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Abstract: In 2022, breast cancer will become an important factor affecting women’s public health and
HER2 positivity for approximately 15–20% invasive breast cancer cases. Follow-up data for HER2-
positive patients are rare, and research on prognosis and auxiliary diagnosis is still limited. In light
of the findings obtained from the analysis of clinical features, we have developed a novel multiple
instance learning (MIL) fusion model that integrates hematoxylin-eosin (HE) pathological images
and clinical features to accurately predict the prognostic risk of patients. Specifically, we segmented
the HE pathology images of patients into patches, clustered them by K-means, aggregated them into
a bag feature-level representation through graph attention networks (GATs) and multihead attention
networks, and fused them with clinical features to predict the prognosis of patients. We divided West
China Hospital (WCH) patients (n = 1069) into a training cohort and internal validation cohort and used
The Cancer Genome Atlas (TCGA) patients (n = 160) as an external test cohort. The 3-fold average
C-index of the proposed OS-based model was 0.668, the C-index of the WCH test set was 0.765, and
the C-index of the TCGA independent test set was 0.726. By plotting the Kaplan-Meier curve, the
fusion feature (P = 0.034) model distinguished high- and low-risk groups more accurately than clinical
features (P = 0.19). The MIL model can directly analyze a large number of unlabeled pathological
images, and the multimodal model is more accurate than the unimodal models in predicting Her2-
positive breast cancer prognosis based on large amounts of data.
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1. Introduction

According to Global Cancer Statistics 2022, for women, breast cancer, lung cancer, and colorectal
cancer account for 51% of all new diagnoses, with breast cancer alone accounting for almost
one-third [1]. HER2-positive breast cancer is a highly heterogeneous tumor, accounting for
approximately 15–20% of invasive breast cancers [2]. Before the popularization of HER2-targeted
therapy, early-stage HER2-positive patients tended to have shorter recurrence times, higher rates of
metastasis, and higher mortality than HER2-negative patients. With the widespread use of the
monoclonal antibody trastuzumab, which targets HER2, and the small-molecule antibody molecular
tyrosine kinase inhibitor lapatinib, which targets HER1 and HER2, the prognosis of HER2-positive
patients has improved significantly [3–5]. However, more than 30% of patients still experience
recurrence, metastasis, or death within 10 years after treatment [2].

The purpose of survival analysis is to analyze the factors that cause events such as death or
recurrence in patients in a certain period after treatment, which has important clinical application.
Through radiomics and genomics, many scholars have attempted to identify factors that are associated
with death or metastasis in patients [6–8]. It is easier for a clinician to choose an appropriate
treatment when they have a more accurate assessment of a patient’s survival risk [9–11]. In recent
years, with the popularization and development of digital pathological images, pathologists can obtain
digital pathological slices more quickly and with higher resolution. However, predicting patient
prognosis from pathological images and clinical features is still challenging for the following reasons:
1) Whole slide images (WSIs) often contain more than one billion pixels. Therefore, mainstream
computers and models cannot process them directly. 2) Due to the high heterogeneity of breast
cancer, patients may have several pathological slides with different characteristics. 3) There are large
differences in image features and clinical features.

In this paper, we propose an end-to-end system to predict the prognosis of patients through the
fusion of pathological images and clinical features. The main contributions of this study are as follows:
1) The proposed model is based on MIL and thus does not require pixel-level annotation. The proposed
model directly learns WSI representations from pathological images. 2) The proposed model fuses
clinical features and image features through compact bilinear pooling (CBP), and the C-index of the
fusion model is 0.06 higher than that of the single-modal model. 3) During the validation of the fusion
model, stratified by lymph node status, the model still performed well.

