54 1.98 1.91 2.14 2.40 2.48
Ours 1.64 1.45 1.67 1.63 1.14 1.48 1.28 1.83 1.81 1.86 1.63 1.77
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Figure 4: The recordings of position error with different motion types (MR=40%).

spatio-temporal information of the motion sequence is severely
damaged when the multiple markers in the sequence are con-
tinuously missing. Under such circumstances, it is difficult315

for the existing restoration methods to estimate the missing in-
formation from the available positions. By contrast, the pro-

posed RGN-TPR model carefully considers the relationship-
aggregated joint information, dynamic characteristics and long-
term dependencies between the skeletons, which can capture320

the rich information from the available markers to complete the
missing joints. In addition, we select the MR value to be 40%

8

Figure 4. The normalized position errors obtained by different approaches and tested on
different frames in the sequences.

and FCNN approaches are suitable to complete the missing motions with low complexity, but which
often fail to investigate the articulated complexity and temporal property within the missing sequence.
Accordingly, the restored performance may be very poor when the incomplete sequences incorporate
with large spatio-temporal complexity. Although the LSTM and A-LSTM+LS methods attempt to
boost the recovering performance by considering the dynamic information within the sequence, the
RMSE scores obtained by these two approaches are also a bit large. The main reason lies that these
two approaches feed the human skeleton directly into the deep networks to simulate the human motion
model, which often ignore the local topological structure within the original data space and may fail to
aggregate the structural relationships between different joints. As a result, some recovered frames may
appear unnatural movements and deviate from the real motion data to a certain extent.

In contrast to this, the RMSE values obtained by the proposed approach are significant lower than
the competing approaches. For different missing rates, the RMSE scores obtained by the proposed
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model are also less than the competing baselines. That is, the proposed RGN-TPR framework has
yielded the best recovering performance. Although these incomplete sequences have the heteroge-
neous poses and different MR rates, the proposed RGN-TPR model is able to provide the reasonable
estimations such that the restored results incorporate a precise representation to reveal the real move-
ments. This indicates that the proposed learning model can effectively extract the spatio-temporal
features hidden in the missing human skeleton structure and motion trajectories, which therefore can
effectively reconstruct motion data in a reliable way.

In view of the continuous missing of adjacent markers in the same frame, we further perform a set
of experiments to evaluate the recovery performance in the case of continuous missing. We select 6
sequences of 2000 frames in length and remove all information for specific joints (e.g., thigh, forearm)
with 100 missing frame intervals. Table 3 displays the RMSE scores between the proposed RGN-TPR
model and the competing baselines. It can be clearly observed that the performances of the existing
methods drop sharply when the length of tested sequences is increasing. A possible reason lies that the
spatio-temporal information of the motion sequence is severely damaged when the multiple markers
in the sequence are continuously missing. Under such circumstances, it is difficult for the existing
restoration methods to estimate the missing information from the available positions. By contrast, the
proposed RGN-TPR model carefully considers the relationship-aggregated joint information, dynamic
characteristics and long-term dependencies between the skeletons, which can capture the rich informa-
tion from the available markers to complete the missing joints. In addition, we select the MR value
to be 40% and further evaluate the normalized position error between the complete and restored mo-
tion sequences. As shown in Figure 4, it can be clearly observed that the position errors generated by
the proposed RGN-TPR method are always less than the error results obtained by the competing ap-
proaches. Note that, the small normalized position error indicates the better recovering performance,
and the recovered results are able to well match the real movements. It can be observed that the
incomplete motions recovered by the proposed RGN-TPR approach are able to well match the real
movements. Even a large proportion of markers is missing or the markers are missing for a long period
of time, the proposed RGN-TPR framework has yielded the best motion recovering performances, and
the completed missing entries are able to well match the real movements.

5. Conclusions

This paper presents an efficient mocap data recovery approach by using relationship-aggregated
graph network and temporal pattern reasoning mechanism. The proposed framework utilizes local
graph encoder to encode the high-level semantic node features and their semantic relationships in each
local part, and employs the global graph encoder to aggregate the structural relationships between dif-
ferent parts for whole skeletal data representation. Meanwhile, the designed temporal pattern reasoning
mechanism is able to exploit the intra-frame interactions and capture long-term dependencies between
the motion frames, whereby the discriminative spatio-temporal features and semantic correlations can
be reasonably obtained for efficient motion recovery. Extensive experiments conducted on various
kinds of motion sequences have shown its outstanding performance.
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