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Abstract: Inter-domain routing systems are important complex networks on the Internet. It has been
paralyzed several times in recent years. The researchers pay close attention to the damage strategy of
inter-domain routing systems and think it is related to the attacker’s behavior. The key to the damage
strategy is knowing how to select the optimal attack node group. In the process of selecting nodes,
the existing research seldom considers the attack cost, and there are some problems, such as an unrea-
sonable definition of attack cost and an unclear optimization effect. To solve the above problems, we
designed an algorithm to generate damage strategies for inter-domain routing systems based on multi-
objective optimization (PMT). We transformed the damage strategy problem into a double-objective
optimization problem and defined the attack cost related to the degree of nonlinearity. In PMT, we
proposed an initialization strategy based on a network partition and a node replacement strategy based
on partition search. Compared with the existing five algorithms, the experimental results proved the
effectiveness and accuracy of PMT.

Keywords: inter-domain routing systems; complex networks; damage strategy; optimal attack node
group; multi-objective optimization

1. Introduction

The Internet of Things is an extended network based on the Internet. As an important infrastructure
of the Internet, the inter-domain routing system is closely related to the security and stability of the
Internet of Things. The inter-domain routing system is a dynamic system composed of multiple au-
tonomous systems. Its main function is to exchange routing information between autonomous systems
and ensure that the data requested by users can be transmitted stably between autonomous systems.
The border gateway protocol (BGP) is a routing protocol for inter-domain routing systems to exchange
routing information. When users accessing the Internet send data requests, the BGP can realize the
optimal routing path selection of data transmission so that data can be transmitted between routers
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quickly and effectively. Ideally, the inter-domain routing system will not be affected, so everything can
run smoothly and all data requests of users can be easily met.

However, the reality always backfires. Based on the security defects of BGP, a failure or malicious
attack on the BGP router can affect the whole inter-domain routing system. The spread of Code Red II
and Nimda worms led to the continuous shock of the routing system of the global Internet in 2001 [1].
Due to a BGP routing error of CenturyLink, the Internet had a cascade reaction in 2020 [2]. As a
result, many services connected to the Internet were paralyzed, such as Steam, AWS, Discord and other
services. In 2021, BGP route leakage occurred in India’s autonomous network (AS55410), resulting in
a 13-fold surge in traffic on the wrong path. More than 20,000 autonomous networks around the world
were affected by the event because of cascading. As shown in the above security events, cascading
failures occur frequently in the inter-domain routing system. If maliciously exploited by attackers,
cascading failures will have wider impacts on the inter-domain routing system. Therefore, studying the
possible damage strategies of attackers against inter-domain routing systems is crucial for defending
against threats.

Think of a BGP router as a node; the damage strategy refers to a group of attack node sequences. At
present, damage strategies for complex networks are mainly based on the assumption of no cost. No
cost means that all nodes are considered to be the same without considering the attack cost. The damage
strategy without considering the cost only considers the damage to the network, which belongs to a
single objective optimization problem. The common method to solve the single objective optimization
problem is to evaluate the important nodes in the network and give the importance value of each node.
The sequence obtained by sorting nodes according to their importance is the group of attack node
sequences. In the past, the identification methods of important nodes in the network mostly depended
on a single indicator [3, 4]. Recent studies have assessed the importance of nodes using indicators that
are closely related to the node, including the weak connection attribute of nodes [5], the connection
ability of edges [6], the substitutability of nodes [7] and so on. In practice, the cost of attacking the
router nodes of the inter-domain routing system varies widely. Therefore, the attack cost of damage
strategy based on node importance ranking is higher. At this time, it is particularly important to find a
group of important nodes through the damage strategy based on cascading failures, and by considering
the cost in the inter-domain routing system. A group of important nodes is not of high importance
individually, but the combination has the advantages of low attack cost and great damage to the coupled
inter-domain routing system [8]. Our work studies the damage strategy considering attack cost, which
is a multi-objective optimization problem.

For the strategy considering attack cost, researchers mainly focus on three aspects. The first is the
definition of attack cost. To facilitate the calculation, Zhang et al. [9] did not consider the attack cost
of each node separately, but defined the total number of attack nodes as the attack cost. Qin et al. [10]
considered the attack cost of each node and defined it as the attack cost related to degree of linearity.
The second area of concern is the impact of cascading failures in the network. In the existing research,
the cascading failures process is only considered in general complex networks [11–14]. However, there
are few studies on inter-domain routing networks based on BGP because of the complexity of cascading
failures. The third concern is the optimization effect. Wang et al. [15] defined three indicators to
measure the criticality of each node and used an exhaustive method to find the optimal solution. To
improve efficiency, the researchers propose a method based on search space reduction [16]. After that,
the researchers introduce heuristic algorithms to solve the problem and generate low-cost and high-
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yield damage strategies as much as possible [17]. Although the existing research results are abundant,
the following problems still exist:

1) The definition of attack cost in existing methods is vague. For example, the number of attack
nodes is the attack cost, which cannot distinguish the difference in attack cost between different nodes,
nor can it reflect the real situation of attacking key nodes and non-key nodes.

