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Abstract: Contaminants are the critical targets of food safety supervision and risk assessment. In 
existing research, food safety knowledge graphs are used to improve the efficiency of supervision since 
they supply the relationship between contaminants and foods. Entity relationship extraction is one of 
the crucial technologies of knowledge graph construction. However, this technology still faces the 
issue of single entity overlap. This means that a head entity in a text description may have multiple 
corresponding tail entities with different relationships. To address this issue, this work proposes a 
pipeline model with neural networks for multiple relations enhanced entity pairs extraction. The 
proposed model can predict the correct entity pairs in terms of specific relations by introducing the 
semantic interaction between relation identification and entity extraction. We conducted various 
experiments on our own dataset FC and on the open public available data set DuIE2.0. The results of 
experiments show our model reaches the state-of-the-art, and the case study indicates our model can 
correctly extract entity-relationship triplets to release the problem of single entity overlap. 

Keywords: food safety monitoring and risk assessment; multiple relationship extraction; neural 
network pre-training; single entity overlap; semantic interaction  
 

1. Introduction 

Fresh food (including agricultural products, fruits, etc.) is an important part of the healthy diet 
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that provides essential nutrients to the body. However, with the continuous development of agriculture 
and industry, a large number of pollutants have been discharged into the environment, and food 
contaminants that are detrimental to the health of people have entered the food supply chain [1]. Some 
studies show that a high proportion of foodborne illnesses are associated with the ingestion of 
contaminated food [2]. For example, people who ingest food with excessive organophosphorus 
pesticide residues develop have mental abnormalities, chronic neuritis and other poisoning 
symptoms [3], since organophosphorus pesticide inhibits cholinesterase and blocks the transmission 
of neurotransmitters in the human body. Given the widespread presence of food contaminants and 
their serious health risks to people, preventing food contamination from injuring human health is a top 
public health priority around the globe [1,4]. 

Food safety supervision and risk assessment are effective ways to prevent contaminated food 
from entering the supply chain and endangering human health. However, supervision and assessment 
suffer from the huge number of detection samples (food) and detection items (food contaminants), 
which leads to inefficient supervision. To improve the efficiency of supervision, some studies utilize 
food knowledge graphs, which contain structured knowledge of food and contaminants. The 
associations between food categories and food contaminants can clearly indicate which food 
contaminants are vital for some foods and need to be focused supervision. Food knowledge graphs are 
derived from various sources, which consist of knowledge about recipes, nutrients, health and food 
safety [5]. 

Entity relation extraction is the core technology for building knowledge graphs which identify 
entities and relationships between entities. It includes two sub-tasks: named entity identification and 
relationship extraction. Named entity recognition [6] extracts entities from text and divides them into 
specified categories. Relation extraction [7,8] identifies some semantic relationship between entities. 
The approaches of entity relation extraction can be divided into the pipeline and joint approaches, 
according to the order of the two sub-tasks. Pipeline-based approaches [9] are widely proposed to 
extract entities and relationships in early studies. These studies aim to extract entity information and 
classify the relationships between entities by training two models, respectively. However, most of the 
pipeline-based approaches ignore the correlation between entity recognition and relationship 
prediction tasks. Thus, many joint models [10–13] are proposed in recent studies to capture the shared 
features of entities and relations by their joint learning. However, the joint models suffer from the 
global optimization problem [14]. The emergence of deep learning has accelerated the application of 
neural networks on entity relation extraction since the neural models can automatically learn features 
and thus reduce the dependence of models on manual feature selection. 

