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Abstract: The goal of this work is to estimate the efficacy of interferon therapy in the inhibition of
infection by the human immunodeficiency virus type 1 (HIV-1) in a cell culture. For this purpose,
three viral dynamics models with the antiviral effect of interferons are presented; the dynamics of
cell growth differ among the models, and a variant with Gompertz-type cell dynamics is proposed.
A Bayesian statistics approach is used to estimate the cell dynamics parameters, viral dynamics and
interferon efficacy. The models are fitted to sets of experimental data on cell growth, HIV-1 infection
without interferon therapy and HIV-1 infection with interferon therapy, respectively. The Watanabe-
Akaike information criterion (WAIC) is used to determine the model that best fits the experimental
data. In addition to the estimated model parameters, the average lifespan of the infected cells and the
basic reproductive number are calculated.

Keywords: viral dynamics models; Bayesian estimation; interferon therapy; in vitro study; model
comparison

1. Introduction

The first works related to the use of mathematical models to describe the dynamics of the human
immunodeficiency virus (HIV) were published in the 1990s; these works provided an initial under-
standing of the behavior of the virus. In 1995, Ho et al. described the dynamics of viral infection in
patients infected with HIV type 1 (HIV-1) under antiviral therapy, specifically under treatment with
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protease inhibitors. Their studies indicate that this treatment causes the levels of HIV in plasma to de-
crease exponentially, and CD4+ cells substantially increase [1]. A year later, Perelson et al. proposed a
model for analyzing a detailed set of HIV-1 viral load data, using data collected from five infected in-
dividuals after the administration of a potent protease inhibitor. The model parameters were estimated
using a nonlinear least squares method. In this study, the half-life of the infected cells, the average
production of virions per day, the average length of the virus life cycle and other parameters were cal-
culated that provided not only a first understanding of viral dynamics but also theoretical principles to
guide the development of treatment strategies [2].

In 1996, Nowak et al. presented the basic model of viral dynamics, a simple model for the inter-
action between free virus particles and host cells. This model is composed of a system of nonlinear
differential equations with three variables: target cells, infected cells and free virus particles [3]. Later,
in 1997, Bonhoeffer et al. described the viral dynamics of HIV under pharmacological therapy by
adding to the basic model a parameter corresponding to the efficacy of two therapies: reverse tran-
scriptase inhibitors and protease inhibitors. The former prevents the infection of new cells, and the
latter prevents infected cells from producing infectious virus particles [4]. In 2002, Wodarz and Nowak
showed how mathematical models can be used to understand the dynamics of HIV infection and ther-
apy. In their work, they described a basic model of virus infection and showed how it was used to gain
some crucial insights into the dynamics during the asymptomatic phase of the disease. They explored
how the evolution of HIV can drive disease progression and how mathematical models can be used
to design specific treatments that can increase antiviral immunity and allow the long-term control of
the virus [5]. In the same year, Callaway and Perelson conducted a comprehensive review of models
of HIV dynamics, from the most basic model under antiviral therapy to more complex models that
considered heterogeneities in drug efficacy. They found that the models that fail to robustly describe
drug therapy include the basic model and its variants [6].

In 2002, Perelson provided an overview of models of HIV dynamics with and without antiviral
therapy. He also discussed the dynamics of and interactions with the hepatitis C virus (HCV), hepatitis
B virus (HBV), cytomegalovirus (CMV) and lymphocytic choriomeningitis virus (LCMV) [7]. In
the literature, there are works related to other types of viruses, such as HCV and influenza, that are
worth mentioning. In 1998, Neumann et al. studied the dynamics of HCV and the antiviral effect of
interferons. They analyzed the viral decline in 23 patients during therapy with a mathematical model
of differential equations with three variables, the target and infected cells and the viral load. The model
used is an extension of the basic model in which the effect of interferon therapy is included. Their
findings showed that HCV infections are highly dynamic and that the early monitoring of the viral
load can help to guide therapy [8]. In 2007, Dahari et al. extended the model originally formulated by
Neumann et al. in 1998 by including in it the proliferation of hepatocytes [9]. Baccam et al., in 2006,
used a series of mathematical models of increasing complexity, incorporating the uninfected target
cell limitation and the innate interferon response, to examine the kinetics of the influenza A virus in
the upper respiratory tracts of experimentally infected adults. They used nonlinear regression and least
squares estimation to fit models to a data set from a study of experimental swine flu virus infection [10].
In 2008, Beauchemin et al. analyzed the dynamics of an influenza A (H3N2) viral infection, using a
set of mathematical models that highlight the differences between in vivo and in vitro infection [11].
In 2022, Wu, He and Khan [12] investigated the effect of administering treatments to individuals with
HIV and considered an optimal control problem subject to multiple drug treatments for the within-host
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model.
In this work, three types of population dynamics of healthy cells are presented. The first is von

Bertalanffy growth (S ′(t) = r
(
k − S (t)

)
), the second is logistic growth (S ′(t) = rS (t)

[
1 − S (t)

k

]
) and

finally the third is the novel Gompertz growth (S ′(t) = rS (t) ln
[

k
S (t)

]
), where the parameters r and k

represent the growth rate of the cells and the load capacity (maximum number of cells), respectively.
In most viral infection models that are based on the basic model [3], supplementary effects are

added to the viral dynamics phenomenon. The following system includes interferon therapy:

S ′(t) = F(S , I) − (1 − η)βS (t)V(t),
I′(t) = (1 − η)βS (t)V(t) − δI(t),
V ′(t) = (1 − ε)ρI(t) − γV(t).

(1.1)

Three functions F describe the growth of healthy cells:

• F(S , I) : f1 = r(k − S (t)) [3, 13],
• F(S , I) : f2 = rS (t)

[
1 − S (t)+I(t)

k

]
[14, 15] and

• F(S , I) : f3 = rS (t) ln
[ k

S (t)+I(t)

]
.

The function f1 describes bounded-monotone type growth, and the functions f2 and f3 describe
sigmoid type growth, but one of the most important differences is that the logistic curve is symmetric,
whereas the Gompertz curve is asymmetric.