Although traditional machine learning techniques, including support vector machines (SVMs) [12]
and neural networks [13], have found wide applications in different fields, such as speckle
reduction [14], image segmentation [15], and image retrieval [16], their performance needs further
improvement. Deep learning can achieve this goal, and deep learning methods for pathological image
processing can be divided into supervised learning and weakly supervised learning according to the
labels of the data. Supervised learning typically analyzes partial regions of interest (ROIs) in WSIs,
and the labels are based on the ROIs. Weakly supervised learning analyzes all or multiple WSIs, and
the labels are typically based on pathology reports. Classic ROI-based methods require manual
annotation by pathologists, and then patient traits are predicted by manually designing quantitative
features. Cain et al. [17] established two multivariate models using radiomics features and proved that
radiomics features could be used to predict the pathological complete response (pCR) to neoadjuvant
therapy (NAT) in patients with triple-negative/HER2-positive breast cancer. Wang et al. [18] proposed
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a computer-aided diagnosis and survival analysis system for non-small cell lung cancer (NSCLC)
based on WSIs. They manually designed and extracted 166 image features for diagnosis and
prognosis, with a classification accuracy of 92%. Unlike traditional learning methods, recent studies
have used CNNs to perform feature extraction and classification/prediction [19]. For example, Yang
et al. [20] divided the ROIs into 512 × 512 pixel tiles and trained a ResNet-50-based model to predict
the recurrence risk of breast cancer patients. Yu et al. [21] divided the WSIs into 1000 × 1000 pixel
tiles and extracted 9879 quantitative image features, which were used for prognosis prediction after
verifying the validity of the features through two types of classification tasks. In our previous
study [22], we used a deep fully convolutional neural network to perform end-to-end segmentation on
pathological tissue slices. Our method achieved state-of-the-art segmentation accuracy on public
nuclei histopathology datasets. Yan et al. [23] combined a CNN and an RNN to establish a cancer
classification model, and the classification accuracy reached 92%.

However, ROIs may not capture all the information of WSIs, and pathologists must also manually
annotate ROIs, which is time-consuming. WSI-based analysis methods have been proposed for the
above reasons and can directly obtain the prediction results of WSIs or patients. Zhu et al. [24]
proposed an effective whole-slide histopathological image survival analysis framework (WSISA) to
predict patient prognosis. Li et al. [25] proposed a WSI-based framework, DeepGraphSurv, and
pioneered graph convolutional networks (GCNs) for survival analysis. WSIs were extracted as a
graph, and their network used graph convolutional networks to obtain a WSI representation. Yao et
al. [26, 27] introduced MIL based on prior knowledge of pathology and proposed DeepAttnMISL.
They clustered each WSI into multiple graphs and then aggregated them into bag representations
through an attention-based MIL model. Wu et al. [28] proposed DeepGCNMIL based on this
framework to optimize the model structure, which increased the C-index by 0.035. Campane et
al. [29] built a cancer classification model based on MIL and trained it using a large amount of data
from more than 40,000 WSIs, and their AUC was 0.98. Chen et al. [30] innovatively combined gene
expression and pathological picture features to predict the WHO grade and prognosis of patients and
achieved good results.

Although there have been many related studies of WSI-based analysis, research on prognosis
prediction using MIL remains limited, and due to the scarcity of patient follow-up data, there is
currently no related research that focuses on the prognosis analysis of HER2-positive patients. In this
study, we established an MIL framework, GATSurvMIL, that integrates clinical features and WSI
representations. During pathological diagnosis, we often do not think that the prognosis of a patient is
related to the entire WSI, but a portion of the WSI reflects the patient’s survival status.

2. Materials and methods

2.1. Data collection and screening

We collected the clinical features and WSIs of 1069 HER2-positive patients in WCH from 2009 to
2019 and downloaded the data of 160 HER2-positive patients from TCGA [31]. The study protocol
(2020-427) was approved by the Ethics Committee on Biomedical Research, WCH of Sichuan
University.

The distribution of specific clinical characteristics of patients is shown in Table 1. The age of
diagnosis in the two datasets has a large gap, and the overall age of TCGA diagnosis is relatively high.
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The mortality rate of TCGA is also much higher than that of WCH, but there are fewer patients with
recurrence or metastasis.

