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Abstract: This study explores the use of numerical simulations to model the spread of the Omicron
variant of the SARS-CoV-2 virus using fractional-order COVID-19 models and Haar wavelet colloca-
tion methods. The fractional order COVID-19 model considers various factors that affect the virus’s
transmission, and the Haar wavelet collocation method offers a precise and efficient solution to the
fractional derivatives used in the model. The simulation results yield crucial insights into the Omi-
cron variant’s spread, providing valuable information to public health policies and strategies designed
to mitigate its impact. This study marks a significant advancement in comprehending the COVID-19
pandemic’s dynamics and the emergence of its variants. The COVID-19 epidemic model is reworked
utilizing fractional derivatives in the Caputo sense, and the model’s existence and uniqueness are es-
tablished by considering fixed point theory results. Sensitivity analysis is conducted on the model to
identify the parameter with the highest sensitivity. For numerical treatment and simulations, we apply
the Haar wavelet collocation method. Parameter estimation for the recorded COVID-19 cases in India
from 13 July 2021 to 25 August 2021 has been presented.
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1. Introduction

The SARS-CoV-2 virus triggered a pandemic worldwide. SARS-CoV-2, a spike protein virus, is
the pathogen that causes widespread Coronavirus infections. Coronaviruses make up a broad family of
viruses. The first serious disease attributed to a coronavirus is the severe acute respiratory syndrome
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(SARS) an epidemic that began in China in 2003. Saudi Arabia was home to a second epidemic, middle
east respiratory syndrome (MERS), first reported in 2012 [1]. In December 2019, Wuhan, China,
announced a SARS coronavirus 2 outbreak (COVID-19). The World Health Organization (WHO)
classified COVID-19 as a worldwide epidemic in March 2020. As of 8 January 2023, over 659 million
cases have been confirmed worldwide, resulting in over 6.6 million deaths [2]. Typically, The disease
is contracted through exposure to infected respiratory droplets from breathing, coughing, sneezing, and
talking [3–7]. The disease is transmissible through the air, according to further research [8–13]. The
risk of infection is also present when contact is made with objects that are contaminated with Covid-
19. It has been observed that COVID-19 can cause a coughing fit, pain in the muscles, vertigo, high
temperature, an inability to smell, throat irritation, weakness, and nasal congestion after 2–14 days of
incubation of the virus.

The Omicron variant has been characterized by its high transmissibility and numerous mutations,
which have raised concerns about its potential to evade immunity conferred by vaccines or prior infec-
tion. In response, India has implemented measures such as booster doses and vaccine mix-and-match
regimens to enhance protection against the new variant. Furthermore, the Indian government has also
imposed stricter quarantine rules for international travelers, particularly those arriving from countries
with high Omicron prevalence. Despite these efforts, challenges remain, particularly in remote or
under-resourced areas where healthcare infrastructure and resources may be limited. Additionally, the
emergence of new variants underscores the need for ongoing surveillance and research to better un-
derstand the virus and its behavior. To that end, India has continued to invest in genomic sequencing
efforts, which have played a crucial role in tracking the spread of different variants. As India continues
to navigate the ongoing COVID-19 pandemic, the situation with Omicron remains dynamic, and it is
important to remain vigilant and adaptable in the face of new developments.

Globally, the COVID-19 pandemic continues to pose a serious threat to public health. Three recent
publications offer insight into the crucial elements that ought to direct disease containment efforts.
A risk assessment of COVID-19 reappearance in connection to SARS-CoV-2 mutations and vaccine
success is provided by Krueger et al. [14] in 2022. They place a strong emphasis on the value of
immunization and the necessity of ongoing surveillance of the disease’s spread. The necessity for a
coordinated European response to the omicron version of COVID-19 is highlighted by Calero Valdez
et al. [15] in 2022. To slow the spread of the variation and prevent a spike in cases, the authors contend
that concerted action is required. In the meanwhile, Markovi et al. [16] (2021) provide evidence that
socio-demographic and health characteristics are important contributors to the spread of the COVID-19
outbreak and recommend that vaccination regimens should consider these aspects for efficient disease
control. Collectively, these papers highlight the significance of a thorough, evidence-based strategy for
COVID-19 regulation that considers both individual and population-level determinants.

Dynamical systems have become increasingly complex, and fractional calculus (FC) has become
an increasingly useful tool. The process of differentiation and integration in FC is generalized to
non-integer orders. FC has been applied to research in a variety of fields. In order to gain a deeper
understanding of a disease, fractional order differential equations (FODs) are used. For various dis-
eases, mathematical models have been formulated and studied, for example, [17–22]. In order to over-
come the deficiencies of the ordinary operator, fractional order derivatives have been developed [23].
Riemann-Liouville proposed the concept of the fractional derivative (FD). Caputo later reformulated
and improved FD. The formula of Caputo FD is based on the singular power-law kernel. FDs are
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commonly used to study real problems, but they often yield singularities that are dissatisfactory. Fol-
lowing decades, and for this reason, Caputo-Fabrizio (CF) operators is created through nonsingular
kernels [24]. CF, however, has a kernel locality problem. As a solution to this shortcoming, Atangana
and Baleanu (AB) [25] proposed Mittag-Leffler kernels as a novel type of FD.

Several works [26–28] have proposed fractional operators with singular and nonsingular kernels,
and recent publications such as [29–35] explore the research related to these topics and their appli-
cations. Additionally, mathematical modeling studies have recently emerged to address social issues,
such as criminal activity, using FC. In order to convert the proposed fractional-order crime transmis-
sion model to the delayed model and account for the lag between the crime and judgment, Bansal et
al. [36] established the time-delay coefficient. Pritam et al. [37] studied a fractional-order mathemati-
cal model of crime transmission that includes the memory property inherited from the previous impact
of the input while predicting the crime growth rate in analyzing crime congestion. By using the actual
initial conditions for the subgroups of the USA, Partohaghighi et al. [38] designed and compared the
fractional-order crime systems for the first time using the Atangana-Baleanu-Caputo (ABC), Caputo,
and Caputo-Fabrizio derivatives and to obtain approximate solutions to the proposed models, they de-
veloped some numerical methods. Rahman et al. [39] presented a study on the dynamics of a fractional
mathematical model of serial killing under the Mittag-Leffler kernel, [39] discovered the approximate
solution and numerically simulated it for multiple control techniques in various fractional orders using
the iterative fractional-order Adams-Bashforth approach.

Haar wavelet numerical methods are a family of mathematical techniques used to solve differential
equations with fractional derivatives. These methods are based on the Haar wavelet, a simple wavelet
function that provides a piecewise constant approximation of a signal. The Haar wavelet is well suited
for the numerical solution of fractional differential equations due to its simplicity, local support, and
orthogonality. One of the main advantages of Haar wavelet numerical methods is their ability to pro-
vide efficient and accurate solutions to fractional differential equations. Unlike traditional numerical
methods, which can be time-consuming and prone to errors when solving problems with fractional
derivatives, Haar wavelet methods are computationally efficient and produce accurate solutions. Haar
wavelet numerical methods have been applied to a wide range of problems in various fields, including
physics, engineering, and finance. For example, they have been used to study the diffusion of heat in
porous media, to model the dynamic behavior of financial markets, and to analyze the spread of infec-
tious diseases. Haar wavelet numerical methods have gained significant attention in the past few years
for solving problems associated with the COVID-19 pandemic. These methods have been employed
to model the virus’s propagation over time while accounting for the multiple factors influencing its
transmission. Through these studies, useful information has been obtained regarding the pandemic’s
dynamics, its evolution, and its impact, which has helped in developing public health policies and
strategies aimed at managing its spread.