The parameters β, δ, ρ and γ represent the infection rate, the death rate of infected cells, the rate
of virus production and the viral clearance rate, respectively. η is the efficacy of interferon therapy
in preventing new infections, and ε is the efficacy of interferon therapy in inhibiting viral production,
where 0 ≤ η, ε ≤ 1. An efficacy of 0 indicates that there is no inhibition, whereas an efficacy of 1
(100%) indicates complete inhibition. Values of the efficacy between 0 and 1 indicate partial inhibition.

This work aims to estimate the parameters of the efficacy of interferon therapy in in vitro virus
infection dynamics models under the Bayesian approach. There are four specific objectives: first, to
estimate the parameters of cell dynamics models; second, to estimate the parameters of viral dynamics
in models of viral infections; third, to estimate the parameters of the efficacy of interferon therapy in
models of viral infections; and fourth, to use the Watanabe-Akaike information criterion (WAIC) to
select the model that best fits the cell and viral growth data.

2. Key results from stability analysis

The three models are studied in the non-negative octant

R3
0+ = {(S , I,V) ∈ R3 : S ≥ 0, I ≥ 0,V ≥ 0}.

2.1. Stability analysis of system (1.1) with F(S , I) = f1

For the basic model that corresponds to system (1.1) with F(S , I) = f1, a local and global stability
study was carried out to find equilibrium points, the infection-free equilibrium E0 = (k, 0, 0) and the
infected equilibrium E∗ = (S ∗, I∗,V∗) with coordinates

S ∗ =
k

R0
,
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I∗ =
γr(R0 − 1)

(1 − ε)(1 − η)ρβ
,

V∗ =
p(1 − ε)I∗

γ
,

where the basic reproductive number is

R0 =
(1 − ε)(1 − η)kρβ

γδ
. (2.1)

Theorem 2.1. [16, 17]. Consider system (1.1) with F(S , I) = f1; the following conditions hold:

a) The infection-free equilibrium E0 of the model is asymptotically stable if R0 < 1 and unstable if
R0 > 1.

b) If R0 > 1, then there exists a unique infected equilibrium E∗ in the model, which is asymptotically
stable.

The proofs of the local and global stability can be found in [16, 17].

2.2. Stability analysis of system (1.1) with F(S , I) = f2

In the work of Ikeda et al. [15], this model is presented, and it has three equilibrium points: the van-
ishing equilibrium E0 = (0, 0, 0), the only infection-free equilibrium E0 = (k, 0, 0) and the infected
equilibrium E∗ = (S ∗, I∗, V∗). The coordinates of the infected equilibrium are as follows:

S ∗ =
k

R0
,

I∗ =
rkγ

rγ + kβ(1 − η)ρ(1 − ε)
R0 − 1

R0
,

V∗ =
ρ(1 − ε)

γ
I∗,

where the basic reproductive number is the same as that defined by Eq (2.1). A qualitative analysis of
the model was performed by Dingli et al. [14].

Theorem 2.2. [14]. Consider system (1.1) with F(S , I) = f2; the following conditions hold:

a) The infection-free equilibrium E0 of the model is asymptotically stable if R0 < 1 and unstable if
R0 > 1.

b) If R0 > 1, then there exists a unique infected equilibrium E∗ in the model, which is asymptotically
stable if r

k

[(
r
k S ∗ + δ

)
(δ + γ + βV∗) +

(
βρS ∗ + γ2

)]
> ρββV∗.

2.3. Stability analysis of system (1.1) with F(S , I) = f3

We can easily see that, for all the parameter values, the vanishing equilibrium E0 = (0, 0, 0) and the
infection-free equilibrium E0 = (k, 0, 0) always exist.

Theorem 2.3. Let (S (t), I(t),V(t)) be the solution of system (1.1) satisfying conditions (S 0, I0,V0) ∈
R3

0+
. Then S (t), I(t) and V(t) are all bounded for all t ≥ 0 at which the solution exists.
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The basic reproductive number of system (1.1) with F(S , I) = f3 is the same as that defined in
equation (2.1).

Theorem 2.4. Consider system (1.1) with F(S , I) = f3; the following conditions hold:

a) If R0 < 1, E0(k, 0, 0) is asymptotically stable; if R0 > 1, E0(k, 0, 0) is unstable.
b) If R0 > 1, then system (1.1) has a unique infected equilibrium E∗(S ∗, I∗,V∗).
c) Assume that R0 > 1 and that

ln(k) ≤
S ∗

S ∗ + I∗
+ ln [S ∗ + I∗] ;

then, the infected equilibrium E∗ is asymptotically stable for system (1.1) when F = f3.

The proofs of the theorems and basic reproductive number calculations for this subsection can be
found in the Appendix.

3. Bayesian estimation of three models

To estimate the antiviral effect of the interferon IFN-alpha 2b on HIV-1 NL-AD8 replication, three
data sets are used. The first consists of the kinetics of MT4C5 cells, and three growth models are used:
the von Bertalanffy [ f1], logistic [ f2] and Gompertz [ f3] models.

For the analysis of the model with and without interferon therapy, viral load data were used. The
data correspond to the interactions of MT4C5 cells and the HIV-1 NL-AD8 in the absence and presence
of the interferon IFN-alpha 2b obtained from [15].

3.1. Methodology

The Bayesian estimation of the parameters of a model for each data set comprises three stages:

• First stage: Propose non-informative prior distributions and estimate the parameters of the cell
dynamics (r, k) for the first set of data, which is shown in Figure 1a.
• Second stage: For the second data set, estimate the parameters of the cell dynamics (r, k) using the

posterior distributions obtained from the first stage as the prior distributions in this stage. Propose
non-informative prior distributions for the estimation of the viral dynamics parameters (β, δ, ρ)
(Figure 1b), with γ = 2.3 [15] in this stage and in the next stage.
• Third stage: For the third data set, estimate the parameters of the cell dynamics (r, k) and viral

dynamics (β, δ, ρ) using the posterior distributions obtained in the second stage as prior distribu-
tions in this stage. Propose non-informative prior distributions for the estimation of the interferon
efficacy parameters (η, ε) (Figure 1b).