2) The existing methods do not consider the cascading failures mechanism in the inter-domain
routing system.

3) The double objective optimization effect of the existing methods is not obvious, and the cost is
still high.

Based on the above problems, we propose a method to generate damage strategies for inter-domain
routing systems based on multi-objective optimization (PMT). We transform the damage strategy prob-
lem into a double-objective optimization problem. The main work is as follows:

1) We transform the damage strategy problem into a double objective optimization problem and
propose the attack cost related to degree of nonlinearity.

2) We propose an initialization strategy based on network partition. First, partition the network, and
then generate the initial population based on the partitioned network. It enriches the diversity of the
initial population and makes the population evenly distributed in the network.

3) We propose a node replacement strategy based on partition search, which can accelerate the
convergence speed and improve accuracy.

4) In two real inter-domain routing networks, we compared PMT with five common damage strategy
algorithms. The experimental results verified the effectiveness and accuracy of PMT.

The follow-up arrangement of the article is as follows. Section 2 gives the related work and pre-
liminaries, including the cascading failures principle and NSGA-II. In Section 3, the damage strategy
problem based on cascading failures is transformed into a multi-objective optimization problem. Sec-
tion 4 introduces the PMT proposed in detail. Section 5 presents the experimental results and analysis.
The last is the conclusion.

2. Related work and preliminaries

2.1. Related work

The increasing scale of networks has prompted scholars to increase their enthusiasm for the study of
cascading failures. Zhao et al. [18] proposed a cascading failures model based on cellular automata for
road networks. It introduces the time characteristics of load distribution and node recovery ability into
the previous cascading failure model. Finally, they analyze the vulnerability of road networks through
the use of improved maximum connectivity and the node failure rate based on node degree.

Huang et al. [19] developed a model to analyze the cascading failures of multistate loading-
dependent systems. The model depicts the cascading failures phenomenon after load overload. Zhou
et al. [20] proposed a resilient network recovery framework against cascading failures with deep graph
learning. It can obtain network topology in real time and prioritize the maintenance of failed nodes
based on customer preferences. Zhou et al. [21] optimized the resiliency-based recovery method for
cascading failures in the network. Different restoration prioritization strategies are applied to network
systems subject to cascading failures that take into account system dependencies.

For the cascading failures model of complex networks, we have proposed the CFM-RFM [22] in our
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previous work and verified the effectiveness of the model. Therefore, the work of this article directly
refers to the CFM-RFM.

Evolutionary algorithms are used to solve complex problems. Based on the MSIQDE algorithm,
Deng et al. [23] proposed an enhanced MSIQDE (EMMSIQDE) algorithm based on mixing mul-
tiple strategies. EMMSIQDE introduces a new differential mutation strategy of a difference vector
and a new multi-population mutation evolution mechanism, which can effectively solve complex op-
timization problems. To effectively dispatch railway trains, Song et al. [24] designed an evolutionary
algorithm with a dynamic hybrid mechanism comprised of a quantum evolutionary algorithm and ge-
netic algorithm (QGDEC). QGDEC innovates the quantum variable decomposition strategy and the
increment mutation method. In order to solve problems of premature convergence and local optimiza-
tion, Deng et al. [25] proposed an adaptive differential evolution algorithm based on belief space and
generalized opposition-based learning for resource allocation.

A multi-strategy particle swarm and ant colony optimization algorithm were proposed for airport
taxiway planning [26]. It designs a new pheromone allocation mechanism and develops a pheromone
update strategy based on the principle of wolf predation, which can effectively solve the traveling
salesman problem. In addition, deep learning methods [27] are also used to solve complex problems.

A method of damage strategy considering the cost needs to optimize not only the degree of damage
to the network, but also the attack cost, which is a multi-objective optimization problem. For complex
networks, the cost is seldom considered in the existing damage strategy methods. Wang et al. [11]
studied how to efficiently allocate limited resources to minimize network damage when complex net-
works face various damage strategies. They found that, under the premise of considering the cost, the
network has an optimal allocation scheme of defense resources, which can maximize the protection
of the network. The optimal defense scheme is related to the basic parameters of the network. The
experimental results show that the network with sparse connections is more conducive to protecting
the network.