The use of Haar wavelet numerical methods has gained popularity in various fields, including nu-
merical analysis, image processing, quantum field theory, and statistics. Haar wavelets have been
applied in communication, physics research, differential equations, and nonlinear problems [40]. They
are preferred among all wavelet families because they are the simplest wavelet family that comprises
pairs of piecewise constant functions. Additionally, they can be integrated analytically at random
times. Recent research has employed Haar wavelets to solve various fractional-order mathematical
models [41, 42]. The Haar wavelet technique is not only fast but also more stable, making it an excel-
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lent option for numerical computation.
The innovative aspects of the paper include the application of Haar wavelet collocation methods

and fractional order COVID-19 models to the simulation of the Omicron variant of the SARS-CoV-
2 virus and the dynamics of the COVID-19 pandemic as well as the evolution of its variants. The
results of the study can help shape public health policies and actions targeted at reducing its impact
since they provide a more precise and effective solution to the fractional derivatives employed in the
model. The importance of this work in furthering our understanding of COVID-19 is increased by
the inclusion of parameter estimates and stability analysis. The remainder of the article is structured
as follows: In Section 2, the basic concepts of the fractional differential, integral operator, and Haar
wavelets have been presented. In Section 3, the fractional extension of the model has been formulated,
and the equilibrium point and threshold number have been calculated. In Section 4, the existence and
uniqueness of the solution of the model have been established and the numerical scheme is described.
Section 5 provides parameter estimation for the COVID-19 reported data in India from 13 July to 25
August 2021. The sensitivity analysis of the model is cared out in Section 6. The numerical scheme
and graphical results are presented in Section 7. Conclusions and future research direction have been
offered in Section 8.

2. Preliminaries

In recent years, significant progress has been made in the definition of fractional derivatives. This
progress has been documented in various sources, including [30, 31, 43–45]. The updated definitions
encompass non-singular kernel derivatives, as well as the Riemann-Liouville fractional derivative with-
out a singular kernel and the two-parameter derivative with non-singular and non-local kernels. Out of
these, the following two definitions are widely accepted in the field:

Definition 1. Riemann-Liouville’s definition characterizes the fractional derivative of F with order δ.
The definition can be expressed as follows:

Dδ∗F (t) =

 1
Γ(s−δ)

(
d
dt

)s ∫ t

0
F (ν)

(t−ν)δ−s+1 dν, 0 ≤ s − 1 < δ < s, s ∈ N,

(d/dt)sF (t), δ = s, s ∈ N.
(2.1)

Definition 2. The function F can be differentiated with respect to the fractional order δ using the
Caputo fractional derivative, which is defined in the following manner:

Dδ∗F (t) =

 1
Γ(s−δ)

∫ t

0
(d/dν)sF (ν)
(t−ν)δ−s+1 dν, 0 ≤ s − 1 < δ < s, s ∈ N,

(d/dt)sF (t), δ = s, s ∈ N.
(2.2)

The study also employs the RL representation of the fractional integral operator D−δ∗ with order δ.
This operator can be defined in the following manner:

D−δ∗ F (t) =
1
Γ(δ)

∫ t

0
F (ν)(t − ν)δ−1dν (2.3)
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2.1. Haar wavelets

According to [46, 47], the mother Haar wavelet function (on the real line) is denoted as ψ(t), while
the Haar scaling function is represented by ψ̃0(t):

ψ(t) =


1, if t ∈

[
0, 1

2

)
,

−1, if t ∈
[

1
2 , 1

)
,

0, elsewhere,

(2.4)

ψ̃0(t) = 1, if t ∈ [0, 1). (2.5)

Multiresolution analysis generates multiple Haar wavelets on the interval [0, 1), which can be de-
noted as ψ̃m(t). As a consequence, the following relationship holds:

ψ̃m(t) = 2 j/2ψ
(
2 jt − p

)
,m = 1, 2, . . . ; (2.6)

where m = 2 j + p : p = 0, 1, . . . , 2 j − 1; j = 0, 1, . . . . Further, we can translate the Haar functions on
u − 1 ≤ t < u as

ψ̃u,m(t) = ψ̃m(t + 1 − u),m = 0, 1, 2, . . . , u = 1, 2, . . . , ϱ, ϱ ∈ N. (2.7)

According to [47], the sequence
{
ψ̃m(t)

}∞
m=0

forms a complete orthonormal system in L2[0, 1), while

the sequence
{
ψ̃u,m(t)

}∞
m=0

, u = 1, 2, . . . , ϱ, forms a complete orthonormal system in L2[0, ϱ). This
implies that any function F (t) belonging to L2[0, ϱ) can be expressed as a series of Haar orthonormal
basis functions.

F (t) =
ϱ∑

u=1

∞∑
m=0

Gu,mψ̃u,m(t). (2.8)

Additionally, after truncating this series F (t), we obtain the equivalent approximation yp(t) of F (t)
as

F (t) ≈ yp(t) =
ϱ∑

u=1

p−1∑
m=0

Gu,mψ̃u,m(t) = BT
ϱp×1ψ̃ϱp×1(t), (2.9)

where the coefficients Gu,m can be expressed by inner product〈
F (t), ψ̃u,m(t)

〉
=

∫ u

u−1
F (t)ψ̃u,m(t)dt, m = 1, 2, . . . , (p − 1), u = 1, 2, . . . , ϱ,

Bϱp×1 =
[
G1,0, . . . ,G1,p−1,G2,0, . . . ,G2,p−1, . . . ,Gϱ,0, . . . ,Gϱ,p−1

]T
,

ψ̃ϱp×1 =
[
ψ̃1,0, . . . , ψ̃1,p−1, ψ̃2,0, . . . , ψ̃2,p−1, . . . , ψ̃ϱ,0, . . . , ψ̃ϱ,p−1

]T
,

(2.10)

and superscript T indicates the transpose of a matrix.

3. Mathematical model

Mathematical modeling plays a crucial role in understanding and predicting the spread of infectious
diseases. By using mathematical equations and algorithms, researchers can simulate the behavior of
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diseases and their transmission within populations. This allows them to make predictions about the
future spread of the disease and to test various intervention strategies. Mathematical models can also
provide valuable insights into the basic mechanisms of disease transmission, helping to identify risk
factors and to inform public health policies. However, it is important to note that the accuracy of these
models depends on the quality of data input and the assumptions made in the model, and they should
always be used in conjunction with other sources of information. Considering the work of [7, 11], the
model applied takes the form of the following ODEs:



dS(t)
dt
= B − θS(t)I(t)(1 + τI(t)) − (ε1 + ρ + η)S(t),

dE(t)
dt
= θS(t)I(t)(1 + τI(t)) − (ε2 + ρ + φ)E(t),

dI(t)
dt
= φE(t) − (λ + ϵ + ρ + ε3)I(t),

dQ(t)
dt
= ε1S(t) + ε2E(t) + ε3I(t) − (ρ + σ)Q(t),

dR(t)
dt
= ηS(t) + σQ(t) + λI(t) − ρR(t),

S(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0, Q(t) ≥ 0, R(t) ≥ 0.

(3.1)

where,

N(t) = S(t) + E(t) + I(t) + Q(t) + R(t).

According to the five categories, the total population at time t is represented by N(t) in model
(3.1). The individuals who are susceptible to infection are designated as S(t); exposed individuals
are designated as E(t); infectious individuals are designated as I(t); and quarantined individuals are
designated as Q(t); and recovered individuals are designated as R(t). The parameters θ and τ are
positive constants, whereas B is the constant birth rate, θ is the coefficient of disease transmission,ρ is
the natural death rate, andϵ is the mortality rate from infectious disease in humans and φ, λ, ε3, ε2, ε1, σ

are the state transition rates. The term η refers to the transmission rate from the class of persons who
are immune system-strong to those who are susceptible to it.