In the existing studies on entity relationship extraction, the problem of overlapping triple [15,16] 
leads to the poor performance of approaches. As shown in Figure 1, S1 belongs to the normal class, 
S2 belongs to the single entity overlap (SEO) class and SEO indicates that one subject pair corresponds 
to multiple objects in a sentence. In order to address the issue of single entity overlap, this paper 
proposes a pipeline model for multiple relations enhanced entity pairs extraction. Our model consists 
of a multi-relationship extraction module and an entity pair extraction module, both of which are 
trained independently. The entity relationships learned in the multi-relationship extraction module are 
taken as extra features to input the entity pair extraction module. As shown in experiment results on 
the dataset on food domain and general domain, our model provides an effective solution for a single 
entity overlap problem, and it can effectively mitigate the independence between entities and 
relationships that exist in the pipeline models. 
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Figure 1. Examples of normal and single entity overlap (SEO).  

The contributions of this paper are as follows: 
1) We propose a multiple relations-enhanced entity extraction model which predicts entity 
relations and extracts corresponding entity pairs according to the relations, respectively.  
2) The proposed model provides an effective solution for single entity overlap problem by 
introducing relational semantic features into the entity recognition. It can effectively mitigate the 
independence between entity tagging and relation classification that existed in the pipeline 
methods. 
3) The experimental results for two datasets show that our model improves F1 by 4.02% to 28.74% 
comparing to baseline. 
The rest of the article is organized as follows: Section 2 reviews the related work. Section 3 

focuses on the detailed introduction of our model. Section 4 describes the experimental data set and 
the parameter setting of the proposed model. It also presents the experimental results and analysis. 
Section 5 provides the discussion of case study. Finally, Section 6 summarizes this paper. 

2. Related work 

Entity relationship extraction is a core task of information extraction [17,18]. The main goal of 
entity relationship extraction is to identify entity pairs from natural language text and determine the 
specific relationships between entities. Classical entity relationship extraction includes four categories: 
supervised, semi-supervised, weakly supervised and unsupervised. Supervised entity relation 
extraction is divided into feature-based and kernel-based methods. 

Zhou et al. [19] used Support Vector Machine (SVM) as a classifier to study the influence of 
lexical, syntactic and semantic features on entity semantic relation extraction. However, supervised 
methods require a significant amount of time and effort for manual annotation data. Therefore, semi-
supervised, weakly supervised and unsupervised methods have been proposed to solve small-scale 
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corpus annotation problems. Brin [20] used the Bootstrapping method for relation extraction between 
named entities. Craven et al. [21] first proposed the idea of weakly supervised machine learning in 
their study of extracting structured data from text to build a biological knowledge base. Hasegawa et 
al. [22] first proposed an unsupervised relationship extraction method between named entities. These 
methods rely on manual work for feature selection and require significant domain expertise. With the 
development of deep learning, neural network models have made new advances in entity relationship 
extraction. Zeng et al. [23] first proposed using a convolutional neural network (CNN) to extract 
lexical and sentence-level features for relationship extraction in 2014, and this improved the 
accuracy of the model. 

Compared with the CNN model, the recurrent neural network (RNN) can fully consider the 
dependency between long-range words, and its memory function benefits the recognition of sequences. 
Socher et al. [24] first used the RNN approach for entity relationship extraction. Due to the gradient 
disappearance and gradient explosion problems, traditional RNNs rarely deal with long-term 
dependence problems in practice. Long Short-Term Memory (LSTM) is a particular type of RNN that 
solves these problems through three gating operations and cell states. LSTM has achieved great success 
in nature language processing [25,26]. Xu et al. [27] proposed an LSTM-based approach for relation 
extraction that incorporates several features and uses a maximum pooling layer and a softmax layer 
for relation classification. In addition, Bidirectional Encoder Representation from Transformers 
(BERT), as a pre-trained model, is increasingly used in relation extraction. Shi et al. [28] proposed a 
simple BERT model for relationship extraction. 

The methods of entity relation extraction can also be divided into the pipeline and joint methods, 
according to the difference in the order of the two sub-tasks of entity recognition and relationship 
extraction. The pipeline-based methods of entity relation extraction use entity identification and 
relationship extraction as two subtasks, using one model to identify entities and the other to classify 
relationships. Xu et al. [29] improved Zeng’s work by proposing a CNN based on a dependency 
analysis tree to extract entity relationships. The model passes the input text through the dependency 
analysis tree and proposes a negative sampling strategy to solve the problem of irrelevant information 
introduced by the dependency analysis tree when entities are distant from each other. 