3.2. Statistical model

The following statistical model is considered:

yi = Xθ(ti) + ε(ti), ε(ti) ∼ N(0, σ2), i = 1, ..., n. (3.1)
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(a) (b)

Figure 1. Experimental data: (a) Cell growth data used in the first stage; (b) Viral loads
in cultures infected by HIV-1 NL-AD8 without (pentagons) and with the interferon (IFN-
alpha 2b) therapy (triangles) that are used in the second and third stages, respectively. The
experimental data are obtained from [15].

• ε(ti) is the random error at time i; these errors are independent, identically normally distributed
variables with zero mean and a variance σ2.
• yi, which is used to set each stage, represents the number of healthy cells at time i for the first data

set, and for the second and third data sets, it represents the viral load measured at time i.
• θ is used to set each stage of the model: θ = (r, k) corresponds to cell growth models. For the

second stage, θ = (r, k, β, δ, ρ) corresponds to the model without interferon therapy, and for the
third stage, θ = (r, k, β, δ, ρ, η, ε) corresponds to the model with interferon therapy.
• Xθ(ti) is the numerical solution calculated with the Runge-Kutta method for cell growth mod-

els for stage 1, and it represents the equation corresponding to the viral load variable (V(t)) of
system (1.1) for the second and third stages, respectively.

3.3. Likelihood function

As a consequence of the fact that in model (3.1), it was assumed that the errors are independent and
ε(ti) ∼ N(0, σ2), yi ∼ N(Xθ(ti), σ2), and the yi are also independent .

Therefore, the likelihood function of the data under the statistical model (3.1) is given by

L(θ|yi) =

n∏
i=1

1
√

2πσ2
exp

[
−

1
2σ2

(
yi − Xθ(ti)

)2
]
.
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3.4. Posterior distribution

Bayesian inference about a parameter vector θ is based on the posterior distribution π(θ|D), which
is the probability distribution of the parameter vector θ given the data D. That is,

π(θ|D) =
π(θ, D)
π(D)

=
π(D|θ)π(θ)
π(D)

(3.2)

π(θ) is the prior distribution, π(D|θ) is the data probability distribution or likelihood function, and
π(D) =

∫
· · ·

∫
π(θ)π(D|θ) dθ is a normalization constant that does not depend on θ, so that Equation

(3.2) becomes:
π(θ|D) ∝ π(D|θ)π(θ)

In the prior distribution, π(θ), is expressed the initial knowledge about θ. When there is no information
about θ, non-informative priors are used that give equal probabilities to each possible value of θ,
otherwise informative priors are used that give a higher probability to some θ values.

To perform Bayesian inference it is necessary to find the mean of the posterior distribution

E[θ | D] =

∫
· · ·

∫
θπ(θ|D) dθ.

In practice, these integrals are difficult or impossible to obtain. One method of approximating the
posterior distribution and thereby obtaining the mean of the posterior distribution is to use Monte
Carlo Markov chains (MCMC) which are a special case of a discrete stochastic process in which the
probability of an event depends only on the immediately preceding event.

There are several methods to generate MCMC, the most used are the Metropolis-Hastings algo-
rithm, Gibbs Sampling and Hamiltonian (or hybrid) Monte Carlo (HMC) methods.

3.5. Hamiltonian Monte Carlo (HMC) technique

We use the Hamiltonian Monte Carlo (HMC) technique. The HMC technique uses the log posterior
gradient to steer the Markov chain to regions of higher posterior density, where most samples are
located. As a result, a well-tuned Markov chain created using the HMC algorithm has a much higher
acceptance rate than the traditional Metropolis algorithm. The Metropolis algorithm has an acceptance
rate of approximately 23%, while the HMC method has an acceptance rate of 65% [18]. In addition
to better exploring the posterior distribution, the HMC algorithm is more efficient than the Metropolis
algorithm and does not suffer from the Gibbs parameter mapping problem.

3.6. Convergence of the chains

We use the following convergence diagnostic criteria for the MCMC algorithm:

• An empirical approach for convergence control consist of two graphics, trace and density, of the
simulated chain output to detect non-stationary behaviors [19]. The traceplot is a time series plot
of the iteration number against the realizations of the Markov chain at each iteration. Convergence
is declared when there is a good mixing across chains. The density plot is a non-parametric
estimate of its density for each chain. Convergence is declared when the densitys are similar.
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• The Gelman-Rubin‘s diagnostic compares two estimations of the variance of the chains, between
and within. It gives two statistics: the potential scale reduction factor (PSRF) and its credible
interval. Convergence of the chains is not rejected when the PSRF and the upper limit of its
credible interval are close to one and less than 1.2, respectively [20].

3.7. Bayesian estimation

The point Bayesian estimators were the means of the posterior distributions corresponding to min-
imizing the expected squared error loss function. The high posterior density intervals (HPDIs) were
also calculated.

3.8. Statistical software

The estimation of the parameters models of the first-stage was performed using the library brms [21]
of the statistical software R [22]. For the second and third stages, the library turing [23] of the Julia
software [24] was used. For each model, three chains were generated, each with 10,000 iterations and
a burning of 5000 samples.

In order to evaluate the convergence of the MCMC chains, the Gelman-Rubin diagnostics are uti-
lized; they are implemented in the coda [25] library of the R software.

To obtain the hyperparameters of the posterior distributions of the parameters corresponding to
the first (r, k) and second (β, δ, ρ) stages, we used the R library fitdistrplus [26] to perform the fitting
procedure.

3.9. Model comparison

Model performance is evaluated with the Watanabe-Akaike information criterion (WAIC). This is a
fully Bayesian approach to estimating the expected log predictive density and is defined as follows [18]:

WAIC = −2(lppd − pWAIC), (3.3)

where lppd is the log pointwise predictive density and pWAIC is the effective number of parameters.
The rule of thumb is that among two models the best is the one with a lower WAIC value.