3.1. Formulation of fractional model

The Caputo fractional derivative offers a significant advantage over classical models in the context
of COVID-19 modeling by allowing for a more accurate representation of complex phenomena, such
as the long-lasting effects of the disease on patients. Unlike classical models that assume instant recov-
ery after an infection, Caputo fractional derivatives account for the memory effect of the disease, which
can persist even after recovery, enabling more precise predictions and better decision-making regarding
healthcare resource allocation and pandemic control measures. Additionally, using the Caputo deriva-
tive often requires less computational resources and less data, making it a more cost-effective solution
in disease modeling. Furthermore, time memory effect can be found in most natural phenomena, such
as epidemiological dynamics. Model (3.1) is expressed in integral form as:
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dS(t)
dt
=

∫ t

t0
ς(t − ϑ)

[
B − θS(t)I(t)(1 + τI(t)) − (ε1 + ρ + η)S(t)

]
dϑ,

dE(t)
dt
=

∫ t

t0
ς(t − ϑ)

[
θS(t)I(t)(1 + τI(t)) − (ε2 + ρ + φ)E(t)

]
dϑ,

dI(t)
dt
=

∫ t

t0
ς(t − ϑ)

[
φE(t) − (λ + ϵ + ρ + ε3)I(t)

]
dϑ,

dQ(t)
dt
=

∫ t

t0
ς(t − ϑ)

[
ε1S(t) + ε2E(t) + ε3I(t) − (ρ + σ)Q(t)

]
dϑ,

dR(t)
dt
=

∫ t

t0
ς(t − ϑ)

[
ηS(t) + σQ(t) + λI(t) − ρR(t)

]
dϑ.

(3.2)

Incorporating the Caputo derivative we get,

CDδ−1
t

[
dS(t)

dt

]
=C Dδ−1

t I−(δ−1) [B − θS(t)I(t)(1 + τI(t)) − (ε1 + ρ + η)S(t)
]
,

CDδ−1
t

[
dE(t)

dt

]
=C Dδ−1

t I−(δ−1) [θS(t)I(t)(1 + τI(t)) − (ε2 + ρ + φ)E(t)
]
,

CDδ−1
t

[
dI(t)
dt

]
=C Dδ−1

t I−(δ−1) [φE(t) − (λ + ϵ + ρ + ε3)I(t)
]
,

CDδ−1
t

[
dQ(t)

dt

]
=C Dδ−1

t I−(δ−1) [ε1S(t) + ε2E(t) + ε3I(t) − (ρ + σ)Q(t)
]
,

CDδ−1
t

[
dR(t)

dt

]
=C Dδ−1

t I−(δ−1) [ηS(t) + σQ(t) + λI(t) − ρR(t)
]
.

(3.3)

After calculations, we reaches

CDδ
tS(t) = B − θS(t)I(t)(1 + τI(t)) − (ε1 + ρ + η)S(t),

CDδ
tE(t) = θS(t)I(t)(1 + τI(t)) − (ε2 + ρ + φ)E(t),

CDδ
t I(t) = φE(t) − (λ + ϵ + ρ + ε3)I(t),

CDδ
tQ(t) = ε1S(t) + ε2E(t) + ε3I(t) − (ρ + σ)Q(t),

CDδ
tR(t) = ηS(t) + σQ(t) + λI(t) − ρR(t).

(3.4)

3.2. Equilibrium point and threshold number R0

A crucial element of epidemiological modeling is the basic reproductive number R0, which ex-
presses the typical number of secondary infections brought on by a single infected person in a popula-
tion that is fully susceptible. In the context of epidemiological modeling, R0 offers numerous benefits:

• It provides a clear measure of the transmissibility of a disease: A high R0 indicates that a
disease is easily transmitted, while a low R0 suggests that it is less contagious.
• It helps to predict the potential spread of an outbreak: By estimating R0, epidemiologists

can predict the potential size and duration of an outbreak and identify the most effective control
measures.

Mathematical Biosciences and Engineering Volume 20, Issue 6, 11281–11312.



11288

• It can be used to evaluate the effectiveness of interventions: By comparing the R0 before and
after an intervention, such as the implementation of a vaccine or quarantine measures, epidemi-
ologists can determine the effectiveness of the intervention in reducing transmission.
• It can be used to identify the critical control points: R0 can be used to identify the critical points

in the transmission of an infection, such as the number of infected individuals in a population.
• It can be used to predict the herd immunity threshold: The herd immunity threshold is the

proportion of the population that needs to be immune to a disease in order to achieve herd im-
munity. R0 helps to predict the herd immunity threshold and thus the overall effectiveness of
vaccination programs.

The DFE of the model (3.4) is denoted by E0(S0, 0, 0,Q0,R0), where

S0 =
B

η + ρ + ε1
, Q0 =

ε1S0

ρ + τ
, R0 =

ηS0 + τQ0

ρ
.

Our proposed model is split in two matrices [48].

Ũ =
[

0 θS0

0 0

]
, Ṽ =

[
φ + ρ + ε2 0
−φ ρ + ϵ + λ + ε3

]
,

Ṽ−1 =
1

(φ + ρ + ε2)(ρ + ϵ + λ + ε3)

[
ρ + ϵ + λ + ε3 0

φ φ + ρ + ε2

]
,

ŨṼ−1 =

[ θS0φ

(φ+ρ+ε2)(ρ+ϵ+λ+ε3)
θS0

ρ+ϵ+λ+ε3

0 0

]
.

Hence

R0 =
φθB

(η + ρ + ε1)(φ + ρ + ε2)(ρ + ϵ + λ + ε3)
.

4. Existence and uniqueness

The existence and uniqueness of a solution to a mathematical problem is a fundamental concept in
many areas of mathematics. In order for a solution to exist, the problem must have at least one solution
that satisfies all the given conditions. Uniqueness, on the other hand, refers to the fact that there is
only one solution to the problem that satisfies all the given conditions. This is important because it
means that any method used to solve the problem will always give the same answer. In many cases, the
existence and uniqueness of a solution can be proven through the use of mathematical theorems and
techniques such as the existence and uniqueness theorem.

In this section, we describe the existence, uniqueness, and solution of the system (3.4) using the
Caputo operator. We assume that the Banach spaceA(Y) is a continuous real-valued function with the
sup-norm property on J = [0, b], and that Y = [0, κ] and P = A(Y) ×A(Y) ×A(Y) ×A(Y) ×A(Y) has
the norm ∥(S,E,Q, I,R)∥ = ∥S∥ + ∥E∥ + ∥Q∥ + ∥I∥ + ∥R∥. Here, ∥S∥, ∥E∥, ∥Q∥, ∥I∥, and ∥R∥ are defined
as supt∈Y |S(t)|, supt∈Y |E(t)|, supt∈Y |Q(t)|, supt∈Y |I(t)|, and supt∈Y |R(t)|, respectively. Using the Caputo
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fractional integral operator on both sides of (3.4), we obtain the following equation:

S(t) − S(0) =C Dδ0,tS(t) {B − θSI(1 + τI) − (ε1 + ρ + η)S(t)} ,
E(t) − E(0) =C Dδ0,tE(t) {θSI(1 + τI) − (ε2 + ρ + φ)E(t)} ,
I(t) − I(0) =C Dδ0,tI(t) {φE(t) − (λ + ϵ + ρ + ε3)I(t)} ,
Q(t) − Q(0) =C Dδ0,tQ(t) {ε1S(t) + ε2E(t) + ε3I(t) − (ρ + σ)Q(t)} ,
R(t) − R(0) =C Dδ0,tR(t) {ηS(t) + σQ(t) + λI(t) − ρR(t)} .