Table 1. Distribution of clinical characteristics of patients with WCH and TCGA.

WCH Patient Series TCGA Patient Series
Variable n % n %
Number of patients 1069 160
Number of Histopathology image slides 3700 167
Age

< 50 590 55.19 37 23.12
⩾ 50 479 44.81 123 76.88

Histological grade
1 1 0.09 /

2 235 22.98 /

3 593 55.47 /

NA 240 21.46 /

Tumor stage
I 207 19.36 18 11.25
II 429 40.13 95 59.38
III 356 33.30 42 26.25
IV 23 2.15 3 1.88
NA 54 5.06 2 1.24

ER
Positive 521 48.74 121 75.63
Negative 539 50.42 38 23.75
NA 9 0.84 1 0.62

PR
Positive 478 44.71 101 63.13
Negative 581 54.35 59 36.87
NA 10 0.94 0 0

Lymph node status (LMN)
Positive 608 56.88 93 58.13
Negative 430 40.22 64 40.00
NA 31 2.90 3 1.87

Survival
0 51 4.77 23 14.38
1 1018 95.23 137 85.62

Recurrence/Metastasis
0 935 87.46 153 95.62
1 134 12.54 7 4.38

Data screening in this study was based on the criteria shown in Figure 1. All patients were
identified as HER2 3+ via immunohistochemistry or HER2 gene amplification based on fluorescence
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in situ hybridization (FISH). We then performed clinical pairing of the data to ensure that the clinical
characteristics of the patients were evenly distributed, and all excluded patients were randomly
selected.

Figure 1. Data screening process. We screened both datasets according to the criteria in the
figure, showing the specific reason and number of patients removed.

2.2. WSI processing

Because a WSI generally contains more than 1 billion pixels, existing machine learning models
cannot directly process an entire WSI. Therefore, we cut each WSI into portions for sampling, as
shown in Figure 2. First, we used an advanced tissue region segmentation framework [32] to segment
each WSI’s foreground from the background and then cut the foreground tissue area into patches, each
with a size of 256 × 256 pixels. Although patches can be used as the input of common neural networks,
a WSI usually has more than 10,000 patches. Thus, we calculated the energy values of all the patches
by 2D convolution and then used the 500 patches with the highest energy values to represent the WSI.
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By doing this, we can reduce the computational complexity and information redundancy.

Figure 2. The framework of GATSurvMIL. (a) We divided the non-overlapping foreground
of the WSI segmentation into patches and clustered the patch features with higher energy
values. (b) The main architecture of the model, the image features are fused with clinical
features after GAT and Attention modules to output risk values.

Next, we used the pretrained ResNet-50 [33] to extract the features of the color-normalized
patches. The strong representational ability of ResNet-50 has been demonstrated in many previous
related studies [26]. Finally, we used K-means clustering to cluster all patch features from a patient
into several phenotypes, which have different predictive powers for patients’ clinical outcomes.

2.3. Feature aggregation

After WSI processing, each patient was represented by 10 phenotype groups, unlike the Mi-FCN
used by Yao et al. [26], which ignores intranode connections and only performs a simple aggregation.
The GCN has a strong learning ability for graph data [34, 35] that far surpasses CNNs in node
classification tasks. Based on the GCN, GAT introduces an attention mechanism that enables the
ability to process dynamic graphs. Therefore, we used GAT [36] to learn the relationship between
patches within a phenotype group . Figure 2 shows the proposed embedded GAT module, which
contains multiple GAT layers and performs nonlinear transformations among GAT layers through
ReLU. We determined the edge index among the patches using knn graph and initialized them as a
dynamic graph before the phenotype enters the model. The output is a feature vector for the
phenotype group.

The data from each patient contains graph embedding vectors for multiple phenotypes, and we
aggregated these vectors through a multihead attention network [37, 38]. The attention function is a
method to map a query and a set of key-value pairs to an output. Multihead attention projects queries

Mathematical Biosciences and Engineering Volume 20, Issue 6, 11196–11211.