Santos et al. [30] propose the CR-CNN model, which uses a new pairwise ranking loss function 
in the output layer to replace the softmax loss function. Lin et al. [31] proposed a sentence-level 
attention-based CNN for relation extraction; it introduced an attention mechanism at the sentence level 
to reduce the influence of noisy sentences, effectively improving cross-linguistic consistency and 
complementarity. Zhang et al. [32] used a Bi-directional Long Short-Term Memory (BiLSTM) model, 
combining information before the current word and after the word, for relationship extraction. Chen et 
al. [14] presented a simple pipeline approach for entity and relation extraction; their model builds on 
span-level representations and fuses entity information (including boundaries and types) in the input 
layer of the relational model. 

Joint models aim to extract entities and relations simultaneously, in two different ways, based on 
multi-task learning and structured prediction. In the multi-task learning-based entity relation extraction 
method, the two sub-tasks of entity identification and relationship extraction are learned jointly by 
sharing the encoding layer of the joint model. Miwa et al. [33] used an LSTM-based model to extract 
entities and relations, which employs a neural network to reduce manual work. Li et al. [11] presented 
an incremental joint framework to extract entity mentions and relations using a structured perceptron 
with efficient beam search. Zheng et al. [34] fed sentences into an embedding layer and a Bi-LSTM 
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layer, using an LSTM for named entity recognition and a CNN for relation extraction. Xue et al. [35] 
presented a focused attention model for the joint entity and relation extraction task that integrates the 
BERT language model as a shared parameter layer. Bekoulis et al. [36] proposed a joint neural model 
that models the entity recognition task using a conditional random field layer and the relationship 
extraction task as a multi-headed selection problem (i.e., multiple relationships may be identified for 
each entity). 

The structured prediction way is direct modeling of entity-relationship triples. Zheng et al. [37] 
proposed an entity relationship extraction method based on a new annotation strategy, which turned 
the original joint learning model involving two subtasks of named entity recognition and relationship 
classification into a sequence labeling problem. Katiyar et al. [38] first used the attention mechanism 
with BiLSTM for joint entity extraction and classification of relations. The model improves the 
deficiencies of Miwa’s work [33], which relies on features such as lexical labels and dependent trees 
in the relationship classification sub-task. Li et al. [39] proposed a paradigm to transform entity and 
relation extraction into a multi-turn question-answering (QA) task. 

However, most sentences have the problem of entity overlap. To solve this problem, Wei et al. [15] 
proposed a cascading pointer labeling approach. Zeng et al. [16] proposed an end-to-end neural model 
based on sequence-to-sequence learning with copy mechanism to extract the entities and relations. Dai 
et al. [40] solved the entity overlap problem by designing a particular marking scheme and introducing 
a position-attention mechanism. Fu et al. [41] presented a model based on graph convolutional 
networks (GCNs)to extract entities and relations, which can also effectively overlap problem. Eberts 
et al. [42] introduced a span-based attention model SpERT for entity and relation extraction. 

3. Methodology 

In this section, we introduce the structure of modeling multiple relations enhanced entity pairs 
extraction for the food contaminants domain. As shown in Figure 2, our model includes the multi-
relation extraction module and the entity pair extraction module. 

The multi-relation extraction module mainly includes ALBERT [43] pre-training network and 
TextCNN [44,45] network. The module trains the input sentences to obtain the text feature vector and 
uses sigmoid activation function to output the predicted relationship. The detail of this module is 
described in Section 3.1. 