Tan et al. [12] analyzed the effectiveness of the attack strategy considering the cost and proposed two
new evaluation indicators: the compactness coefficient of closeness and the compactness coefficient of
betweenness. The experiment shows that the degree attack strategy is the worst for the same network.
Under the same average degree, the attack strategy with a smaller closeness compactness coefficient or
betweenness compactness coefficient performs better.

Ye and Jun [13] proposed a cost constraint model to solve the problem of an attack strategy in
complex networks. The model thinks that the nodes with a higher degree will be attacked preferentially
when the constraints are lower. The nodes with the smaller degree will be attacked preferentially when
the constraints are higher. In addition, it was found that there is a cost evaluation threshold. If the cost
of the attacked node is less than this threshold, the node with the lower degree will be attacked first.
Hong et al. [28] mainly studied the robustness of complex networks when they are attacked under the
premise of considering the cost. The relationship between node attack and edge attack is not clearly
explained.

Wang et al. [14] proposed a complex network edge attack strategy considering the attack cost based
on existing research. In this strategy, the weight of the edge is defined as the attack cost of the edge,
and the average path length and maximum connected subgraph are used to evaluate the damage degree
of the network. In ordinary scale-free networks and exponentially adjustable scale-free networks, the
edge attack strategy with adjustable weight parameters is simulated. The experimental results show
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that the attack effect is not affected when the parameters of edge weight are different. It shows that
the edge weight parameter is not an important influential condition. When the attack cost is small, the
edge attack with a larger weight is better.

Zhang et al. [9] solved the damage decision-making problem from the perspective of multi-objective
optimization, and they proposed a cascading key node detection algorithm (MO-BCVND) based on
multi-objective optimization for complex networks. Based on an NSGA-II framework, MO-BCVND
improves the search strategy and speeds up convergence. In 12 complex networks, the effectiveness
of MO-BCVND is proved by simulation attacks. At the same time, MO-BCVND can generate dif-
ferent levels of attack node groups, which can provide a basis for network vulnerability analysis.
MO-BCVND is a cascade key node detection algorithm that considers both the cost and the effect
of the attack. However, the attack cost is relatively simple and it cannot reflect the difference between
attacking critical nodes and non-critical nodes. The application scenario is only for general complex
networks. For the special network of inter-domain routing systems, the initialization strategy needs to
be improved.

In view of the problems in the existing methods, we proposed a method for generating damage
strategies based on multi-objective optimization (PMT). It can not only approximate the attack cost of
nodes, but it can also consider the cascading failures mechanism in inter-domain routing systems. The
experimental results show that PMT is effective.

2.2. Cascading failures

The analysis of the failure principle can be divided into two parts. As shown in Figure 1, there are
the failure causes of nodes and links and the causes of cascading failures.

failure principle

control plane

data plane

node failure

link failure

cascading failures

UPDATE

messages

load 

redistribution

depletion 
resources

flow 
overload

cascading

Figure 1. Failure principle.

1) Failure causes of nodes and links.
Data plane load and control plane load cannot be confused in inter-domain routing systems. Data

plane load refers to the data load forwarded by routing nodes. Control plane load refers to the load used
to maintain the connection relationship between inter-domain routes, such as UPDATE messages. A
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node failure occurs when a large number of UPDATE messages arrives at the control plane at the same
time, resulting in node CPU, memory and other resources being exhausted. A link failure is caused by
the surge and overload of the data plane load that needs to be forwarded in a short time.

2) Causes of cascading failures.
When a node fails, it is temporarily removed from the network and its neighbors send UPDATE

messages to notify other nodes on the network. This process is the propagation of UPDATE messages.
When the link fails, the forwarding task of the data load is completed by other working links. This
process is called load redistribution, which redistributes the load of the failed link to other working
links. The propagation process of UPDATE messages and load redistribution are the main causes of
cascading failures.

2.3. NSGA-II

A multi-objective optimization algorithm refers to an algorithm used to solve multi-objective op-
timization problems. Schaffer [29] proposed an algorithm based on vector evaluation to solve related
multi-objective optimization problems, which is the first time that an evolutionary algorithm has been
applied to the field of multi-objective optimization. Then, more and more researchers became able to
solve the multi-objective optimization problem based on evolutionary algorithms.