11202

and key-value pairs into multiple projection spaces to learn richer semantic information and can speed
up model training through parallel learning:

MultiHead(Q,K,V) = Concat(head 1, ..., head h)Wo (2.1)

where headi = Attention(QWQ
i ,KWK

i ,VWV
i ), and the projections are the parameter matrices WQ

i ∈

Rdmodel×dq , WK
i ∈ R

dmodel×dk , WV
i ∈ R

dmodel×dv , and Wo ∈ Rhddv×dmodel .

2.4. Feature fusion

Clinical characteristics play a crucial role in identifying patients for clinical treatment. Through data
comparison, the selected clinical features are the intersection of two datasets: {ER, PR, Age, Lymph,
Stage}. Common simple feature fusion methods primarily include concatenation, element dot product,
and element summation. In this study, a series of experiments were conducted to investigate the efficacy
of different feature fusion techniques. The GATSurvMIL model, which is based on image features, was
employed as a baseline for comparative analysis. Based on the data presented in Table 2, it is evident
that the utilization of these uncomplicated techniques has proven to be ineffective in enhancing the
model’s performance. In fact, these methods may even impede the model’s learning capacity.

Table 2. Comparison of C-Index with Other Methods.

Method fold 1 fold 2 fold 3 means (std)
CBP 0.641 0.765 0.596 0.668 (0.0713)
Concat 0.565 0.712 0.496 0.591 (0.1560)
Linear Add 0.702 0.597 0.513 0.604 (0.1339)
Outer Product 0.621 0.717 0.531 0.623 (0.1315)
base 0.716 0.589 0.541 0.609 (0.1323)

Thus, we used CBP to fuse features. Original bilinear pooling typically encounters problems when
the dimension of fused features is too high. The authors also used principal component analysis (PCA)
to reduce the dimensions, but the results are not significant. CBP uses the idea of a linear kernel
machine to solve the problem of overdimensionality. We thus fused a patient’s image features and
clinical features using CBP and finally input the fused features into a fully connected layer to obtain
the risk value of the patient.

2.5. Loss function

We used the following loss function for backpropagation to update the model parameters:

L (oi) =
∑

i

ei

−oi + log
∑

j:t j>=ti

exp
(
o j

) (2.2)

where oi is the predicted risk of the i-th patient, t is the patient’s event occurrence time or follow-up
time, and e is the patient’s state. This function can be maximized via network parameter learning to
obtain the largest partial likelihood estimate. Compared with that of the simple Cox loss function, the
loss function can represent the overall concordance more accurately.

Mathematical Biosciences and Engineering Volume 20, Issue 6, 11196–11211.



11203

3. Results

3.1. Implementation details

We set the initial learning rate to 0.0001 and the maximum number of epochs to 100. We updated
the gradient and adjusted the step size with the Adam optimizer with a weight decay of 0.0005. We
randomly selected 20% of the data in the training set as the validation set to control the early stopping
of the model. We tested the model performance and tuned the hyperparameters using 3-fold cross-
validation. The k in knn graph was set to 10, and the number of GAT layers was set to 3. We then
verified the generalizability of the model using the TCGA external test set. We trained two other
models with the same data partition: 1) GATSurvMIL only with image features and 2) a Cox model
only with clinical features.

3.2. Model prognostic results

We used the C-index as a measure of the prognostic performance of the model. We built an OS
(overall survival)-based model with death as the patient outcome. The model achieved a mean C-index
of 0.668 for 3-fold cross-validation, and the C-index was 0.726 with the TCGA test set. Both the fitting
effect and generalization effect of the model were markedly improved compared with those when using
only imaging or clinical features.

Table 3. Prognostic analysis of the models’ C-index.