The entity pair extraction module mainly includes the RoBERTa [46], BiLSTM and CRF layers. 
In this module, we take the output of the multi-relation extraction module as an input of this module 
to strengthen the correlation between relationships and entities. The module uses Roberta to obtain the 
vector representation of the sentence. After splicing with the relational vector, it is trained as the input 
of BiLSTM and obtains the hidden layer vector. Finally, the BIO labels are finally output through the 
CRF layer to indicate the entity pairs. As shown on the right side of Figure 2, the sentence contains 
two different relationships, and the entity pairs corresponding to each relationship are printed out. The 
detail of this module is described in Section 3.2. 
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Figure 2. The framework of our model. 

ALBERT and RoBERTa both use Transformer-based encoders, where the main module is self-
attention. Self-attention was proposed to get rid of the drawback that recurrent neural networks cannot 
compute in parallel, and it is designed in such a way that the current word can be viewed by other 
words. The computational complexity of self-attention is O (n2*d), where n denotes the sequence 
length and d denotes the vector dimension.  

3.1. Multi-relation extraction module 

The multi-relation extraction module is shown in Figure 3. We applied the ALBERT and 
TextCNN models to identify sentence relationship types. The input sentence X passes through the 
ALBERT layer to obtain the feature vector, as shown in Eq (1): 

𝑇 𝑡 , 𝑡 , 𝑡 , . . . , 𝑡 , . . . , 𝑡                            (1) 

where 𝑡  denotes the vector representation of the 𝑖-th word of the input sentence. 
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Figure 3. The framework of the multi-relation extraction module. 

ALBERT is a lightweight network model based on the BERT [47] pre-trained language model. It 
uses a transformer encoder [48,49] with GELU nonlinearities [50]. ALBERT improves BERT in 
decomposition embedding parameterization, cross-layer parameter sharing and inter-sentence 
coherence loss. Compared to BERT, where the word embedding dimension E and the implicit 
dimension H is equal, ALBERT uses a factorization to reduce the number of parameters in the 
embedding mapping module, i.e., the one-hot vector of words is mapped to a low-dimensional (size E) 
space and then mapped back to a high-dimensional (size H) space, which reduces the number of 
parameters from 𝑂 𝑉 𝐻  to 𝑂 𝑉 𝐸 𝐸 𝐻 . When 𝐸 𝐻, the reduction of the parameter 
is pronounced. 

The TextCNN network receives the feature vector output from ALBERT as input. The 
convolution layer extracts the feature information of different granularities in the semantic feature 
vector. This method can be implemented by setting different convolution kernel sizes. Different 
convolution kernel sizes get different feature set sizes. In this paper, the sizes of the convolution kernel 
are set to 2, 3, 4 and 5. The pooling function is used for each feature set, and max pooling is used to 
extract the maximum value in the feature set in the feature collection. Finally, all the output feature 
values are stitched to get the text feature vector representation. 

The full connection layer employs the sigmoid function to output the sentence relations, as shown 
in Eq (2): 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑                                (2) 
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3.2. Entity pair extraction module 

The entity pair extraction module is shown in the right half of Figure 2. RoBERTa is a robustly 
optimized BERT pretraining approach. The BERT model is composed of a multi-layer bidirectional 
transformer from which the encoder can learn practical information in the context well. RoBERTa 
improves upon BERT by adopting a dynamic mask mechanism, eliminating the next sentence 
prediction task and using byte-level-based byte-Pair Encoding (BPE) encoding for text encoding. The 
advantage of using bytes-level BPE encoding is that the method uses bytes as the base word unit, 
allowing arbitrary text to be encoded without introducing unknown characters. We applied a pre-
trained RoBERTa model to encode the input sentence S. Formally, a sentence of length n can be 
represented as 𝑆 𝑤 , 𝑤 , 𝑤 , . . . , 𝑤 . We input these tokens into the same RoBERTa encoder layer 
as the trained one to obtain a vector representation H of the input sentence S, as follows in Eq (3): 

𝐻 ℎ , ℎ , ℎ . . . , ℎ 𝑅𝑜𝐵𝐸𝑅𝑇 𝑆                        (3) 

where 𝑆  denotes the input sentence, 𝐻  represents the text vector and ℎ  means the vector 
representation of the 𝑖-th word after RoBERTa encoding. 