In practice, the lppd is calculated using samples of ppost(θ), the usual posterior simulations, which
we label θs, s = 1, ..., S :

lppdc =

n∑
i=1

log

 1
S

n∑
s=1

p(yi|θ
s)

 , (3.4)

where S is the number of simulation draws, which is large enough to capture the posterior distribution.
The calculation of the effective number of parameters (pWAIC ) is performed as follows:

pWAIC =

n∑
i=1

VS
s=1

(
log p(yi|θ

s)
)
, (3.5)

where VS
s=1 log p(yi | θ

s) is the posterior variance of the log predicted density for each yi, and VS
s=1as =

1
S − 1

S∑
s=1

(as − a)2 is the sample variance.
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3.10. Infection-related quantities

In addition to estimating the parameters of the models, it is also relevant to compute other values
related to a viral infection, such as the basic reproductive number (R0) and the half-life of infected
cells. The basic reproductive number (R0) of the three models is defined in Eq (2.1); we calculated this
value using the posterior distribution of each parameter. Similarly, the calculation for the half-life of
infected cells ((ln 2)/δ) is performed.

3.11. Prior distributions

The prior distributions are non-informative, are commonly used in similar problems and are the
same for the three models; they are shown in Table 1. Table 2 shows the posterior distributions of
the first stage and those proposed for the viral dynamics parameters. Table 3 shows the posterior
distributions of the second stage and those proposed for the viral dynamics parameters with interferon
therapy.

Table 1. Prior distributions of the first stage used to estimate the parameters of growth
dynamics.

Parameter Prior distribution
r Uni f orm(0, 1)
k Uni f orm(106, 2 × 106)
σ2 Inverse-Gamma(0.001, 0.001)

Table 2. Prior distributions of the second stage used to estimate the parameters of models
with interferon therapy. For the gamma and inverse-gamma distributions, α and β are the
shape and scale parameters, respectively. For the uniform distribution, a and b are the upper
and lower bounds, respectively.

Parameter Distribution von Bertalanffy Logistic Gompertz
r Gamma(α, β) (158, 473) (232, 379) (247, 536)
k Gamma(α, β) (3000, 0.002) (4800, 0.0033) (0.0053, 0.0036)
β Uni f orm(a, b) (0, 0.01) (0, 0.01) (0, 0.01)
δ Uni f orm(a, b) (0, 2) (0, 2) (0, 2)
ρ Uni f orm(a, b) (0, 0.01) (0, 0.01) (0, 0.01)
σ2 Inverse-Gamma(α, β) (0.001, 0.001) (0.001, 0.001) (0.001, 0.001)
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Table 3. Prior distributions of the third stage used to estimate the parameters of models
without interferon therapy. For the gamma and inverse-gamma distributions, α and β are the
shape and scale parameters, respectively. For the uniform distribution, a and b are the upper
and lower bounds, respectively.

Parameter Distribution von Bertalanffy Logistic Gompertz
r Gamma(α, β) (158, 473) (235, 387) (247, 544)
k Gamma(α, β) (256.3, 0.000018) (4771, 0.0033) (5148, 0.0035)
β Gamma(α, β) (65, 53,911) (50, 42,104) (29, 20,290)
δ Gamma(α, β) (129, 85) (60, 36) (46, 33)
ρ Gamma(α, β) (145, 15,779) (70, 6994) (64, 7573)
η Uni f orm(a, b) (0, 1) (0,1) (0, 1)
ε Uni f orm(a, b) (0, 1) (0,1) (0, 1)
σ2 Inverse-Gamma(α, β) (0.001, 0.001) (0.001, 0.001) (0.001, 0.001)

Remark 1. Prior distribution for σ2 is the same in the three models (1.1) and three stages, non-
informative Inverse − Gamma(0.001; 0.001). r and k also have non-informative prior distributions
(Table 1), but they have Gamma prior distribution because posterior distribution in the first stage
motivates this election (Table 2) and second stage (Table 3), respectively. Prior distributions’ hyper-
parameters are estimated using the posterior distributions. β, δ, and ρ have non-informative prior
distributions (Table 2) in the second stage for the three models (1.1), but in the third stage they have
Gamma prior distribution because posterior distribution in the second stage motivates this election
and its hyperparameters are estimated using this information. Finally, η an ε have non-informative
prior distributions (Table 3).

4. Results

Table 4 presents the results of the estimations of the parameters of the cell growth models. Figure
2 shows the numerical solution of the estimation results for the von Bertalanffy (-), logistic (-) and
Gompertz (-) cell growth models.

Mathematical Biosciences and Engineering Volume 20, Issue 6, 11033–11062.
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Figure 2. Experimental data (o) and Bayesian estimation of the parameters of the von Berta-
lanffy (-), logistic (-) and Gompertz (-) models for the first stage.

Table 4. Credible intervals (CrI) of the parameters of cell growth models for the first stage.

von Bertalanffy Logistic Gompertz
Parameter Mean 95% CrI Mean 95% CrI Mean 95% CrI
r 0.331 0.291, 0.373 0.610 0.538, 0.694 0.462 0.407, 0.524
k 1,500,654 1,464,523, 1,541,804 1,447,204 1,407,224, 1,489,354 1,467,773 1,428,181, 1,509,613
σ 29,280 17,595, 49,723 36,231 22,182, 62,419 29,888 18,187, 51,249

Table 5 presents the results of the second stage of the three models based on model (1.1), when no
therapy is used. Figure 3 shows the three solutions for the second stage with the Bayesian parameters
using two axes: the first axis is used to represent healthy (red) and infected (blue) cells, and the second
axis is used to represent the viral load (black). Different types of lines were used to differentiate
the von Bertalanffy (continuous line), logistic (point-line) and Gompertz (point-point) models and the
experimental data (circles).

Table 5. Credible intervals of the parameters of viral infection models without interferon
therapy for the second stage.

von Bertalanffy Logistic Gompertz
Parameter Mean 95% CrI Mean 95% CrI Mean 95% CrI
r 0.0254 0.0004, 0.0317 0.6088 0.5311, 0.6356 0.4575 0.4022, 0.4768
k 1,461,026 1,018,568, 1,710,052 1,443,222 1,403,126, 1,457,086 1,473,171 1,434,124, 1,486,818
σ 102 41, 138 82 38, 115 115 56, 143
β 0.0013 0.0011, 0.0014 0.0012 0.0010, 0.0013 0.0015 0.0012, 0.0016
δ 1.4890 1.0089, 1.6089 1.6399 1.0808, 1.9811 1.3706 0.8307, 1.5516
ρ 0.0088 0.0058, 0.0096 0.0099 0.0068, 0.0109 0.0082 0.0054, 0.0091
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Figure 3. Numerical solutions of the von Bertalanffy (-), logistic (·-) and Gompertz (··)
models and the experimental data (o) for the second stage.