Model C-index
fold 1 fold 2 fold 3 means (std) Test TCGA

OS
Image 0.716 0.589 0.541 0.609 (0.1323) 0.574

Clinical 0.740 0.616 0.436 0.597 (0.1248) 0.673
Fusion 0.641 0.765 0.596 0.668 (0.0713) 0.726

DFS

Image 0.551 0.578 0.695 0.608 (0.0625) 0.526
Clinical 0.601 0.657 0.614 0.624 (0.0240) 0.405
Fusion 0.701 0.600 0.636 0.645 (0.0415) 0.617

Image (LMN-) 0.505 0.603 0.858 0.655 (0.1486) 0.746
Clinical (LMN-) 0.418 0.671 0.446 0.511 (0.1132) 0.459
Fusion (LMN-) 0.516 0.611 0.862 0.663 (0.1461) 0.732
Image (LMN+) 0.686 0.738 0.503 0.642(0.1011) 0.503

Clinical (LMN+) 0.430 0.541 0.570 0.514 (0.0603) 0.508
Fusion (LMN+) 0.677 0.780 0.434 0.630 (0.1453) 0.656

We built a DFS (disease-free survival)-based model with recurrence, metastasis, or death as the
patient outcome. The 3-fold validation cross-average C-index of the model was 0.645, and the C-index
with the TCGA test set was 0.617. Because lymph node metastasis is an important factor affecting
treatment, we separately modeled patients with lymph node status (LMN) according to lymph node
stage. The performance of the two models are similar to that of the image-only model. The specific
results are shown in Table 3.
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3.3. Comparison of the C-index with other MIL models

We reproduced the experimental results of DeepAttnMISL [26] and DeepGCNMIL [28]. We then
used the same parameters to test the performance of the proposed model. We also fused each patient’s
pathological features using CBP before the output layer of the model. The results in Table 4
demonstrate that the cross-validation results of our model (mean = 0.668) are much better than those
of DeepAttnMISL (mean = 0.606) and DeepGCNMIL (mean = 0.592). The cross-validation standard
deviation of our model was 0.0713, which is more stable than that of the other models.

Table 4. Comparison of C-Index with other methods.

Model fold 1 fold 2 fold 3 means (std) Test TCGA
GATSurvMIL 0.641 0.765 0.596 0.668 (0.0713) 0.726

DeepAttnMISL 0.608 0.784 0.426 0.606 (0.1459) 0.714
DeepGCNMIL 0.694 0.804 0.279 0.592 (0.2260) 0.573

3.4. Multivariate Cox analysis

We used the image-only model prediction results and clinical characteristics as the input of the
multivariate Cox model to analyze the primary factors affecting patient survival and prognosis. The
results are shown in Table 5. The results of the Cox model based on OS and DFS are similar, in which
the image model predicted value and tumor stage are strongly associated with patient prognosis. The
hazard ratio (HR = 4.15) of the predicted value indicates that the imaging factor has a stronger impact
on the prognosis of the patient.

Table 5. Comparison of C-Index with other methods.

OS DFS
Variable P value Hazard Ratio (95% CI) P value Hazard Ratio (95% CI)

ER 0.65186 0.72(0.17–2.94) 0.53722 1.36(0.51–3.59)
PR 0.30022 0.45(0.11–2.00) 0.30819 0.60(0.22–1.61)
Age 0.63668 1.17(0.61–2.22) 0.17309 0.75(0.49–1.14)

Stage 0.02797 2.59(1.11–6.04) 0.01801 1.98(1.12–3.48)
Image score 0.00466 4.15(1.55–11.12) 0.00007 2.99(1.74–5.12)

3.5. Kaplan–Meier survival curves

Currently, clinicians assess a patient’s prognostic risk based on the patient’s clinical characteristics.
To verify the predictive performance of the proposed model, we drew a Kaplan–Meier survival curve of
the patients in the test set, which is shown in Figure 3. Since prognostic analysis is time dependent, we
calculated specificity and sensitivity by time-varying ROC using Hegerty’s method [39]. We used the
value corresponding to the year with the largest Youden index as the cutoff value for the risk grouping.
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Figure 3. The Kaplan-Meier curve of the test set by selecting the cutoff value based on
the time-varying ROC. (a, b) Our Cox model with OS as event by clinical features. (c,
d) Our GATSurvMIL model with OS as event by fusion features. (e–h) The DFS model
corresponding to the above figures.s are fused with clinical features after GAT and Attention
modules to output risk values.