The Bidirectional Long Short-Term Memory (BiLSTM) [40] model takes word embedding and 
relation embedding as input, in which word embedding is learned by BERT and relation embedding is 
learned by the multi-relation extraction module. We take a relation obtained in 3.1 to construct the 
relation vector 𝑉, as shown in Eq (4): 

   𝑉 𝑣 , 𝑣 , 𝑣 , . . . , 𝑣 , . . . , 𝑣                            (4) 

We built a 𝑡-dimension relation vector which each dimension represents a kind of relation. Where 
𝑣  represents the 𝑖-th dimension and each dimension can be 0 or 1. 1 means that the 𝑖-th relation exists, 
and 0 means that the relation does not exist. 

Finally, H and V are concatenated into the mixture vector M, as shown in Eq (5): 

𝑀 𝐻: 𝑉                                    (5) 

where: indicates the splicing of vectors. 
BiLSTM is the abbreviation of Bidirectional Long Short-Term Memory, a combination of forward 

LSTM and backward LSTM. Usually, the LSTM network encodes sentences from front to back and 
only masters the context information from front to back and does not master the context information 
from back to front, so the forward LSTM network and the backward LSTM network are formed into 
a BiLSTM network to learn two-way context information [51]. The output of the BiLSTM layer is 
expressed as 𝑃  where n represents the number of words in the sentence, and m represents the 
label type. 

The Conditional Random Field (CRF) [52] is a discriminative model that focuses on solving the 
problem of serialized annotation. In recent years, it has been widely used in word segmentation, part-
of-speech tagging, named entity recognition and other sequence tagging work, and it has achieved 
good results [53]. CRF combines the advantages of discriminative models while considering the 
probability of transfer between contextual tokens and the characteristics of global parameter 
optimization and decoding in serialized form. For the input sentence sequence 𝑥  𝑥 , 𝑥 , . . . , 𝑥  and 
its predicted sequence 𝑦  𝑦 , 𝑦 , . . . , 𝑦 , the basic algorithm of CRF is defined as shown in Eq (6), 
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 𝑆 𝑥, 𝑦 ∑ 𝐴 , ∑ 𝑃 ,                    (6)  

where 𝑃 ,  represents the probability that the 𝑖-th matches the yi-th label. A is the transfer matrix, 

𝐴 ,  denotes the score from label 𝑦  to label𝑦 . After normalization all possible outputs, the 

probability distribution about the output sequence y is obtained, as shown in Eq (7), 

𝑃 𝑦|𝑥
,

∑ , ~
∈~

                            (7) 

In the training process, we have taken the likelihood function value of the maximally correct label 
sequence, as shown in Eq (8), 

𝑙𝑜𝑔 𝑝 𝑦 ∗ |𝑆 𝑆 𝑥, 𝑦 ∗ 𝑙𝑜𝑔 ∑ 𝑒 , ~
∈~                 (8) 

where 𝑌  represents the result of all possible output tag sequences of sentence 𝑋. Using the likelihood 
function for calculation, we can obtain a valid sequence of labels. Then, the output sequence with the 
highest overall probability is the predicted result as shown in Eq (9), 

   𝑦∗ 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑆 𝑥,  ~)                         (9) 

We choose the Viterbi algorithm [54] to perform the calculation. All the outputs of the BiLSTM 
layer will be used as inputs to the CRF layer. The CRF layer can add some constraints to the final 
predicted label to ensure that the predicted label is valid. During training, these constraints can be 
automatically learned through the CRF layer. For example, according to the BIO labeling rules, the 
label of the first word in each sentence must be “B-” or “O-”; it cannot be “I-” because “B” indicates 
the first word of an entity, “I” indicates the second word and the word after the entity, and “O” indicates 
a word that does not belong to a specific entity. In addition, a combination similar to “B-I-OBJ” must 
be wrong because the adjacent “B-” and “I-” must represent the same type of entity. Based on these 
rules, it is possible to obtain a higher accuracy rate in prediction. 