Table 6 presents the results of the third stage for the three models based on model (1.1), when
interferon therapy is used. Figure 4 shows the three solutions for the third stage with the Bayesian
parameters using two axes: the first axis is used to represent healthy (red) and infected (blue) cells,
and the second axis is used to represent the viral load (black). Different types of lines were used
to differentiate the von Bertalanffy (continuous line), logistic (point-line) and Gompertz (point-point)
models and experimental data (circles).

Table 6. Credible intervals of the parameters of viral infection models with interferon therapy
for the third stage.

von Bertalanffy Logistic Gompertz
Parameter Mean 95% CrI Mean 95% CrI Mean 95% CrI
r 0.1673 0.0665, 0.2369 0.6102 0.5354, 0.6887 0.5874 0.1915, 0.9648
k 1,646,152 1,153,781, 1,922,844 1,447,745 1,406,889, 1,487,427 1,717,350 1,201,709, 1,989,034
σ 181 94, 251 105 55, 171 104 59, 139
β 0.0015 0.0012, 0.0016 0.0013 0.0011, 0.0016 0.0016 0.0013, 0.0020
δ 1.4934 1.2492, 1.5794 1.6004 1.2915, 1.9148 1.4179 0.8095, 1.9446
ρ 0.0101 0.0087, 0.0109 0.0111 0.0093, 0.0130 0.0090 0.0071, 0.0111
η 0.0609 0.0014, 0.1032 0.0993 0.0039, 0.2649 0.1347 0.0063, 0.3398
ε 0.0631 0.0017, 0.1152 0.0812 0.0030, 0.2307 0.1331 0.0048, 0.3706

4.1. Model selection

The best fitting model in the first stage is the Gompertz model with a WAIC = 258.1, in second
place is the von Bertalanfy model with a WAIC = 259.2, and in third place, is the logistic model with
WAIC = 264.0. This gives a measure of the improvement in the model fitting by changing the type of
cell growth model.
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Figure 4. Numerical solutions of the von Bertalanffy (-), logistic (·-) and Gompertz (··)
models and the experimental data (o) for the third stage.

In the second stage, the logistic model had a WAIC = 144.6, which was the best WAIC value in
this stage; the Gompertz model remained in second place with a WAIC = 167.8, and finally, the von
Bertalanffy model had a WAIC = 171.8.

In the third stage, the logistic model remained the best model, with a WAIC = 87.6. In this stage,
the Gompertz model was in second place, with a WAIC = 91.1, and the model with the worst fit was
the von Bertalanffy model, with a WAIC = 99.9.

4.2. Infection-related quantities

The Bayesian estimations of R0 are greater than 2 for all models; however, for the models with
interferon therapy, R0 is smaller than it is for the models without interferon therapy in all cases. Graph-
ically, it can be seen that the credible intervals do not overlap, and therefore the interferon effect is
statistically significant. That is to say, interferon therapy significantly reduces the basic reproductive
number (Figure 5).
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von Bertalanffy without IFN−alpha 2b

von Bertalanffy with IFN−alpha 2b

Logistic without IFN−alpha 2b

Logistic with IFN−alpha 2b

Gompertz without IFN−alpha 2b

Gompertz with IFN−alpha 2b

2 4 6 8
Basic reproductive number

Figure 5. Bayesian estimates of the basic reproductive number.

von Bertalanffy without IFN−alpha 2b

von Bertalanffy with IFN−alpha 2b

Logistic without IFN−alpha 2b

Logistic with IFN−alpha 2b

Gompertz without IFN−alpha 2b

Gompertz with IFN−alpha 2b

0.4 0.5 0.6 0.7
Half−life of infected cells

Figure 6. Bayesian estimates of the half-life of infected cells.

The Bayesian point estimations of the half-life of infected cells are very similar in all models; the
half-life is around 0.45 days for all models, except for the Gompertz model with interferon therapy
(system (1.1) with F(S , I) = f3), which has a half-life of slightly more than 0.5 days (Figure 6).
Graphically, it can be seen that the credible intervals overlap, which means that interferon therapy has
no significant effect on the lifespan of infected cells; this is because the death rate of infected cells is
modeled in the same way in all models.
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4.3. Convergence of the selected model

The comparison of the models using the WAIC showed that the best model was the model with
logistic growth for the second and third stages. The convergence results of the method for the three
models are similar, so we opted to present the convergence of the best model. In Figures 7–9, a good
mixture of the chains can be observed, and they also cover the entire parameter space of their posterior
distribution, indicating convergence. The results of the Gelman-Rubin diagnostic for the three stages
showed a value of less than 1.1 of the PSRF for each parameter and an upper limit of its credible interval
below 1.2 in all cases; this indicates that the chains have converged to the stationary distribution (see
Table 7). The convergence of the remaining models (Figures A1–A6) is discussed in Sections A.6 and
A.7.

Figure 7. For the first stage, on the left side, the posterior distribution is shown, and on the
right side, the traceplots show convergence of the chains of each parameter of logistic cell
growth.
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Figure 8. For the second stage, on the left side, the convergence chains are shown, and on
the right side, the convergence of the posterior distribution of the parameters of the viral
infection model with logistic cell growth and without interferon therapy is shown.
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Figure 9. For the third stage, on the left side, the convergence chains are shown, and on the
right side, the convergence of the posterior distribution of the parameters of the viral infection
model with logistic cell growth and interferon therapy is shown.
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Table 7. Values of the Gelman-Rubin diagnostic criteria (upper limit) for the three stages of
the logistic growth model and viral infection models with logistic growth.