The concept of Pareto ranking was proposed by Goldberg [30]. It points out that the distribution
should be maintained in the algorithm, which provides important support for the mainstream algorithms
studied later [31]. NSGA-II, proposed by Deb et al. [32], was the most representative. PMT is based
on the NSGA-II framework, and NSGA-II is introduced in detail below.

P(t)

Q(t)

Fount 1

Fount 3 Fount 3'

fast non-dominated 
sorting strategy

crowding distance

mixed populations sequencing of mixed 
populations

Fount 4

Fount 5

Fount 2

Fount 1

Fount 2

P(t+1)

eliminate individual

Figure 2. NSGA-II.

NSGA-II is an improved version of NSGA. Compared with NSGA, NSGA-II has the following
advantages.

1) A fast non-dominated sorting strategy is designed in NSGA-II. The algorithm complexity is
reduced from O(mN3) to O(mN2), which greatly improves the running speed of NSGA-II.

2) NSGA-II proposes an evaluation method of crowding distance to judge the advantages and dis-
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advantages of individuals on the same front, which can ensure the accuracy of population evolution.
3) To maintain the quality of the population and avoid the loss of excellent individuals in the process

of evolution, NSGA-II adopts the elite retention mechanism. That is, the individuals with good perfor-
mance in the parent generation are retained and merged to participate in the new generation process of
the next generation.

Figure 2 shows the basic flow of NSGA-II. The evolutionary process consists of three steps. For the
process of evolution from generation t to generation t+1:

Step 1: First, the parent population P(T) generates the offspring population Q(T) through the cross
and mutation strategy. According to the elite retention strategy, the parent population P(T) is put into
the offspring population Q(T) to form a mixed population.

Step 2: By using the fast non-dominated sorting strategy to sort the mixed population, we can get
the front serial number of all individuals.

Step 3: The last is the environmental selection, which selects the new population with the number
N from the mixed population with the number 2N. As shown in Figure 2, the number of individuals
selected for the first three fronts exceeds N, so the individuals in the third front can only select a
part. At this time, the individuals in the third front are sorted through the crowding distance strategy,
and the individuals satisfying the total number n are selected. The third front part of the unselected
individuals, the fourth front and the fifth front of all individuals were eliminated. The loop continues
until the algorithm reaches a preset termination condition.

3. Transformation of the problem

For the damage strategy of cascading failures, most previous studies have transformed this problem
into a single objective optimization problem. Specifically, they rank the importance of nodes according
to various attributes of the network from the perspective of the attacker. Only the damage degree of the
network is taken as the objective function, so attacking the nodes with the highest importance ranking
can cause the maximum damage to the network. This kind of research does not consider the cost of
nodes. By default, the attack cost of nodes is the same. This is not reasonable in reality. Nodes with
higher importance are more difficult to attack. To get closer to reality and find low-cost and high-yield
damage strategies, we transform the damage strategy problem based on cascading failures into a multi-
objective optimization problem, that is, minimizing the attack cost and maximizing the attack effect
simultaneously.

The damage strategy problem for inter-domain routing systems based on cascading failures is ex-
pressed as follows:

Minimize T(P) = (C(P),−F(P))T

s.t. P ∈ PS ,C(P) ∈ [0, 1], F(P) ∈ [0, 1],
(3.1)

where, T(P) is an objective function vector, P denotes the initial attack node group and PS denotes the
collection of all attack node groups. C(P) denotes the normalized cost of the initial attack node group.
F(P) denotes the degree of network damage after failure caused by the attack, which is expressed by
the failure rate in this paper. To minimize the whole, F(P) takes the opposite number. From Eq (3.1),
we can see that the objective of optimization in this paper is to attack the node group with the lowest
cost as much as possible while causing maximum damage to the network.
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3.1. Attack cost

Due to the limited attack resources, we must pay attention to the attack cost. Qin et al. [10] defined
that the attack cost is related to the degree, which has low complexity and can reflect the importance
of nodes to a certain extent. It is considered that this definition is reasonable. In real attack scenarios,
the attack cost of a node is equivalent to the strength of node defense resource deployment. From the
perspective of the defender, the deployment of defense resources of nodes with a high degree is usually
several times or more powerful than that of nodes with a low degree. Therefore, the attack cost related
to the degree of nonlinearity is defined in this paper. The attack cost after an attack on the network can
be expressed as follows:

C(P) =

∑
u∈P

(d(u) + δd(u)γ)∑
v∈V

(d(v) + δd(v)γ)
, (3.2)

where d(u) is the degree of u and V is the set of all nodes in the network. C(P) is the normalized cost.
For the convenience of calculation, set δ = 1, γ = 2.