Figure 3 (a, b) shows the OS Cox model established by clinical features. Figure 3 (c, d) shows
GATSurvMIL fused with imaging features. The high-risk and low-risk groups of WCH could not be
significantly distinguished by clinical characteristics (P = 0.19), but GATSurvMIL could significantly
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distinguish the high- and low-risk groups of WCH (P = 0.034) and TCGA (P = 0.0016). Figure 3(e–h)
shows the results of the corresponding DFS model, in which patients were indistinguishable by clinical
features (P = 0.34), and even after 20 months, the high-risk group appeared safer, but the GATSurvMIL
fusion feature could preliminarily separate patients (P = 0.079). We performed the same analysis for
the models built by LMN+ and LMN-, and the results are shown in Figure 4.

Figure 4. The Kaplan-Meier curves of the LMN- and LMN+ model. (a, b) LMN- model
with DFS as the event by clinical features. (c, d) GATSurvMIL model with DFS as the event
by fusion features. (e–h) The LMN+ model corresponding to the above figures.
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4. Discussion

Breast cancer has become the most common tumor in the world. HER2-positive tumors are
aggressive and prone to recurrence and metastasis, and the prognosis of patients is poor, making these
tumors a major threat to public health. Unfortunately, no effective model or product is currently
available to predict the prognosis of HER2-positive patients. Currently, the C-index for WSI-based
breast cancer prognosis prediction is generally 0.5 to 0.7, and the performance of image-based models
must be improved.

Based on the performance of GATSurvMIL on DFS, the proposed model can effectively integrate
the advantages of images and clinical features to obtain better performance when clinical features
cannot accurately represent patient risk. We modeled patients separately by lymph node status, where
clinical features barely describe a patient’s prognostic risk, but the proposed model still combines the
strengths of imaging and clinical features. We believe that when the number of patients is small, the
image features still have a strong ability to represent patients’ risk because the information in
pathological images is rich. However, clinical features cannot accurately represent the prognosis of
patients due to differences in patient distribution. When the number of patients is large, clinical
features have a more significant discriminative ability, and the performance of the proposed fused
feature model can also be improved more than only WSIs. Therefore, there is still much room for
improvement in the prognostic analysis of pathological images. The proposed model is also based on
MIL and thus does not require pixel-level manual annotation and can be directly applied to most
current datasets. The introduced GAT and attention network provide better interpretability with
improved model performance. Currently, the prediction of patient prognosis through pathological
images remains in the experimental stage. With an increasing number of patients and follow-up data,
more advanced methods and models should appear in the future. Compared to using one feature alone
to predict patient outcomes, multimodal models can predict patient status from a more comprehensive
perspective. In contrast, multimodal data often require patients to have experienced multiple
diagnostic methods and sufficient follow-up time, which is rare. WSI, MRI, and clinical features are
often different, and it is also difficult to find a suitable feature fusion method.

5. Conclusions

This paper proposes an MIL-based multimodal model to predict the prognosis of HER2-positive
breast cancer patients. The proposed model can be directly applied to most current hospital data,
which can help provide personalized treatment of patients and auxiliary decision-making for doctors.
However, this study currently has some limitations: 1) since TCGA provides fewer clinical features,
we only included 5 clinical variables. 2) Because survival analysis requires long-term tracking records,
the amount of data is small. 3) The “black box” problem of neural networks is still unavoidable, even
though we have added GAT and attention modules. We continue to work on improving the prediction
of patient prognosis and plan to study more modal models and algorithms in the future by combining
features such as gene expression and radiomics. Finally, we look forward to more central datasets and
longer follow-up records to improve model performance.
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analysis of cellular heterogeneity in breast tumors complements genomic profiling, Sci. Transl.
Med., 4 (2012). https://doi.org/10.1126/scitranslmed.3004330