Parameters Cell dynamics Viral dynamics Viral dynamics with interferon therapy
r 1.00(1.00) 1.00(1.00) 1.00(1.00)
k 1.00(1.00) 1.00(1.00) 1.00(1.00)
σ 1.00(1.00) 1.00(1.01) 1.00(1.00)
β 1.00(1.01) 1.01(1.01)
δ 1.00(1.00) 1.00(1.00)
ρ 1.00(1.00) 1.00(1.00)
η 1.01(1.02)
ε 1.00(1.00)

5. Conclusions

In this work, we estimate the parameters of the cell dynamics and viral dynamics without and with
interferon therapy using the Bayesian estimation approach, which has the advantage of incorporating
information from the parameters of the previous stages and the obtained interval estimates.

According to the WAIC, the fits of the models to the data differ, but the WAIC values are very close,
leading to the conclusion that the three considered models (von Bertalanffy, logistic and Gompertz)
present a good fit with the cell growth data.

For virus dynamics models without and with interferon therapy (second and third stages, respec-
tively), the model with logistic growth best described the viral load data, and the model with the worst
fit was the model with von Bertalanffy growth.

The following conclusions are obtained from the models of viral dynamics with logistic growth. The
estimated inhibition effect of interferon therapy on new infections was approximately 9.9%, and with
probability of 0.95, this effect is between 0.4 and 26.5%. The estimated inhibition effect of interferon
therapy on viral particle production was approximately 8.1%, and with a probability of 0.95, this effect
is between 0.3 and 23.1%. This indicates that these inhibition effects are similar for the prevention
of new infections and the prevention of viral replication. The estimated basic reproductive number
with interferon therapy of 2.71 (95% CrI: 2.37–3.11) was smaller than the basic reproductive number
without interferon therapy, which was 5.06 (95% CrI: 4.17–6.51); it can be concluded that interferon
therapy significantly weakens the viral infection and hence the spread of the infection.

The point estimate of the half-life of infected cells is very similar in all models (see Figure 6).
Graphically, it can be seen that the credible intervals overlap, which means that interferon therapy does
not have a significant effect on the lifetime of the infected cells. This is because interferon therapy does
not modify the mortality rate of infected cells.

We estimated the efficacy of interferon therapy and the basic reproductive number; we have con-
cluded that interferon therapy reduces the basic reproductive number, but not below unity.

The Bayesian estimation approach incorporates information from the parameter in the prior distri-
bution. In our case, we do not have much information about which values were more probables in the
first stage for parameters r and k. But in the second stage we use the information obtained in the first
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stage. Bayesian estimation is better than frequentist estimation when the sample size is small because
in this case the maximum likelihood estimator, used in frequentist estimation, does not have normal
distribution, and Bayesian estimators do not need to have a specific distribution. Generally, the least-
squares method has been used to estimate the parameters in the viral dynamics models. A disadvantage
of this method is that only point estimates are obtained. The Bayesian approach does not present this
drawback since it allows determining the distributions of the parameters of interest and, therefore, not
only point estimates are obtained but the credibility intervals estimates. In addition, estimation for
functions of the parameters of interest, such as the basic reproductive number (R0) and the half-life of
infected cells is easier.

Finally, comparing our results of the virus dynamics model with logistic growth with those obtained
by Ikeda et al. [15], we note that the estimates of the cell dynamics parameters r (0.610 vs 0.630) have
the same order of magnitude, although our estimate of the carrying capacity k is approximately half
(1,447,204 vs 3,330,000) that obtained in [15]. We obtained similar findings for the parameters of viral
dynamics: β (0.0012 vs 0.0067), δ (1.6399 vs 1.5600), and ρ (0.0099 vs 0.0026). As for the estimation
of the parameters of the efficacy of the interferons, we have similar results for antiviral effect of IFN on
de novo infection ε (0.0812 vs 0.06) but different ones in the antiviral effect of IFN on virus production
η (0.0993 vs 0.47). For the infections related quantities, we obtain similar results for the half-life of
infected cells (0.44 vs 0.45), but different results in the R0 without interferon therapy (5.06 vs 13.1)
and R0 with interferon therapy (2.71 vs 6.37), our estimates of the R0 are approximately half those
obtained in [15]. This difference in the estimate of R0 may be due to the difference in the estimate of
the parameter η and the use of a mores robust estimation method, the Bayesian approach.
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radiovirotherapy, Math. Biosci., 199 (2006), 55–78. https://doi.org/10.1016/j.mbs.2005.11.001

15. H. Ikeda, A. Godinho-Santos, S. Rato, B. Vanwalscappel, F. Clavel, K. Aihara, et al., Quantify-
ing the antiviral effect of IFN on HIV-1 replication in cell culture, Sci. Rep., 5 (2015), 11761.
https://doi.org/10.1038/srep11761

16. P. De Leenheer, H. L. Smith, Virus dynamics: a global analysis, SIAM J. Appl. Math., 63 (2003),
1313–1327. https://doi.org/10.1137/S0036139902406905

17. A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004),
879–883. https://doi.org/10.1016/j.bulm.2004.02.001

18. A. Gelman, J. B. Carlin, H. S. Stern, D. B. Rubin, Bayesian Data Analysis, Chapman and
Hall/CRC, New York, 1995. https://doi.org/10.1201/9780429258411

19. C. P. Robert, G. Casella, Introducing Monte Carlo Methods with R, Springer, New York, 2010.

20. M. L. Rizzo, Statistical Computing with R, Chapman and Hall/CRC, 2019.
https://doi.org/10.1201/9780429192760

Mathematical Biosciences and Engineering Volume 20, Issue 6, 11033–11062.

http://dx.doi.org/https://doi.org/10.1073/pnas.94.13.6971
http://dx.doi.org/https://doi.org/10.1002/bies.10196
http://dx.doi.org/https://doi.org/10.1006/bulm.2001.0266
http://dx.doi.org/https://doi.org/10.1038/nri700
http://dx.doi.org/https://doi.org/10.1016/j.jtbi.2007.03.006
http://dx.doi.org/https://doi.org/10.1128/JVI.01623-05
http://dx.doi.org/https://doi.org/10.1016/j.jtbi.2008.05.031
http://dx.doi.org/https://doi.org/10.1016/j.apm.2022.02.008
http://dx.doi.org/https://doi.org/10.1038/87836
http://dx.doi.org/https://doi.org/10.1016/j.mbs.2005.11.001
http://dx.doi.org/https://doi.org/10.1038/srep11761
http://dx.doi.org/https://doi.org/10.1137/S0036139902406905
http://dx.doi.org/https://doi.org/10.1016/j.bulm.2004.02.001
http://dx.doi.org/https://doi.org/10.1201/9780429258411
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1201/9780429192760 


11053

21. P. C. Burkner, brms: an R package for Bayesian multilevel models using Stan, J. Stat. Software,
80 (2017), 1–28.

22. R Core Team, R: A Language and Environment for Statistical Computing, Vienna, Austria, 2020.

23. H. Ge, K. Xu, Z. Ghahramani, Turing: a language for flexible probabilistic inference, in Interna-
tional conference on artificial intelligence and statistics, PMLR, (2018), 1682–1690.