3.2. Failure rate

After cascading failures, both nodes and links may fail. Therefore, to evaluate the damage degree
of the network, both the failed node and the failed link should be considered. To quantify the impact
of cascading failures for inter-domain routing networks, the average failure rate is defined as follows:

fFR =
NFv + NFe

W
, (3.3)

where NFv denotes the number of failed nodes, NFe denotes the number of failed links and W denotes
the total number of initial nodes and links. It is generally believed that the failure rate is directly
proportional to the degree of damage to the network.

4. Methods

After the transformation of the previous problem, the next main work is how to find the Pareto
optimal solution set in the multi-objective optimization problem. This section proposes an algorithm
to generate damage strategies for inter-domain routing systems based on multi-objective optimization
(PMT) to find an optimal group of attack nodes.

4.1. The general framework of PMT

Based on the basic framework of NSGA-II, we propose PMT, which can better solve the damage
strategy problem of cascading failures of inter-domain routing systems.

Algorithm 1 shows the steps of PMT, which mainly includes three processes. The first is population
initialization. We propose an initialization strategy based on network partitioning. First, the network
is divided into several small regions based on the locations and attributes of nodes in the inter-domain
routing systems. Then, the initial attack nodes are selected according to the rules, and a diverse pop-
ulation can be obtained. The second process is population evolution, which first mutates and crosses
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over to produce offspring. Then, the node replacement strategy based on partition search is used to
optimize the offspring. Finally, according to the elite retention strategy, the offspring population and
the parent population were combined, and the non-dominated ranking and crowded distance were ap-
plied to select individuals and update the population. The third process is to obtain the Pareto optimal
solution set from the final population by using an efficient non-dominated sorting algorithm.

Algorithm 1 PMT
Input: network G; model parameters α, β; population size NPop; binary individual length Nbits;

iterations Niter; probability of variation Pm; probability of crossover Pc
Output: non-dominated solutions ParetoPops; non-dominated fitness value ParetoFits

1: Step1: population initialization
2: Pops← Initpops (G, Nbits, NPop)
3: Fits← Fitness (Pops)
4: Step2: population evolution
5: while iter ≤ Niter do
6: Chrpops←Crossover (Pops, pc)
7: Chrpops←Mutate (Chrpops, pm)
8: Chrpops← PAC (Chrpops)
9: Chrfits← Fitness (Chrpops)

10: Pops, Fits← optSelect (Pops, Fits, Chrpops, Chrfits)
11: iter← iter + 1
12: end while
13: Step3: obtain the non-dominated solutions and fitness value
14: ParetoPops, ParetoFits← SelectNonDominatedsets (Pops, Fits)

The core idea of PMT is to divide the network into multiple regions and attack some nodes in each
region respectively. “Crush one by one” in all areas so that a small number of nodes can damage
the entire network. It can be seen from Algorithm 1 that the initialization strategy based on network
partitioning and the node replacement strategy based on partition search are two important parts of
PMT.

4.2. Initialization strategies based on network partitioning

In multi-objective genetic algorithms, the initial population is generated by randomly initializing the
population to meet the generalization ability of the population. In general problems, random initial-
ization of the population has good results. However, for the damage decision problem of inter-domain
routing systems, the random initialization population is prone to the clustering of nodes or too large a
search space. To ensure the superiority of the algorithm and avoid the above problems, we propose an
initialization strategy based on network partitioning.

4.2.1. Network partitioning

Algorithm 2 shows the process of partitioning. Partitioning is based on the logical location of
nodes. Neighboring nodes are divided into an area as far as possible. First, find the edge-nodes v in the
network, that is, the node with degree 1. Then, it takes v as the starting point to find neighbor nodes
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of j-order. When the number of j-order neighbor nodes < ⌈N/K⌉ (the number of nodes in each region),
continue to find (j+1)-order neighbor nodes. The search is stopped when the number of (j+r)-order
neighbor nodes ≥ ⌈N/K⌉. If the number of nodes exceeds ⌈N/K⌉ and the difference is d, then the
d nodes with the largest degree are removed from the neighbors of (j+r)-order. This can make the
number of nodes in each region meet the requirements, and v forms a region with the neighbors of
(j+r)-order and removes it from the network. This loop continues until the network is divided into K
regions. Figure 3(a) is a simple network, and Figure 3(b) is the result of partitioning. It can be seen
that the nodes in the network are orderly divided into five regions, A, B, C, D and E. The nodes in the
regions are closely connected. When a few nodes are attacked, cascading failures are likely to occur in
the region. Therefore, network partitioning is conducive to generating the strategy.