(4.1)

After calculation
S(t) − S(0) = H(δ)

∫ t

0
(t − ϑ)−δB1(δ, ϑ,S(ϑ))dϑ,

E(t) − E(0) = H(δ)
∫ t

0
(t − ϑ)−δB2(δ, ϑ,E(ϑ))dϑ,

I(t) − I(0) = H(δ)
∫ t

0
(t − ϑ)−δB4 (δ, ϑ, I(ϑ)) dϑ,

Q(t) − Q(0) = H(δ)
∫ t

0
(t − ϑ)−δB3 (δ, ϑ,Q(ϑ)) dϑ,

R(t) − R(0) = H(δ)
∫ t

0
(t − ϑ)−δB5(δ, ϑ,R(ϑ))dϑ,

(4.2)

where 

S(t) − S(0) =C Dδ0,tS(t) {B − θSI(1 + τI) − (ε1 + ρ + η)S(t)} ,
E(t) − E(0) =C Dδ0,tE(t) {θSI(1 + τI) − (ε2 + ρ + φ)E(t)} ,
I(t) − I(0) =C Dδ0,tI(t) {φE(t) − (λ + ϵ + ρ + ε3)I(t)} ,
Q(t) − Q(0) =C Dδ0,tQ(t) {ε1S(t) + ε2E(t) + ε3I(t) − (ρ + σ)Q(t)} ,
R(t) − R(0) =C Dδ0,tR(t) {ηS(t) + σQ(t) + λI(t) − ρR(t)} .

(4.3)

B1(δ, t,S(t)) = B − θSI(1 + τI) − (ε1 + ρ + η)S(t),

B2(δ, t,E(t)) = θSI(1 + τI) − (ε2 + ρ + φ)E(t),

B3 (δ, t, I(t)) = φE(t) − (λ + ϵ + ρ + ε3)I(t),

B4 (δ, t,Q(t)) = ε1S(t) + ε2E(t) + ε3I(t) − (ρ + σ)Q(t),

B5(δ, t,R(t)) = ηS(t) + σQ(t) + λI(t) − ρR(t).

(4.4)

The symbolsB1,B2,B3,B4 andB5 have to hold for the Lipschitz condition only if S(t),E(t),Q(t), I(t)
and R(t) possess an upper bound. Summarizing that S(t) and S∗(t) are couple functions, we reach

∥B1(δ, t,S(t)) − B1 (δ, t,S∗(t))∥ = ∥− (θI(1 + τI) + η + ρ + ε1) (S(t) − S∗(t))∥ . (4.5)

Taking into account Λ1 = ∥− (θI(1 + τI) + η + ρ + ε1)∥ one reaches

∥B1(δ, t,S(t)) − B1 (δ, t,S∗(t))∥ ≤ Λ1 ∥S(t) − S∗(t)∥ . (4.6)
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Similarly

∥B2(δ, t,E(t)) − B2 (δ, t,E∗(t))∥ ≤ Λ2 ∥E(t) − E∗(t)∥ ,

∥B3 (δ, t,Q(t)) − B3 (δ, t,Q∗(t))∥ ≤ Λ3 ∥Q(t) − Q∗(t)∥ ,

∥B4 (δ, t, I(t)) − B4 (δ, t, I∗(t))∥ ≤ Λ4 ∥I(t) − I∗(t)∥ ,

∥B5(δ, t,R(t)) − B5 (δ, t,R∗(t))∥ ≤ Λ5 ∥R(t) − R∗(t)∥ .

(4.7)

Where

Λ2 = ∥− (φ + ρ + ε2)∥

Λ3 = ∥− (ρ + ϵ + λ + ε3)∥

Λ4 = ∥− (ρ + τ)∥

Λ5 = ∥− (ρ)∥ .

These results suggest that the Lipschitz condition holds for all five functions. By iteratively utilizing
the equations in (4.2), we can derive the following expressions

Sn(t) = H(δ)
∫ t

0
(t − ϑ)−δB1 (δ, ϑ,Sn−1(ϑ)) dϑ,

En(t) = H(δ)
∫ t

0
(t − ϑ)−δB2 (δ, ϑ,En−1(ϑ)) dϑ,

Qn(t) = H(δ)
∫ t

0
(t − ϑ)−δB3 (δ, ϑ,Qn−1(ϑ)) dϑ,

In(t) = H(δ)
∫ t

0
(t − ϑ)−δB4 (δ, ϑ, In−1(ϑ)) dϑ,

Rn(t) = H(δ)
∫ t

0
(t − ϑ)−δB5 (δ, ϑ,Rn−1(ϑ)) dϑ,

(4.8)

together with S0(t) = S(0),E0(t) = E(0),Q0(t) = Q(0), I0(t) = I(0) and R0(t) = R(0). When the
successive terms difference is taken, we get
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ΨS,n(t) =Sn(t) − Sn−1(t)

=H(δ)
∫ t

0
(t − ϑ)−δ (B1 (δ, ϑ,Sn−1(ϑ)) −B1 (δ, ϑ,Sn−2(ϑ))) dϑ,

ΨE,n(t) =En(t) − En−1(t)

=H(δ)
∫ l

0
(t − ϑ)−δ (B2 (δ, ϑ,En−1(ϑ)) −B2 (δ, ϑ,En−2(ϑ))) dϑ,

ΨI,n(t) =I2n(t) − In−1(t)

=H(δ)
∫ t

0
(t − ϑ)−δ (B4 (δ, ϑ, In−1(ϑ)) −B4 (δ, ϑ, In−2(ϑ))) dϑ,

ΨQ,n(t) =Q1n(t) − Qn−1(t)

=H(δ)
∫ t

0
(t − ϑ)−δ (B3 (δ, ϑ,Qn−1(ϑ)) −B3 (δ, ϑ,Qn−2(ϑ))) dϑ,

ΨR,n(t) =Rn(t) − Rn−1(t)

=H(δ)
∫ t

0
(t − ϑ)−δ (B5 (δ, ϑ,Rn−1(ϑ)) −B5 (δ, ϑ,Rn−2(ϑ))) dϑ.

(4.9)

It is vital to observe that

Sn(t) =
n∑

m=0

ΨS,m(t), En(t) =
n∑

m=0

ΨE,m(t), Qn(t) =
n∑

m=0

ΨQ,m(t),

In(t) =
n∑

m=0

ΨI,m(t), Rn(t) =
n∑

m=0

ΨR,m(t).

Additionally, by using Eqs (4.6) and (4.7) and considering that

ΨS,n−1(t) = Sn−1(t) − Sn−2(t), ΨE,n−1(t) = En−1(t) − En−2(t), ΨQ,n−1(t) = Qn−1(t) − Qn−2(t),
ΨI,n−1(t) = In−1(t) − In−2(t), ΨR,n−1(t) = Rn−1(t) − Rn−2(t),

we reach ∥∥∥ΨS,n(t)
∥∥∥ ≤ H(δ)Λ1

∫ t

0
(t − ϑ)−δ

∥∥∥ΨS,n−1(ϑ)
∥∥∥ dϑ,∥∥∥ΨE,n(t)

∥∥∥ ≤ H(δ)Λ2

∫ t

0
(t − ϑ)−δ

∥∥∥ΨE,n−1(ϑ)
∥∥∥ dϑ,∥∥∥ΨI,n(t)

∥∥∥ ≤ H(δ)Λ4

∫ t

0
(t − ϑ)−δ

∥∥∥ΨI,n−1(ϑ)
∥∥∥ dϑ,∥∥∥ΨQ,n(t)

∥∥∥ ≤ H(δ)Λ3

∫ t

0
(t − ϑ)−δ

∥∥∥ΨQ,n−1(ϑ)
∥∥∥ dϑ,∥∥∥ΨR,n(t)

∥∥∥ ≤ H(δ)Λ5

∫ t

0
(t − ϑ)−δ

∥∥∥ΨR,n−1(ϑ)
∥∥∥ dϑ.