24. J. Bezanson, A. Edelman, S. Karpinski, V. B. Shah, Julia: A fresh approach to numerical comput-
ing, SIAM Rev., 59 (2017), 65–98. https://doi.org/10.1137/141000671

25. M. Plummer, N. Best, K. Cowles, K. Vines, CODA: convergence diagnosis and output analysis
for MCMC, R News, 6 (2006), 7–11.

26. M. L. Delignette-Muller, C. Dutang, fitdistrplus: an R package for fitting distributions, J. Stat.
Software, 64 (2015), 1–34. https://doi.org/10.18637/jss.v064.i04

27. P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equi-
libria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48.
https://doi.org/10.1016/S0025-5564(02)00108-6

28. E. Avila-Vales, N. Chan-Chı́, G. E. Garcı́a-Almeida, C. Vargas-De-León, Stability and Hopf bi-
furcation in a delayed viral infection model with mitosis transmission, Appl. Math. Comput., 259
(2015), 293–312. https://doi.org/10.1016/j.amc.2015.02.053

29. J. D. Meiss, Differential Dynamical Systems, Society for Industrial and Applied Mathematics,
Philadelphia, 2007.

Appendix

A.1. Positive invariance and boundedness of system (1.1) with Gompertz growth

In this subsection, we provide the proof for Theorem 2.3.
Proof [Theorem 2.3]. Let (S (t), I(t),V(t)) be any solution with initial conditions (S 0, I0,V0) ∈ R3

0+
.

We define a function
B(t) = S (t) + I(t) +

δ

np(1 − ε)
V(t), n � 1.

The time derivative along a solution of system (1.1) is

dB(t)
dt

= rS (t) ln
[

k
S (t) + I(t)

]
−
δ(n − 1)

n
I(t) −

δγ

np(1 − ε)
V(t).

Note that ln(1 − z) ≤ −z holds for any z < 1; one can obtain

ln
[

k
S (t) + I(t)

]
= ln

[
1 −

(
1 −

k
S (t) + I(t)

)]
(A1)

≤ −

(
1 −

k
S (t) + I(t)

)
. (A2)

It follows that
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dB(t)
dt

= rk − rS (t) −
δ(n − 1)

n
I(t) −

δγ

np(1 − ε)
V(t) −

rkI(t)
S (t) + I(t)

, (A3)

dB(t)
dt

≤ rk − ζB(t), (A4)

(A5)

where ζ = min{r, δ(n−1)
n , γ}. Thus, lim sup B(t)

t−→∞
≤ (rk)/ζ.

Therefore, S (t), I(t) and V(t) are all bounded for all t ≥ 0. This completes the proof.

A.2. Basic reproductive number of system (1.1) with Gompertz growth

The dynamics of virus infections crucially depend on the basic reproductive number R0, which in
this case is the average number of secondary infected cells produced by a single infected cell in a
population of target cells. Here, we derive the basic reproduction number for viral infection using
the next generation operator [27]. Using the notation in [27], the non-negative matrix F of the new
infection terms and the M-matrix V of the transition terms associated with the model based on system
(1.1) with Gompertz growth are given, respectively, by

F :=
(

0 (1 − η)βS 0

0 0

)
and V :=

(
δ 0

−p(1 − ε) γ

)
.

It follows that the basic reproduction number, denoted by R0 = ρ(FV−1), where ρ is the spectral
radius, is given by

R0 =
(1 − ε)p(1 − η)βS 0

δγ
,

where S 0 is the concentration of uninfected cells at the uninfected equilibrium in R3
0+

, E(S 0, 0, 0),
where S 0 = k.

The parameter R0 has an interesting biological meaning; it is the average number of secondary in-
fected cells produced by a single infected cell in a population of target cells. Particularly, the term
(1−η)β(1−ε)pS 0

δγ
describes the secondary infections per unit time through the direct target-cell-to-virus con-

tact with the antiviral effect of interferon therapy.

A.3. Asymptotic stability of the uninfected equilibrium

In this subsection, we prove part a) of Theorem 2.4. The Jacobian matrix of system (1.1) with
Gompertz growth at E0 is

J(E0) =


−r −r −(1 − η)βS 0

0 −δ (1 − η)βS 0

0 (1 − ε)p −γ


.
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One of the characteristic roots is
τ1 = −r < 0.

The other two eigenvalues of J(E0) are determined by the quadratic equation

τ2 + (δ + γ) τ + δγ(1 − R0) = 0. (A6)

The characteristic equation (A6) has two eigenvalues that have negative real parts if and only if
R0 < 1. Therefore, E0 is asymptotically stable for R0 < 1 (By Theorem 4.6 [29]). If R0 > 1, equation
(A6) has a positive eigenvalue. Therefore, E0 is unstable.

A.4. Existence and uniqueness of infected equilibrium

In this subsection, we prove part b) of Theorem 2.4. To do this, we explore the existence and
uniqueness of the infected equilibrium of the model based on system (1.1) with F = f3, following an
argument similar to that given in [28]; we use a geometric approach. The equilibria are obtained by
setting the right-hand side of system (1.1) with F = f3 equal to zero:

rS ∗ ln
[

k
S ∗ + I∗

]
− (1 − η)βS ∗V∗ = 0,

(1 − η)βS ∗V∗ − δI∗ = 0, (A7)
(1 − ε)pI∗ − γV∗ = 0.