12. J. Xu, Y. Cao, Y. Sun, J. Tang, Absolute exponential stability of recurrent neural networks
with generalized activation function, IEEE Trans. Neural Networks, 19 (2008), 1075–1089,.
https://doi.org/10.1109/TNN.2007.2000060

13. J. Tang, X. Liu, H. Cheng, K. M. Robinette, Gender recognition using 3-
D human body shapes, IEEE Trans. Syst. Man Cybern. C, 41 (2011), 898–908.
https://doi.org/10.1109/TSMCC.2011.2104950

14. X. Liu, J. Liu, X. Xu, L. Chun, J. Tang, Y. Deng, A robust detail preserving anisotropic
diffusion for speckle reduction in ultrasound images, BMC Genom., 12 (2011), S14.
https://doi.org/10.1186/1471-2164-12-S5-S14

15. J. Tang, S. Millington, S. T. Acton, J. Crandall, S. Hurwitz, Ankle cartilage surface segmentation
using directional gradient vector flow snakes 2004. IEEE Int. Conf. Inf. Process., 4 (2004), 2745–
2748. https://doi.org/10.1109/ICIP.2004.1421672

16. J. Tang, S. Acton, An image retrieval algorithm using multiple query images, ISSPA 2003, 1
(2003), 193–196. https://doi.org/10.1109/ISSPA.2003.1224673

17. E. H. Cain, A. Saha, M. R. Harowicz, J. R. Marks, P. K. Marcom, M. A. Mazurowski, Multivariate
machine learning models for prediction of pathologic response to neoadjuvant therapy in breast
cancer using MRI features: a study using an independent validation set, Breast Cancer Res. Treat.,
173 (2019), 455–463. https://doi.org/10.1007/s10549-018-4990-9

18. H. Wang, F. Xing, H. Su, A. Stromberg, L. Yang, Novel image markers for non-small
cell lung cancer classification and survival prediction, BMC Bioinform., 15 (2014), 310.
https://doi.org/10.1186/1471-2105-15-310

19. Z. Hu, J. Tang, Z. Wang, K. Zhang, L. Zhang, Q. Sun Jr, Deep learning for image-
based cancer detection and diagnosis-A survey, Pattern Recognition, 83 (2018), 134–149.
https://doi.org/10.1016/j.patcog.2018.05.014

20. J. Yang, J. Ju, L. Guo, B. Ji, S. Shi, Z. Yang, et al., Prediction of HER2-positive
breast cancer recurrence and metastasis risk from histopathological images and clinical
information via multimodal deep learning, Comput. Struct. Biotel., 20 (2022), 333–342.
https://doi.org/10.1016/j.csbj.2021.12.028

Mathematical Biosciences and Engineering Volume 20, Issue 6, 11196–11211.

http://dx.doi.org/https://doi.org/10.1200/JCO.2011.37.2185
http://dx.doi.org/https://doi.org/10.1001/jama.2017.14585
http://dx.doi.org/https://doi.org/10.1126/scitranslmed.3004330
http://dx.doi.org/https://doi.org/10.1109/TNN.2007.2000060
http://dx.doi.org/https://doi.org/10.1109/TSMCC.2011.2104950
http://dx.doi.org/https://doi.org/10.1186/1471-2164-12-S5-S14
http://dx.doi.org/https://doi.org/10.1109/ICIP.2004.1421672
http://dx.doi.org/https://doi.org/10.1109/ISSPA.2003.1224673
http://dx.doi.org/https://doi.org/10.1007/s10549-018-4990-9
http://dx.doi.org/https://doi.org/10.1186/1471-2105-15-310
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2018.05.014
http://dx.doi.org/https://doi.org/10.1016/j.csbj.2021.12.028


11210

21. K. Yu, C. Zhang, G. J. Berry, R. B. Altman, C. Ré, D. L. Rubin, et al., Predicting non-small cell
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