(4.10)

Theorem 3. If the following condition holds

H(δ)
δ

κδΛm < 1,m = 1, 2, . . . , 5. (4.11)

Then, (3.4) has a unique solution for t ∈ [0, κ].
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Proof It is shown that S(t),E(t),Q(t), I(t) and R(t) are bounded functions. In addition, as can be seen
from Eqs (4.6) and (4.7), the B1,B2,B3,B4 and B5 hold for Lipchitz condition. Therefore, utilizing Eq
(4.10) together with a recursive hypothesis, we arrive at∥∥∥ΨS,n(t)

∥∥∥ ≤ ∥S0(t)∥
(
H(δ)
δ
κδΛ1

)n
,∥∥∥ΨE,n(t)

∥∥∥ ≤ ∥E0(t)∥
(
H(δ)
δ
κδΛ2

)n
,∥∥∥ΨI,n(t)

∥∥∥ ≤ ∥I0(t)∥
(
H(δ)
δ
κδΛ4

)n
,∥∥∥ΨQ,n(t)

∥∥∥ ≤ ∥Q0(t)∥
(
H(δ)
δ
κδΛ3

)n
,∥∥∥ΨR,n(t)

∥∥∥ ≤ ∥R0(t)∥
(
H(δ)
δ
κδΛ5

)n
.

(4.12)

As a result, it is evident that sequences fulfill and exist

∥∥∥ΨS,n(t)
∥∥∥→ 0,

∥∥∥ΨE,n(t)
∥∥∥→ 0,

∥∥∥ΨI,n(t)
∥∥∥→ 0,

∥∥∥ΨQ,n(t)
∥∥∥→ 0,

∥∥∥ΨR,n(t)
∥∥∥→ 0 as n→ ∞.

Additionally, using Eq (4.12) and the triangle inequality, for any s, we have

∥Sn+s(t) − Sn(t)∥ ≤
∑n+s

j=n+1 X j
1 =

Xn+1
1 −Xn+s+1

1
1−X1

,

∥En+s(t) − En(t)∥ ≤
∑n+s

j=n+1 X j
2 =

Xn+1
2 −Xn+s+1

2
1−X2

,

∥In+s(t) − In(t)∥ ≤
∑n+s

j=n+1 X j
3 =

Xn+1
3 −Xn+s+1

3
1−X3

,

∥Qn+s(t) − Qn(t)∥ ≤
∑n+s

j=n+1 X j
4 =

Xn+1
4 −Xn+s+1

4
1−X4

,

∥Rn+s(t) − Rn(t)∥ ≤
∑n+s

m=n+1 X j
5 =

Xn+1
5 −Xn+s+1

5
1−X5

,

(4.13)

with Xm =
H(δ)
δ
κδΛm < 1 by hypothesis. Consequently, the sequences Sn, En, In, Qn, and Rn can be

considered as Cauchy sequences in the Banach space A(Y). It has been shown that they converge
uniformly [49].

5. Parameter estimation

Parameter estimation is a fundamental problem in statistical inference, machine learning, and many
other fields. It involves estimating the values of unknown parameters in a model based on observed
data. The goal of parameter estimation is to find the values of the parameters that best fit the data
and allow us to make accurate predictions or draw meaningful conclusions about the system under
study. There are many different methods for parameter estimation, ranging from simple techniques like
least squares regression to more complex approaches like maximum likelihood estimation or Bayesian

Mathematical Biosciences and Engineering Volume 20, Issue 6, 11281–11312.



11293

inference. The choice of method often depends on the nature of the data, the complexity of the model,
and the specific goals of the analysis. However, regardless of the method chosen, parameter estimation
is a crucial step in many scientific and engineering applications, and its success or failure can have
significant consequences.

In this part, we used the least square curve fitting methods to analyze the instances of COVID-
19 that were reported in India between 13 July 2021 and 25 August 2021 [50]. The system’s (3.4)
estimated parameters are based on India’s overall data on conformed events and fatalities. The daily
reports’ error terms are reduced using the ordinary least square solution (OLS), and the goodness of fit
test uses the related relative error.

min


∑n
ι=1

(
Iι − Îl

)2∑n
ι=1 I

2
ι

 . (5.1)

Table 1. The Table contains descriptions and estimated values for the parameters.

Symbol of parameters Values of parameters References

B 60.5089 Fitted
θ 0.0477 Estimated
τ 0.0205 Estimated
ϵ 0.1571 Estimated
ε1 0.0805 Estimated
ε2 0.0176 Estimated
ε3 0.0309 Estimated
ρ 0.3506 Fitted
η 0.1805 Estimated
α 0.0059 Estimated
σ 0.0009 Fitted
λ 0.0894 Estimated

6. Sensitivity analysis

Sensitivity analysis plays a crucial role in identifying the parameters that are most effective in con-
trolling the spread of COVID-19. Although forward sensitivity analysis can be laborious for complex
biological models, it remains an essential component of phenomena modeling. Ecologists and epi-
demiologists have shown considerable interest in conducting sensitivity analysis of R0.

Definition 4. The normalized forward sensitivity index of R0 that depends on the differentiability of a
parameter κ is described as follows:

Υκ =
κ

R0

∂R0

∂κ
.
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Figure 1. The simulation results for a suggested model of COVID-19 cases in India from Jan-
uary 1 to February 14, 2022 are shown in the figure. The best-fitted curve and its residuals,
which represent the variations between the simulated results and the actual daily cumula-
tive cases reported during that time, are displayed on the graph. The curve may serve as a
decision-making tool for public health measures and interventions by assisting researchers
and decision-makers in better understanding the patterns and trends of the pandemic in India.
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Figure 2. This plot provides a thorough evaluation of the relative significance of each input
parameter by demonstrating the sensitivity of a model’s output to changes in multiple input
variables at once.

Sensitivity indices, which quantify the contribution of various factors to the output of a model, can
be computed in a number of different ways. Direct differentiation, Latin hypercube sampling, and
system linearization are three frequently used techniques. The direct differentiation method will be
used in this study because it gives analytical expressions for the indices. Using this method, we can
compare the variation between the R0 parameter and other parameters and analyze the effects of various
financial crime-related factors. We can learn vital information about the relative weights of various
variables and how they impact the model’s output by using sensitivity indices. This knowledge can
enhance our comprehension of the dynamics of financial crime and assist in guiding policy decisions.
The graphical results are displayed in Figures 2 and 3.

7. Numerical scheme

Consider Ṡ(t), Ė(t), İ(t), Q̇(t) and Ṙ(t) are in the square integrable function space L2[0, 1), and can
be expressed as a Haar series as

Ṡ(t) =
N∑

p=1

αpψ̃p(t), Ė(t) =
N∑

p=1

θpψ̃p(t), İ(t) =
N∑

p=1

λpψ̃p(t), İ(t) =
N∑

p=1

ϑpψ̃p(t) and R(ṫ) =
N∑

p=1

σpψ̃p(t)

where αp, θp, λp, ϑp and σp are coefficients of the Haar series and ψ̃p(t) is the discretise Haar func-
tion [51] with the exposed compartment E0 includes people who have been infected but are not yet
contagious, and the susceptible compartment S0 represents people who are initially susceptible to the
disease at the start of the epidemic. The infectious individuals are housed in the infected compartment
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Figure 3. The plot represents the sensitivity of various parameters against R0.
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I0, whereas the isolated or hospitalized individuals are housed in the quarantined compartment Q0.
Those who have recovered from the illness and are no longer contagious are included in the recovered
compartment R0. We integrate the equations that describe the movement of people between these com-
partments in order to model the epidemic’s progression over time. The result of this integration is a set
of equations that show how the population of each compartment varies over time.