Algorithm 2 Network partitioning
Input: network G; number of nodes N; number of partitions K
Output: node group after partition PartitionSet

1: Step1: find the set of edge-nodes NodeDgreeOneSet
2: for node ∈ G do
3: if G.degree (node) = 1 then
4: NodeDgreeOneSet.add (node)
5: end if
6: end for
7: Step2: get PartitionSet
8: for i← 1 to ⌈N/K⌉ do
9: node← Random (NodeDgreeOneSet, 1)

10: temp.add (node)
11: for j← 1 to∞ do
12: NeigborsNodeSet← Getneigbors (G, node, j)
13: temp.add (NeigborsNodeSet)
14: if len (temp) ≥ ⌈N/K⌉ then
15: d← len (temp) - ⌈N/K⌉
16: if d = 0 then
17: PartitionSet.add (temp)
18: Update (G, NodeDgreeOneSet)
19: break;
20: else
21: RemSet← SelectMaxDegree (NeigborsNodeSet, d)
22: temp.delete (RemSet)
23: PartitionSet.add (temp)
24: Update (G, NodeDgreeOneSet)
25: break;
26: end if
27: end if
28: end for
29: end for
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Figure 3. A simple network partition.

4.2.2. Encoding

PMT uses binary encoding to represent individuals pop = (p1,p2,...,pi,...,pn), which indicates the
attack node group. The parameter pi indicates the state of the node. pi = 1, indicating that node i is the
invalid state after being attacked. pi = 0 indicates that node i is not attacked and is working properly.
For example, pop = {1,0,0,1,0,1,0,0} indicates that the attacked node is {1,4,6}. Since binary coding is
used, PMT uses uniform crossover and bitwise mutation.

Algorithm 3 Initialization strategies
Input: network G; number of nodes N; number of partitions K; population size NPop; binary individ-

ual length Nbits; node group after partition PartitionSet
Output: initial population Pops

1: Step1: remove edge-nodes
2: for node ∈ G do
3: if G.degree (node) = 1 then
4: G.ndoe.delete (node)
5: end if
6: end for
7: N ← Len (G.ndoe)
8: Step2: select the initial attack node according to the partition
9: for i← K to nPop do

10: TempIndividual← [0] * Nbits
11: for z← 1 to i + 1 do
12: z← z % K
13: Index← RandomNodeIndex (Partitionset, ⌈N/K⌉, z)
14: TempIndividual [Index]← 1
15: end for
16: Pops.add (TempIndividual)
17: end for
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4.2.3. Initialization strategies

After the network is divided into several regions, the population can be initialized. Algorithm 3
gives the initialization process.

In the inter-domain routing network, there is a large number of edge-nodes and they only have small
traffic requests, which is not enough to pose a threat to other nodes. Therefore, edge-nodes are removed
from the range of initially selected attack nodes to improve the probability of selecting “strong” nodes.
Then, select the initial attack node according to the partition. Set K to the minimum number of nodes
that allows individual attacks to ensure that pop attacks at least one node in each region. For pop, it
is necessary to determine the number of attack nodes and then select attack nodes at random in each
region of the network. Considering the diversity of the population, the number of attack nodes of pop is
different, which can ensure the diversity of the attack cost. It can be seen that the initialization strategy
based on network partitioning can ensure that the attack nodes of pop are spread all over the network,
which can damage the network to the greatest extent.

4.3. Node replacement strategies based on partition search

For PMT, although the evolution of the population can be realized through the crossover process
and mutation process, this kind of universal evolution mode is not stable. For the damage strategy
of inter-domain routing systems, the convergence speed is limited. Therefore, we propose a node
replacement strategy based on partition search to realize population evolution. Node replacement is
based on the principle of priority of the node damage conversion rate (DCR). This can not only improve
the convergence speed, but it can also accurately search and reduce unnecessary search actions.

4.3.1. Damage conversion rate

DCR refers to the ratio of failure rate to attack cost. It is defined as

DCR(P) =
fFR

C(P)
. (4.1)

It can be seen that the DCR is proportional to fFR and inversely proportional to C(P). When the
DCR of pop is higher, it indicates that the attack cost performance of pop is higher.