The second equation leads to S ∗ = δI∗/(1 − η)βV∗ = δγ/(1 − ε)p(1 − η)β, and the third equation leads
to V∗ = (1 − ε)pI∗/γ.
We express the first equation of system (A7) as the following transcendental equation in I∗:

ln
[

k(1 − ε)p(1 − η)β
δγ + (1 − ε)p(1 − η)βI∗

]
−

(1 − η)β(1 − ε)p
rγ

I∗ = 0. (A8)

The number of I solutions of Eq (A8) can be analyzed geometrically through the intersection points
of the logarithmic function f1(I) with the equilateral hyperbola f2(I). The functions f1(I) and f2(I) are
defined as

f1(I) = ln
[

k(1 − ε)p(1 − η)β
δγ + (1 − ε)p(1 − η)βy

]
,

f2(I) =
(1 − η)β(1 − ε)p

rγ
I.

Observe that f1(0) = ln R0, f ′1(I) < 0 and f ′′1 (I) > 0, and it is well known that f ′2(I) > 0 for positive “I”
values. If ln R0 > 0 (or equivalently R0 > 1), f1(I) and f2(I) have a single positive intersection point in
the first quadrant. It follows that the infected equilibrium exists, and it is unique if R0 > 1.
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A.5. Asymptotic stability of the infected equilibrium

In this subsection, we prove part c) of Theorem 2.4. To do this, we study the local stability behavior
of the infected equilibrium E∗ for system (1.1) with Gompertz growth.

The local stability of E∗ is given by the Jacobian matrix of system (1.1) evaluated in this equilibrium:

JE∗ =


r ln

[
k

S ∗+I∗

]
− rS ∗

S ∗+I∗ − (1 − η)βV∗ − rS ∗
S ∗+I∗ −(1 − η)βS ∗

(1 − η)βV∗ −δ (1 − η)βS ∗

0 (1 − ε)p −γ


,

which can be rewritten as

JE∗ =


−rC − δ I∗

S ∗ − rS ∗
S ∗+I∗ −δ I∗

V∗

δ I∗
S ∗ −δ δ I∗

V∗

0 (1 − ε)p −(1 − ε)p I∗
V∗


when we take into account the following identities:

C =
rS ∗

S ∗ + I∗
− ln

[
k

S ∗ + I∗

]
, (A9)

(1 − η)β = δ
I∗

S ∗V∗
, (A10)

γ = (1 − ε)p
I∗

V∗
. (A11)

If C ≥ 0, then the infected equilibrium is asymptotically stable (By Theorem 4.6 [29]). Note also that
C ≥ 0 is equivalent to ln k ≤ S ∗

S ∗+I∗ + ln [S ∗ + I∗]. We provided a sufficient condition on the parameters
for the local stability of the infected equilibrium.

A.6. Convergence of the MCMC simulations of the models with von Bertalanffy growth

In this subsection, the convergence criteria of the von Bertalanffy growth model and viral infection
models with von Bertalanffy growth are discussed.

The chains show good mixing, as shown in Figures A1–A3, which display the results of the von
Bertalanffy model. Table A1 shows the results of the calculation of the Gelman-Rubin criterion, thus
indicating that both convergence results are consistent.

A.7. Convergence of the MCMC simulations of the models with Gompertz growth

In this subsection, the convergence criteria of the Gompertz growth model and viral infection mod-
els with Gompertz growth are discussed.

The chains show good mixing, as shown in Figures A4–A6, which display the results of the Gom-
pertz model. Table A2 shows the results of the calculation of the Gelman-Rubin criterion, thus indi-
cating that both convergence results are consistent.
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Figure A1. For the first stage, on the left side, the posterior distribution is shown, and on the
right side, the convergence chains of the von Bertalanffy growth model and viral infection
models with von Bertalanffy growth are shown.

Table A1. Values of the Gelman-Rubin diagnostic criteria (upper limit) for the three stages
of the von Bertalanffy growth model and viral infection models with von Bertalanffy growth.

Parameters Cell dynamics Viral dynamics Viral dynamics with interferon therapy
r 1.00(1.00) 1.00(1.00) 1.00(1.00)
k 1.00(1.00) 1.00(1.00) 1.00(1.00)
σ 1.00(1.00) 1.00(1.00) 1.00(1.00)
β 1.00(1.00) 1.00(1.00)
δ 1.00(1.00) 1.00(1.00)
ρ 1.00(1.00) 1.00(1.00)
η 1.00(1.01)
ε 1.00(1.00)
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Figure A2. For the second stage, on the left side, the convergence chains are shown, and
on the right side, the convergence of the posterior distribution of the parameters of the viral
infection model with von Bertalanffy growth and without interferon therapy is shown.
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Figure A3. For the third stage, on the left side, the convergence chains are shown, and on
the right side, the convergence of the posterior distribution of the parameters of the viral
infection model with von Bertalanffy growth and interferon therapy is shown.
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Figure A4. For the first stage, on the left side, the posterior distribution is shown, and on the
right side, the convergence chains of the parameters of Gompertz cell growth are shown.

Table A2. Values of the Gelman-Rubin diagnostic criteria (upper limit) for the three stages
of the Gompertz growth model and viral infection models with Gompertz growth.

Parameters Cell dynamics Viral dynamics Viral dynamics with interferon therapy
r 1.00(1.00) 1.00(1.00) 1.00(1.00)
k 1.00(1.00) 1.00(1.00) 1.00(1.00)
σ 1.00(1.00) 1.01(1.01) 1.00(1.01)
β 1.03(1.04) 1.00(1.00)
δ 1.00(1.00) 1.00(1.00)
ρ 1.00(1.00) 1.00(1.00)
η 1.00(1.00)
ε 1.00(1.00)
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Figure A5. For the second stage, on the left side, the convergence chains are shown, and
on the right side, the convergence of the posterior distribution of the parameters of the viral
infection model with Gompertz growth and without interferon therapy is shown.
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Figure A6. For the third stage, on the left side, the convergence chains are shown, and on
the right side, the convergence of the posterior distribution of the parameters of the viral
infection model with Gompertz growth and interferon therapy is shown.
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