S(t) = S0 +

N∑
p=1

αpGp,1(t),E(t) = E0 +

N∑
p=1

θpGp,1(t), I(t) = I0 +
N∑

p=1

λpGp,1(t),

Q(t) = Q0 +

N∑
p=1

ϑpGp,1(t), and R(t) = R0 +

N∑
p=1

σpGp,1(t)

(7.1)

where Gp,1(t) is the operational matrix of integration of pth order [51, 52].
By using Caputo derivative, we have

1
Γ(n − δ)

∫ t

0
S(n)(ϑ)(t − ϑ)n−δ−1dϑ = B − θSI(1 + τI) − (ε1 + ρ + η)S(t),

1
Γ(n − δ)

∫ t

0
E(n)(ϑ)(t − ϑ)n−δ−1dϑ = θSI(1 + τI) − (ε2 + ρ + φ)E(t),

1
Γ(n − δ)

∫ t

0
I(n)(ϑ)(t − ϑ)n−δ−1dϑ = φE(t) − (λ + ϵ + ρ + ε3)I(t),

1
Γ(n − δ)

∫ t

0
Q(n)(ϑ)(t − ϑ)n−δ−1dϑ = ε1S(t) + ε2E(t) + ε3I(t) + −(ρ + σ)Q(t),

1
Γ(n − δ)

∫ t

0
R(n)(ϑ)(t − ϑ)n−δ−1dϑ = ηS(t) + σQ(t) + λI(t) − ρR(t).

(7.2)

As we have assumed that 0 < δ < 1, therefore n = 1, and we have

1
Γ(1 − δ)

∫ t

0
Ṡ(ϑ)(t − ϑ)−δdϑ = B − θSI(1 + τI) − (ε1 + ρ + η)S(t),

1
Γ(1 − δ)

∫ t

0
Ė(ϑ)(t − ϑ)−δdϑ = θSI(1 + τI) − (ε2 + ρ + φ)E(t),

1
Γ(1 − δ)

∫ t

0
İ(ϑ)(t − ϑ)−δdϑ = φE(t) − (λ + ϵ + ρ + ε3)I(t),

1
Γ(1 − δ)

∫ t

0
Q̇(ϑ)(t − ϑ)−δdϑ = ε1S(t) + ε2E(t) + ε3I(t) − (ρ + σ)Q(t),

1
Γ(1 − δ)

∫ t

0
Ṙ(ϑ)(t − ϑ)−δdϑ = ηS(t) + σQ(t) + λI(t) − ρR(t).

(7.3)

Haar approximations are used, and we have

1
Γ(1 − δ)

∫ t

0

N∑
p=1

αpψ̃p(ϑ)(t − ϑ)−δdϑ = B − θ

I0 + N∑
p=1

λpGp,1(t)


S0 +

N∑
p=1

αpGp,1(t)

1 + τ
I0 + N∑

p=1

λpGp,1(t)


 − (ε1 + ρ + η)

S0 +

N∑
p=1

αpGp,1(t)


(7.4)
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1
Γ(1 − δ)

∫ t

0

N∑
p=1

θpψ̃p(ϑ)(t − ϑ)−δdϑ = θ

I0 + N∑
p=1

λpGp,1(t)


S0 +

N∑
p=1

αpGp,1(t)

1 + τ
I0 + N∑

p=1

λpGp,1(t)


 − (ε2 + ρ + φ)

E0 +

N∑
p=1

θpGp,1(t)


(7.5)

1
Γ(1 − δ)

∫ t

0

N∑
p=1

λpψ̃p(ϑ)(t − ϑ)−δdϑ =

φ

E0 +

N∑
p=1

θpϑp,1(t)

 − (λ + ϵ + ρ + d1)

I0 + N∑
p=1

λpGp,1(t)


(7.6)

1
Γ(1 − δ)

∫ t

0

N∑
p=1

ϑpψ̃p(ϑ)(t − ϑ)−δdϑ = ε3

I0 + N∑
p=1

λpGp,1(t)

 + ε2

E0 +

N∑
p=1

θpGp,1(t)


+ ε1

S0 +

N∑
p=1

αpGp,1(t)

 − (ρ + σ)

Q0 +

N∑
p=1

ϑpGp,1(t)


(7.7)

1
Γ(1 − δ)

∫ t

0

N∑
p=1

αpψ̃p(ϑ)(t − ϑ)−δdϑ = η

S0 +

N∑
p=1

αpGp,1(t)


+ σ

Q0 +

N∑
p=1

σpϑp,1(t)

 + λ
I0 + N∑

p=1

λpGp,1(t)

 + ρ
R0 +

N∑
p=1

ζpGp,1(t)


(7.8)

Upon simplification, we have

1
Γ(1−δ)

∑N
p=1 αpψ̃p(ϑ)(t − ϑ)−δdϑ − B + θ (1 + τI0)×(

I0S0 + I0
∑N

p=1 αpGp,1(t) + S0
∑N

p=1 θpGp,1(t) +
∑N

p=1 αpGp,1(t)
∑N

p=1 θpGp,1(t)
)

+θ
[
I0S0τ

∑N
p=1 θpGp,1(t) + I0τ

∑N
p=1 αpGp,1(t)

∑N
p=1 θpGp,1(t) + S0τ

(∑N
p=1 θpGp,1(t)

)2

+τ
∑N

p=1 αpGp,1(t)
(∑N

p=1 θpGp,1(t)
)2
]
+ (ε1 + ρ + η)S0 + (ε1 + ρ + η)

∑N
p=1 αpGp,1(t)


= 0, (7.9)



1
Γ(1−δ)

∑N
p=1 θpψ̃p(ϑ)(t − ϑ)−δdϑ + θ (1 + τI0)×(

I0S0 + I0
∑N

p=1 αpGp,1(t) + S0
∑N

p=1 θpGp,1(t) +
∑N

p=1 αpGp,1(t)
∑N

p=1 θpGp,1(t)
)

+θ
[
I0S0τ

∑N
p=1 θpGp,1(t) + I0τ

∑N
p=1 αpGp,1(t)

∑N
p=1 θpGp,1(t) + S0τ

(∑N
p=1 θpGp,1(t)

)2

+τ
∑N

p=1 αpGp,1(t)
(∑N

p=1 θpGp,1(t)
)2
]
+ (ε2 + ρ + φ)E0 + (ε2 + ρ + φ)

∑N
p=1 θpGp,1(t)


= 0, (7.10)

Mathematical Biosciences and Engineering Volume 20, Issue 6, 11281–11312.



11299

1
Γ(1 − δ)

∫ t

0

N∑
p=1

λpψ̃p(ϑ)(t − ϑ)−δdϑ − φE0 − φ

 N∑
p=1

θpGp,1(t)


+ (λ + ϵ + ρ + ε3)I0 + (λ + ϵ + ρ + ε3)

 N∑
p=1

λpGp,1(t)

 = 0,

(7.11)

1
Γ(1 − δ)

∫ t

0

N∑
p=1

ϑpψ̃p(ϑ)(t − ϑ)−δdϑ − ε3I0 − ε3

 N∑
p=1

λpGp,1(t)

 + ε2E0 + ε2

 N∑
p=1

θpGp,1(t)


+ ε1S0 + ε1

 N∑
p=1

αpGp,1(t)

 + (ρ + σ)Q0 + (ρ + σ)

 N∑
p=1

ϑpϑp,1(t)

 = 0,

(7.12)

1
Γ(1 − δ)

∫ t

0

N∑
p=1

ζpψ̃p(ϑ)(t − ϑ)−δdϑ − ηS0 − S0

 N∑
p=1

αpGp,1(t)

 − σQ0

− σ

 N∑
p=1

σpGp,1(t)

 − λI0 − λ
 N∑

p=1

λpGp,1(t)

 + ρR0 + ρ

 N∑
p=1

ζpGp,1(t)

 = 0.