4.3.2. Implementation process

Algorithm 4 shows the implementation of this strategy. It includes three stages: calculating the
DCR of nodes, deleting nodes and adding nodes. Specifically, first calculate the DCR of attack nodes
in pop. In the stage of deleting nodes, delete the node v with the lowest DCR in pop. Then, pop
becomes popa. In the stage of adding nodes, calculate the region P where the deleted v is located, and
find the node w with the largest DCR in region P. If w is not in popa, add it to popa and change it to
popd. If w is in popa, delete the w in region P. Continue searching for the node in region P with the
largest DCR until w is not in popa to end the search. Finally, if DCR (w) > DCR (v), popd is output
as the evolved individual. The strategy only searches in the region where nodes are deleted, which can
not only complete the search quickly, but it can also accurately improve the DCR of pop.

Take the simple network in Figure 3(b). There is pop containing node 4 of region B that assumes
that node 4 has the lowest DCR. Step 1: Calculate the DCR of nodes in region B, assuming that the
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order from largest to smallest is {1,3,2,6,7,5,4}. Step 2: Remove node 4 from pop. Step 3: Since node
1 has the largest DCR, it waits to be added to pop. If node 1 is not in pop, it is added to pop to evolve
into a new pop′. If node 1 is in pop, the search continues until the search node is not in pop or the
search space is empty to stop the search.

Algorithm 4 Node replacement strategies based on partition search
Input: network G; number of nodes N; number of partitions K; population size NPop; pop
Output: evolutionary individuals pop′

1: Step1: calculate the DCR value of the node
2: DCR (v)← GetPopDCR (pop)
3: Step2: remove node
4: v← arg minv∈pop′ (DCR (v))
5: popa ← Remove (pop,v)
6: Step3: add node
7: for P← PartitionSet (0) to PartitionSet (⌈N/K⌉) do
8: if v ∈ P then
9: popd ← popa

10: while popa = popd do
11: DCR (w)← GetPopDCR (pop)
12: w← arg minv∈pop′ (DCR (w))
13: if w < popa then
14: popd ← Add (popd, w)
15: else
16: P.remove (w)
17: end if
18: end while
19: end if
20: end for
21: if DCR (w) > DCR (v) then
22: pop′ ← popd

23: else
24: pop′ ← pop
25: end if

5. Experimental results and analysis

5.1. Parameter setting

Topological structures of the UK and Canada were selected from the AS-Relationships dataset of
the CAIDA project [33] to establish the basic network of the experiment, including the connection
relationship and business relationship between nodes. The CFM-RFM model proposed in the previous
work [22] can accurately simulate the cascading failures of inter-domain routing systems after verifica-
tion. Therefore, to ensure the accuracy and authenticity of the comparative experiment, the experiment
was run on the CFM-RFM model. Network and simulation-related parameters are shown in Table 1.
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Table 1. Parameter settings.

Parameter UK Canada

V 1191 1523
E 2946 2508
α 1 1
β 0.3 0.3
R 120 150

In this section, PMT is compared and analyzed against five existing algorithms of damage strategies
to verify its effectiveness. The comparison algorithm includes two algorithms based on single objective
optimization, AIPR [34] and SD-KNI [35], which do not consider the attack cost. The other three are
based on multi-objective optimization algorithms NSGA-II [32], MO-BCVND [9] and DSCT [36].

AIPR is an autonomous systems importance attack policy based on preferred routes. The policy
considers that the more valid paths passing through a node, the higher the priority of the node being
attacked.

SD-KNI is an attack strategy for inter-domain routing systems based on propagation dynamics.
Although the dynamic process is considered, it is based on the premise of no cost assumption.

DSCT has two indicators: the load of the link connected to the node and the number of reachable
nodes of neighbor nodes. Then, it introduces the attack cost related to degree of nonlinearity and finally
calculates a group of node attack sequences through the use of TOPSIS.

NSGA-II is a classical multi-objective optimization genetic algorithm. Our proposed PMT is similar
to the NSGA-II framework, and the comparison results are persuasive.

MO-BCVND is a cascade critical node detection algorithm based on multi-objective optimization
in complex networks. In MO-BCVND, an initialization strategy based on cost reduction is proposed to
increase the diversity of the population. To improve the convergence rate of the population, an adaptive
local search strategy is proposed.

PMT and all comparison algorithms were implemented in Python. All of the experiments were
completed under the conditions of a Windows 10 operating system; the computer was configured with
an i7-10700 processor and 16GB RAM. For PMT, the population size was set to 100, the mutation
probability to 0.01, the crossover probability to 0.6 and the total number of iterations to 100. All
comparison algorithms apply the parameters suggested in the paper.