4. Experiments and results analyses 

In this section, we introduce our experimental environment and parameter settings. Then, we 
compare the experimental results of different models for entity relation extraction. 

4.1. Data set and data processing 

We applied the food contaminant data constructed separately in the field of food safety as the 
experimental data set FC. A self-built corpus collects data from professional and authoritative websites 
on food contaminants (such as State Administration Market Regulation, Baidu Encyclopedia and 
Foodmate Net) by Crawler. In addition, the open data set DuIE2.0 has forty-eight relations. It was 
applied for comparison experiments to ensure the fairness of the experimental results. The FC dataset 
consists of seven entity relations, which are pre-defined. Table 1 presents the seven relation types along 
with their names and abbreviations. 
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Table 1. Definition of relationships for the FC dataset. 

ID Relation name Abbreviations 
1 Alias AL 
2 Purpose PU 
3 Harm HA 
4 Limit value LV 
5 Scope of application SA 
6 Corresponding standards CS 
7 Pertain to  PT 

The dataset is divided into three parts: the training set, the validation set and the test set. The size 
settings of datasets are shown in Table 2. Additionally, the sentence size of each relationship in the 
experimental FC is shown in Figure 4. 

Table 2. Data set size statistics. 

Data Set Training Validation Test Label 

FC 1400 200 400 7 
DuIE2.0 170,000 20,000 20,000 48 

 

Figure 4. Details of the FC experimental data set. 

The data Pre-processing is shown in Figure 5. We labeled seven types of relationships. We 
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adopted seven bits to indicate whether there is a correlation between two entities, where 1 indicates 
correlation and 0 indicates no correlation. The corpus has been marked according to the ternary mark 
{B, I, O}. B represents the first word of the entity, I represent the second word and the following words 
of the entity and O represent the word that does not belong to a specific entity. At the same time, we 
also annotate the entity type; SUB indicates head entity and OBJ indicates tail entity. 

 

Figure 5. Manual annotation. 

4.2. Evaluation criterion 

We applied three common indicators, precision (P), recall (R) and F1, to evaluate our model and 
baseline models. The precision calculation formula is as follows in Eq (10), 

𝑃           (10) 

where the precision is referred to as P. 𝑇𝑃  represents the number of positive classes predicted by the 
model correctly and 𝐹𝑃  represents the number of positive classes predicted by the model from 
negative classes. The recall calculation formula is as follows in Eq (11), 

𝑅           (11) 

where the recall is referred to as R. 𝑇𝑃  is the same as the above-mentioned formula and  𝐹𝑁  
represents the number of negative classes predicted by the model from positive classes. The F1 
calculation formula is as follows in Eq (12), 

  𝐹1 ∗ ∗
         (12) 

where F1 represents the harmonic mean of precision and recall. 
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4.3. Implementation parameters 

The main experimental parameters are set as Table 3, RoBERTa model has 12 hidden layers and 
the dimension of each hidden layer is 768; the hidden size of the BiLSTM model is 128. We used the 
open-source deep learning framework TensorFlow to build our neural network model. 

Table 3. Experimental parameter setting. 

Model Parameters 
 
 
RoBERTa 

12-layer 
768-dimensions 
learning rate 1e-3
pad size 128
Tanh function

 
 
 
BiLSTM 

2-layer
128-dimensions
learning rate 1e-3
pad size 128
ReLu function
Tanh function
2-layer

 

Figure 6. The loss of different epochs. 

Experimental hyperparameters settings are slightly different for different data sets. In order to 
choose optimal epochs, we conducted experiments to show the trend of loss value under different 
epochs. Figure 6 shows the relationship between epochs and loss value. As the number of epochs 
increases, the loss value decreases rapidly to a more stable state. According to Figure 6, we set the max 
times of epoch as 10. We wielded Adam [53] to optimize parameters. The model is trained until the 
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loss value reaches a threshold or the epoch times reach the maximum. 