(7.13)

Applying the Haar integration method [53], we can estimate the integral in the aforementioned
system as an approximation, given by:

∫ κ

κ

f (t)dt ≈
κ − κ

N

N∑
p=1

f
(
tp

)
=

N∑
p=1

f
(
κ +

(κ − κ)(p − 0.5)
N

)
(7.14)



t
NΓ(1−δ)

∑N
s=1

∑N
p=1 αpψ̃p (ϑs) (t − ϑs)−δ − B + θ (1 + τI0)×(

I0S0 + I0
∑N

p=1 αpGp,1(t) + S0
∑N

p=1 θpGp,1(t) +
∑N

p=1 αpGp,1(t)
∑N

p=1 θpGp,1(t)
)

+θ
[
I0S0τ

∑N
p=1 θpGp,1(t) + I0τ

∑N
p=1 αpGp,1(t)

∑N
p=1 θpGp,1(t) + S0τ

(∑N
p=1 θpGp,1(t)

)2

+τ
∑N

p=1 αpGp,1(t)
(∑N

p=1 θpGp,1(t)
)2
]
+ (ε1 + ρ + η)S0 + (ε1 + ρ + η)

∑N
p=1 αpGp,1(t)


= 0 (7.15)



t
NΓ(1−δ)

∑N
s=1

∑N
p=1 θpψ̃p (ϑs) (t − ϑs)−δ − θ (1 + τI0)×(

I0S0 + I0
∑N

p=1 αpGp,1(t) + S0
∑N

p=1 θpGp,1(t) +
∑N

p=1 αpGp,1(t)
∑N

p=1 θpGp,1(t)
)

+θ
[
I0S0τ

∑N
p=1 θpGp,1(t) + I0τ

∑N
p=1 αpGp,1(t)

∑N
p=1 θpGp,1(t) + S0τ

(∑N
p=1 θpGp,1(t)

)2

+τ
∑N

p=1 αpGp,1(t)
(∑N

p=1 θpGp,1(t)
)2
]
+ (ε2 + ρ + φ)E0 + (ε2 + ρ + φ)

∑N
p=1 θpGp,1(t)


= 0, (7.16)
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t
NΓ(1 − δ)

N∑
s=1

N∑
p=1

λpψ̃p (ϑs) (t − ϑs)−δ − φE0 − φ

 N∑
p=1

θpGp,1(t)


+ (λ + ϵ + ρ + ε3)I0 + (λ + ϵ + ρ + ε3)

 N∑
p=1

λpGp,1(t)

 = 0,

(7.17)

t
NΓ(1 − δ)

N∑
s=1

N∑
p=1

ϑpψ̃p (ϑs) (t − ϑs)−δ − ε3I0 − ε3

 N∑
p=1

λpGp,1(t)

 + ε2E0 + ε2

 N∑
p=1

θpGp,1(t)


+ ε1S0 + ε1

 N∑
p=1

αpGp,1(t)

 + (ρ + σ)Q0 + (ρ + σ)

 N∑
p=1

ϑpϑp,1(t)

 = 0,

(7.18)

t
NΓ(1 − δ)

N∑
s=1

N∑
p=1

ζpψ̃p (ϑs) (t − ϑs)−δ − ηS0 − S0

 N∑
p=1

αpGp,1(t)

 − σQ0

− σ

 N∑
p=1

σpGp,1(t)

 − λI0 − λ
 N∑

p=1

λpGp,1(t)

 + ρR0 + ρ

 N∑
p=1

ζpGp,1(t)

 = 0.

(7.19)

Let

Φ1, j =



t
NΓ(1−δ)

∑N
s=1

∑N
p=1 αpψ̃p (ϑs) (t − ϑs)−δ − B + θ (1 + τI0)×(

I0S0 + I0
∑N

p=1 αpGp,1(t) + S0
∑N

p=1 θpGp,1(t) +
∑N

p=1 αpGp,1(t)
∑N

p=1 θpGp,1(t)
)

+θ
[
I0S0τ

∑N
p=1 θpGp,1(t) + I0τ

∑N
p=1 αpGp,1(t)

∑N
p=1 θpGp,1(t) + S0τ

(∑N
p=1 θpGp,1(t)

)2

+τ
∑N

p=1 αpGp,1(t)
(∑N

p=1 θpGp,1(t)
)2
]
+ (ε1 + ρ + η)S0 + (ε1 + ρ + η)

∑N
p=1 αpGp,1(t).

(7.20)

Let

Φ2, j =



t
NΓ(1−δ)

∑N
s=1

∑N
p=1 θpψ̃p (ϑs) (t − ϑs)−δ − θ (1 + τI0)×(

I0S0 + I0
∑N

p=1 αpGp,1(t) + S0
∑N

p=1 θpGp,1(t) +
∑N

p=1 αpGp,1(t)
∑N

p=1 θpGp,1(t)
)

+θ
[
I0S0τ

∑N
p=1 θpGp,1(t) + I0τ

∑N
p=1 αpGp,1(t)

∑N
p=1 θpGp,1(t) + S0τ

(∑N
p=1 θpGp,1(t)

)2

+τ
∑N

p=1 αpGp,1(t)
(∑N

p=1 θpGp,1(t)
)2
]
+ (ε2 + ρ + φ)E0 + (ε2 + ρ + φ)

∑N
p=1 θpGp,1(t).

(7.21)
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Let

Φ3, j =
t

NΓ(1 − δ)

N∑
s=1

N∑
p=1

λpψ̃p (ϑs) (t − ϑs)−δ − φE0 − φ

 N∑
p=1

θpGp,1(t)


+ (λ + ϵ + ρ + ε3)I0 + (λ + ϵ + ρ + ε3)

 N∑
p=1

λpGp,1(t)

 .
(7.22)

Let

Φ4, j =
t

NΓ(1 − δ)

N∑
s=1

N∑
p=1

ϑpψ̃p (ϑs) (t − ϑs)−δ − ε3I0 − ε3

 N∑
p=1

λpGp,1(t)

 + ε2E0 + ε2

 N∑
p=1

θpGp,1(t)


+ ε1S0 + ε1

 N∑
p=1

αpGp,1(t)

 + (ρ + σ)Q0 + (ρ + σ)

 N∑
p=1

ϑpϑp,1(t)

 .
(7.23)

Let

Φ5, j =
t

NΓ(1 − δ)

N∑
s=1

N∑
p=1

ζpψ̃p (ϑs) (t − ϑs)−δ − ηS0 − S0

 N∑
p=1

αpGp,1(t)

 − σQ0

− σ

 N∑
p=1

σpGp,1(t)

 − λI0 − λ
 N∑

p=1

λpGp,1(t)

 + ρR0 + ρ

 N∑
p=1

ζpGp,1(t)

 .
(7.24)

The nonlinear algebraic equations in the system presented below are generated by strategically placing
nodal points:

Φ1, j =



tp

NΓ(1−δ)

∑N
s=1

∑N
p=1 αpψ̃p (ϑs)

(
tp − ϑs

)−δ
− B + θ (1 + τI0)×(

I0S0 + I0
∑N

p=1 αpGp,1(tp) + S0
∑N

p=1 θpGp,1(tp) +
∑N

p=1 αpGp,1(tp)
∑N

p=1 θpGp,1(tp)
)

+θ
[
I0S0τ

∑N
p=1 θpGp,1(tp) + I0τ

∑N
p=1 αpGp,1(tp)

∑N
p=1 θpGp,1(tp)

+S0τ
(∑N

p=1 θpϑp,1(tp)
)2
+ τ

∑N
p=1 αpGp,1(tp)

(∑N
p=1 θpGp,1(tp)

)2
]

+(ε1 + ρ + η)S0 + (ε1 + ρ + η)
∑N

p=1 αpGp,1(tp)

, (7.25)
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Φ2, j =



tp

NΓ(1−δ)

∑N
s=1

∑N
p=1 θpψ̃p (ϑs)