5.2. Effectiveness analysis of PMT

This section shows the comparison results between PMT and the other five algorithms on two real
inter-domain routing networks. The effectiveness of PMT is verified by the failure rate, and the attack
cost performance of PMT is evaluated by the DCR.

1) Verification of failure rate
Each method was applied to calculate the respective solution, that is, the optimal node attack set

with different attack costs. In two networks, the network is attacked according to the node attack set of
each method. The relationship between attack cost and failure rate is shown in Figures 4 and 5. The
attack cost of abscissa is the result of normalization.

Mathematical Biosciences and Engineering Volume 20, Issue 6, 11176–11195.



11190

(a) PMT (b) MO-BCVND

(c) NSGA-II (d) DSCT

(e) SD-KNI (f) AIPR

Figure 4. Relationship between attack cost and failure rate in the UK.

As can be seen in Figures 4 and 5, the effects of PMT, DSCT, NSGA-II and MO-BCVND based
on multi-objective optimization are much better than those of AIPR and SD-KNI based on single
objective optimization in the two networks. When the attack cost is small, it has an obvious attack
effect. Therefore, the abscissa magnitude of Figure 5(a)–(c) is small. The optimization ability of the
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(a) PMT (b) MO-BCVND

(c) NSGA-II (d) DSCT

(e) SD-KNI (f) AIPR

Figure 5. Relationship between attack cost and failure rate in the UK.

algorithm in Figure 5(d)–(f) is general. When the attack cost of the abscissa is large, there is an obvious
attack effect. Only by increasing the attack cost of the abscissa can we see the attack effect in the plot.
This is also the reason for the large difference in the abscissa orders of magnitude in Figure 4.

It can be found that the results of PMT, NSGA-II and MO-BCVND are seriously divided. The node
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attack set with low cost and a high failure rate accounted for the majority, and the sets with intermedi-
ate values were few. This phenomenon is mainly caused by multi-objective optimization. In Canada’s
network, the best non-dominated solution of PMT among the four multi-objective optimization algo-
rithms can paralyze the network. That is, the failure rate is 0.95, and the cost is only 0.149. However,
the non-dominated solution of NSGA-II and MO-BCVND maximally increases the network failure
rate to about 0.9, and the attack cost is larger than that of PMT under the same condition.

(a) Canada (b) UK

Figure 6. Comparison of DCR.

2) Evaluation of DCR
As can be seen in Figures 4 and 5, the orders of magnitude of PMT, NSGA-II and MO-BCVND are

close. To further analyze the attack cost performance of PMT, the DCRs of PMT, NSGA-II and MO-
BCVND were calculated and compared for the two inter-domain routing networks. Figure 6 shows the
relationship between the failure rate and the DCR of the network caused by different methods. Since
the failure rate of the final solution obtained by each method is not consistent, the failure rate of the
abscissa is reflected by the interval, and the DCR is the average of the corresponding interval.

Figure 6(a) shows that, when the failure rate is between 0.7–0.8, the DCRs of NSGA-II and MO-
BCVND are slightly higher than that of PMT in Canada. However, when the failure rate is between
0.8–0.85, PMT and MO-BCVND have similar cost performance, which is higher than NSGA-II. When
the failure rate is greater than 0.85, it can be seen that the DCRs of NSGA-II and MO-BCVND decrease
significantly. At this time, PMT is undoubtedly the most cost-effective attack algorithm. As can be
seen in Figure 6(b), the DCR of PMT in the UK is better than the other two algorithms, and it is the
preferred algorithm for damage strategies. In general, PMT has the advantage of high-cost performance
compared with common damage strategies algorithms. It can generate low-cost and high-yield damage
strategies and provide decision-makers with different levels of damage strategies.

6. Conclusions

As an important infrastructure of the Internet, inter-domain routing systems play a significant role
in supporting the stable operation of the Internet. To better analyze the vulnerability of inter-domain
routing systems, we have proposed a method for generating damage strategies in inter-domain rout-
ing systems based on multi-objective optimization (PMT). The damage strategy based on cascading
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failures is transformed into a multi-objective optimization problem, that is, the attack cost and attack
effect of nodes are optimized simultaneously. We define the attack cost related to the degree of non-
linearity, and the attack effect is the failure rate of the network after cascading failures. For PMT, we
propose an initialization strategy based on network partitioning and a node replacement strategy based
on partition search. In the experimental part, PMT was compared with five common damage strategies
methods, and the experimental results verify the effectiveness and accuracy of PMT. Our algorithm can
output node sets of low cost and high yield, which can meet the needs of attackers. And, it can provide
multi-angle information for the defender and make it possible to predict an unknown attack.
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