4.4. Analysis of experimental results 

In the multi-relation extraction module, we employed the seven annotated relations indicated in 
Table 1 to conduct comparative experiments between FC and DuIE2.0. The experimental results of 
relation identification for each model, including accuracy, recall and F1 value, are shown in Table 4. 

Table 4. Experimental results of multi-relation extraction. 

Model FC DuIE2.0 
P% R% F1% P% R% F1% 

TextCNN [44,45] 68.77 69.22 68.99 66.23 67.51 66.87 
ALBERT [43] 90.42 93.25 91.81 90.23 92.76 91.47 
ALBERT-Denses [45] 89.7 89.01 89.35 88.82 89.53 89.17 
ALBERT-TextCNN 94.14 94.88 94.51 93.24 94.91 94.07 

The experimental results in Table 4 show that the ALBERT-TextCNN model achieved the best 
performance on both FC and DuIE2.0 datasets. Compared to the TextCNN model, ALBERT has more 
powerful linguistic representation and feature extraction capabilities and can better access the semantic 
information of the context. Furthermore, compared with ALBERT, adding TextCNN after ALBERT 
can better capture local feature information, thus further improving the accuracy of experimental 
results. By comparing the experimental results of the ALBERT and ALBERT-Denses models, we also 
found that the multi-relational classification problem was transformed into multiple binary 
classification problems when the output changed the fully connected layer. In this case, the 
experiments’ accuracy decreased instead, indicating that it is more effective to use the cross-entropy 
loss mechanism on the multi-classification problem. 

In the entity pair extraction experiment, we compared the results of different entity extraction 
models, as shown in Table 5.  

Table 5. Experimental results of entity pair extraction. 

Model FC DuIE2.0 
P% R% F1% P% R% F1% 

IDCNN [55]-CRF 57.44 72.59 64.13 53.83 46.76 50.05 
BiLSTM [56]-CRF 61.40 70.54 65.65 83.16 51.09 63.29 
BERT 87.10 90.67 88.85 83.23 87.49 85.31 
RoBERTa 87.97 91.58 89.74 84.81 87.99 86.37 
Our model 93.87 93.71 93.80 92.19 92.94 92.56 

The experimental results show that our model achieved better results on both FC and DuIE2.0, 
significantly improving precision and recall, while F1 also provided the best performance. Compared 
with the baseline model, the F1 value of our model increased by 4.06% and 6.19%, respectively. We 
used the extracted relationships as input for the entity pair extraction module, which enhanced the 
entity features and improved our model’s overall performance. BiLSTM can better capture the bi-
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directional semantic dependencies in the sentence and obtain the maximum output score for the word 
itself, thus improving the performance. The output sequence of BiLSTM is based on the maximum 
value of the current word score. However, it was found in the experiments that some words were easily 
subdivided or did not consider the logical constraints of adjacent tags. In these cases, the results of 
BiLSTM identification are not ideal. The CRF layer can add some constraints to the final prediction 
tag to ensure that they are valid, and these constraints can be obtained from the training data set during 
the training process. 

 

Figure 7. F1 values of compared models. 

To further validate the performance of our proposed model in extracting overlapping triples, we 
conducted further experiments. The dataset FC was divided into Normal and SEO, where SEO contains 
the triplet type shown in Figure 1. As shown in Figure 7, the F1 values of all models are higher than 
the SEO when extracting sentences of Normal. This phenomenon indicates that as the complexity of 
sentences increases, the difficulty of extracting triples in sentences also rises, and the performance of 
the model decreases. In contrast, our model performs best when extracting different types of triples. 

4.5. Ablation experiment 

In order to further illustrate that the proposed model is more effective in entity extraction, we 
conducted an ablation experiment on our proposed model. The experimental results are shown in Table 6. 
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Table 6. Experimental results for ablation of entity pair extraction. 