(
tp − ϑs

)−δ
− θ (1 + τI0)×(

I0S0 + I0
∑N

p=1 αpGp,1(tp) + S0
∑N

p=1 θpGp,1(tp) +
∑N

p=1 αpGp,1(tp)
∑N

p=1 θpGp,1(tp)
)

+θ
[
I0S0τ

∑N
p=1 θpGp,1(tp) + I0τ

∑N
p=1 αpGp,1(tp)

∑N
p=1 θpGp,1(tp)

+S0τ
(∑N

p=1 θpϑp,1(tp)
)2
+ τ

∑N
p=1 αpGp,1(tp)

(∑N
p=1 θpGp,1(tp)

)2
]

+(ε2 + ρ + φ)E0 + (ε2 + ρ + φ)
∑N

p=1 θpGp,1(tp)

, (7.26)

Φ3, j =
tp

NΓ(1 − δ)

N∑
s=1

N∑
p=1

λpψ̃p (ϑs)
(
tp − ϑs

)−δ
− φE0 − φ

 N∑
p=1

θpGp,1(tp)


+ (λ + ϵ + ρ + ε3)I0 + (λ + ϵ + ρ + ε3)

 N∑
p=1

λpGp,1(tp)

 .
(7.27)

Φ4, j =
tp

NΓ(1 − δ)

N∑
s=1

N∑
p=1

ϑpψ̃p (ϑs)
(
tp − ϑs

)−δ
− ε3I0 − ε3

 N∑
p=1

λpGp,1(tp)


+ ε2E0 + ε2

 N∑
p=1

θpGp,1(tp)

 + ε1S0 + ε1

 N∑
p=1

αpGp,1(tp)


+ (ρ + σ)Q0 + (ρ + σ)

 N∑
p=1

ϑpGp,1(tp)

 .
(7.28)

Let

Φ5, j =
tp

NΓ(1 − δ)

N∑
s=1

N∑
p=1

ζpψ̃p (ϑs)
(
tp − ϑs

)−δ
− ηS0 − S0

 N∑
p=1

αpGp,1(tp)

 − σQ0

− σ

 N∑
p=1

σpGp,1(tp)

 − λI0 − λ
 N∑

p=1

λpGp,1(tp)

 + ρR0

+ ρ

 N∑
p=1

ζpGp,1(tp)

 .
(7.29)

Using Broyden’s approach, this system can be solved. The Jacobian is given by:

J =
[
J jp

]
5N×5N

(7.30)

The Jacobian can be obtained by evaluating the following partial derivatives.
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∂Φ1, j

∂αp
,

∂Φ1, j

∂αp
,

∂Φ1, j

∂αp
,

∂Φ1, j

∂αp
,

∂Φ1, j

∂αp
,

∂Φ2, j

∂θp
,

∂Φ2, j

∂θp
,

∂Φ2, j

∂θp
,

∂Φ2, j

∂θp
,

∂Φ2, j

∂θp
,

∂Φ3, j

∂λp
,

∂Φ3, j

∂λp
,

∂Φ3, j

∂λp
,

∂Φ3, j

∂λp
,

∂Φ3, j

∂λp
,

∂Φ4, j

∂ϱp
,

∂Φ4, j

∂ϱp
,

∂Φ4, j

∂ϱp
,

∂Φ4, j

∂ϱp
,

∂Φ4, j

∂ϱp
,

∂Φ5, j

∂σp
,

∂Φ5, j

∂σp
,

∂Φ5, j

∂σp
,

∂Φ5, j

∂σp
,

∂Φ5, j

∂σp
.

(7.31)

This system’s solution yields the values of the αp’s, θp’s, λp’s, ϑp’s, and σp’s unknown coefficients. By
entering αp’s, θp’s, λp’s, ϑp’s, and σp’s into Eq (7.1), it is possible to calculate the necessary solutions
S(t),E(t), I(t),Q(t) and R(t) at nodal locations. The experimental rate of convergence, denoted by the
formula rϱ(N) [54], can be calculated as follows:

rϱ(N) =
1

log 2
log

 Maximum absolute error at N
2

Maximum absolute error at N

 . (7.32)

Next we are going to display the graphical results.

7.1. Graphical results

In this section, we present graphical results that showcase the dynamics of various groups of in-
dividuals in the fractional order model (3.4). To solve the model numerically, we adopt the method
described in [47, 55] and rely on the information provided in Table 1. The resulting figures, which
include Figures 4–7, offer valuable insights into the behavior of susceptible (S), exposed (E), infected
(I), recovered (R), and quarantined (Q) individuals. Figure 5(a) depicts the fractional-order derivatives
of susceptible individuals, which range between 0.50 and 0.90, and shows that the number of suscep-
tible individuals decreases as time progresses due to exposure to the virus. This is a typical behavior
observed in other epidemiological models. Figure 5(b) presents the population of exposed individuals,
which grows steadily and rapidly as the fractional-order derivative approaches the classical value. This
increase is attributed to the higher number of susceptible people becoming infected and joining the
exposed class in the initial weeks of the outbreak, suggesting an increased transmission risk during the
early stages of the epidemic. The number of infected individuals, depicted in Figure 5(c), increases as
the fractional order approaches 1 due to the increased sensitivity of the fractional order. Figure 5(d)
illustrates how most students in the confined and infectious stages of the virus leave the exposed class
a few weeks after exposure. The exposed population’s behavior is identical to that of the population
under quarantine, and as the fractional-order derivative becomes closer to the integer order, there are
more exposed people overall. The number of recovered individuals is shown in Figure 5(e) and it in-
creases continuously as the fractional-order derivative gets closer to the classical value as a result of
the recovery of infected people, which helps to confine the disease. Raising the fractional order will
hasten the population increase of the restored class.
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Figure 4. The figure illustrates how the Caputo fractional model responds to different initial
conditions, showcasing the behavior of each state variable for a specific value of δ, set at 0.8.
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Figure 5. The figure showcases the distinct behavior of each state variable in the Caputo
version of the fractional model, employing the parameter values specified in the graph.
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Figure 6. The figure shows the behavior of each state variable for the Caputo fractional
model under different initial conditions.
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Figure 7. The behavior of each state variable is fully illustrated in this figure for a partic-
ular value of the parameter θ, i.e. θ = 0.01815. The y-axis displays the values of the state
variables while the x-axis indicates time. Each state variable exhibits a distinct pattern over
time in the plot, which clearly illustrates the dynamics of the system. Understanding the
basic mechanisms guiding the system and projecting its future behavior under various cir-
cumstances are made possible with the use of this information.
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8. Conclusions

In conclusion, sensitivity analysis and computational modeling of fractional COVID-19 models
by Haar wavelet collocation methods with real data provides valuable insights into the behavior of
COVID-19 spread. This method of analysis helps to understand the impact of different variables on the
spread of the disease and can be used to make informed decisions about the most effective strategies
to mitigate the spread of COVID-19. The use of Haar wavelet collocation methods allows for a more
accurate representation of the data, resulting in a more precise and reliable model. This work highlights
the importance of using advanced techniques to better understand the dynamics of the COVID-19
pandemic. In this article, we have studied the Covid epidemic model under the fractional derivatives in
Caputo sense. The model’s existence and uniqueness are established by considering fixed point theory
outcomes. To carry out numerical treatment and simulations, we utilize the Haar wavelet collocation
method. We also provide parameter estimation for the COVID-19 cases recorded in India from 13 July
2021 to 25 August, 2021. In future, the control parameters may be incorporated into the proposed
model by applying optimal control theory to minimize infection among the infected individuals. This
would require defining appropriate optimal control variables, as well as Hamiltonian and Lagrangian
functions. Another possible modification to the model is to convert it into a stochastic model by
introducing a noise term for each class. This could involve incorporating two types of noise: white
noise and Levy noise.
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