Model FC DuIE2.0 
P% R% F1% P% R% F1% 

Our model 93.87 93.71 93.80 92.19 92.94 92.56 
(-CRF) 90.26 90.11 90.19 89.09 89.75 89.42 
(-BiLSTM) 91.14 90.98 91.06 89.70 90.45 90.07 
(-BiLSTM-CRF) 87.97 91.58 89.74 84.81 87.99 86.37 

It is obvious that if the CRF network is removed from our model, F1 decreases by 3.61% and 3.14% 
on the FC and DuIE2.0 datasets, respectively. If the BiLSTM network is removed from our model, F1 
decreases by 2.74% and 2.49% on the two datasets. If the BiLSTM and CRF networks are removed 
from our model, F1 decreases the most on both datasets, indicating that both BiLSTM and CRF play 
an active role in the entity relationship extraction task. BiLSTM can combine information from the 
input sequence forward and backward, which helps to improve the efficiency of entity recognition. In 
addition, we observed that the F1 values were significantly lower after removing CRF from the model 
than after removing BiLSTM, indicating that CRF played a more significant role in entity recognition. 
Since entities require directionality for the extraction task, the role of the CRF layer is to provide a 
label constraint relationship for the model to ensure that labels are valid. 

5. Case study and discussion 

This section shows the case study of our model and its variant, as shown in Table 7. The first row 
in Table 7 shows an example of entity relation triples in which two entities have a single relationship. 
The second row shows an example with entity overlap, which in ground truth has three triples 
corresponding to two relationships. 

For the first example, all models can correctly extract entity pair and their relationships (the blue 
fonts indicate that the predicted result is consistent with the ground truth). For the second example, our 
model could extract three entity relationship triples corresponding to two relationships. However, our 
model without relation enhancement could not correctly identify entity relationship triples (the red 
fonts indicate that the predicted result is inconsistent with the ground truth), since they only could 
extract a single relation. 

Our model can effectively realize multi-relation identification and entity pair extraction and can 
solve the problem of missing information interaction in the traditional pipeline method. However, this 
paper does not consider the case of entity pair overlap (EPO). In the future, we will study how to solve 
EPO problem in entity extraction and transfer the proposed method to other application fields [57], 
such as biomedical and smart city, and decision support systems [58]. In addition, we will consider 
extending our approach from sentence-level entity relationship extraction to document-level entity 
relationship extraction. 
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Table 7. Case study of our model. 

Sentence Our Model Our Model (without 
relation 
enhancement) 

Ground Truth 

Chlorpyrifos is an 
organophosphorus insecticide. 

(Chlorpyrifos, 
Pertain to, 
insecticide) 

(Chlorpyrifos, 
Pertain to, 
insecticide) 

(Chlorpyrifos, 
Pertain to, 
insecticide) 

 
 
Mandarin can put color on 
bread and biscuits. 

(Mandarin, 
Purpose, put color 
on) 
(Mandarin, Scope 
of application, 
bread) 
(Mandarin, Scope 
of application, 
biscuits) 

(Mandarin, 
Purpose, bread) 
(Mandarin, 
Purpose, biscuits) 
(Mandarin, 
Purpose, put color 
on) 

(Mandarin, 
Purpose, put color 
on) 
(Mandarin, Scope 
of application, 
bread) 
(Mandarin, Scope 
of application, 
biscuits) 

6. Conclusions 

This paper proposes a multiple relations-enhanced entity pairs extraction model that divides the 
overlapping entity relation extraction task into pipeline modules that contain multi-relation extraction 
and entity pair extraction. In the multi-relation extraction module, multiple entity relations in sentences 
are correctly extracted by building the ALBERT model and TextCNN model. In the entity pair 
extraction module, the extracted entity relations are applied as the input of RoBERTa-BiLSTM-CRF 
model to accurately extract entity pairs. Experimental results on two datasets show that our model 
outperforms baseline models. The entity triples extracted by the model help to construct the knowledge 
map in the field of food safety.  
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