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Abstract: To comprehend the etiology and pathogenesis of many illnesses, it is essential to iden-
tify disease-associated microRNAs (miRNAs). However, there are a number of challenges with cur-
rent computational approaches, such as the lack of ”negative samples”, that is, confirmed irrelevant
miRNA-disease pairs, and the poor performance in terms of predicting miRNAs related with “iso-
lated diseases”, i.e. illnesses with no known associated miRNAs, which presents the need for novel
computational methods. In this study, for the purpose of predicting the connection between disease
and miRNA, an inductive matrix completion model was designed, referred to as IMC-MDA. In the
model of IMC-MDA, for each miRNA-disease pair, the predicted marks are calculated by combining
the known miRNA-disease connection with the integrated disease similarities and miRNA similarities.
Based on LOOCV, IMC-MDA had an AUC of 0.8034, which shows better performance than previous
methods. Furthermore, experiments have validated the prediction of disease-related miRNAs for three
major human diseases: colon cancer, kidney cancer, and lung cancer.
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1. Introduction

Small non-coding RNAs known as microRNAs (miRNAs) have a length of 20 to 25 nucleotides.
miRNAs are extremely important regulatory RNAs that govern genes in a unique and irreplaceable
manner [1–4]. However, numerous studies have revealed that target mRNAs may also be positively
regulated by miRNAs. Additionally, there is evidence that aberrant miRNAs are linked to a variety of
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human illnesses, including cancer [5, 6]. miRNAs can affect human diseases through interactions with
other miRNAs, interactions between miRNAs and proteins, interactions between miRNAs and long
non-coding RNAs [7, 8], and interactions between miRNA and environmental factors [9, 10]. There
have been many reports on miRNA-disease research in recent years. The miR2Disease and Human
miRNA Related Disease Database (HMDD) are two sweeping databases that were structured by Li et
al. [11] and Jiang et al. [12] by collating experimental data that have been published to support human
miRNAs and disease association. With the cause of researching the manifestation of aberrant miRNAs
in various cancer diseases, Yang et al. [13] developed an miRNA database (dbDEMC) for miRNAs that
are differently expressed in human cancers. As a result, the identification of illness-related miRNAs
(also known as disease miRNAs) aids in understanding the molecular basis of disease as well as in
preventing, diagnosing and treating diseases.

Lately, numerous academics have advocated the anticipation of disease-associated miRNAs. Ex-
periments are costly and take plenty of time when trying to confirm miRNAs that are related with dis-
ease [14–16]. Many researchers support the evolution of puissant computational techniques to make
large-scale predictions of new human miRNA-illness relationships [17–20]. At the same time, a large
amount of research has produced a large amount of data on illnesses and miRNAs, which provided a
firm basis for the development of computational methods. The main intention of this calculation is to
forecast how disease and miRNA will interact. The primary problem of miRNA-disease association
inference is the link prediction problem of heterogeneous networks [21]. Some scholars have devel-
oped a calculation method for measuring the similarity of miRNA and disease. The key similarity
calculation techniques and their work for the future were summarized by Zou et al. [22]. The most
popular of these computational techniques are network prediction and machine learning.

Among them, machine learning algorithms have gained widespread adoption in the field of bioin-
formatics. For instance, they are utilized in biological sequence prediction [23–25], circRNA-disease
interaction prediction [26, 27], and ncRNA-protein interaction prediction [28, 29]. These applications
have significantly advanced the study of disease-miRNA association prediction [30, 31]. Jiang et
al. [32] raised a model called Naive Bayes that prioritizes disease-associated miRNAs via the inte-
gration of genomic data and they suggested a method for classification a support vector machine to
distinguish the connection of negative diseases and positive miRNAs. A forecast approach that func-
tionally improves the miRNA target imbalance network was introduced by Xu et al. [33]. Zeng et
al. [34] raised two multi-path approaches for forecasting disease-related genes on the basis of gene-
disease heterogeneous networks, which were utilized to forecast the connections between diseases
and miRNA. In order to further distinguish the connections between diseases and miRNA, Xiao et
al. [35] developed and implemented a positive matrix factorization strategy for graph regularization
and achieved successful results. Unfortunately, because non-positive samples of miRNA and disease
connections are difficult to obtain, many machine learning algorithms encounter bottlenecks, resulting
in less than ideal prediction results [36]. In order to prioritize the detection of miRNA illness connec-
tions without using non-positive samples, the regularized least squares method was created by Chen et
al. [37] for miRNA disease association. A semi-supervised classification approach termed RLSMDA
predicts the association of isolated diseases.

At present, more researchers are starting to forecast the relationship between disease and miRNA
by using a web-based approach [38–41]. These approaches rank the predictions, with higher rankings
indicating a stronger likelihood of their relationship. Web-based approaches frequently start with the
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premise that, in general, the greater the similarity of miRNAs, the more illnesses with which they
are associated. Focusing this hypothesis, Gu et al. [42] suggested a network projection consistency
algorithm to forecast disease-related miRNAs, fully utilizing the correlation of disease-miRNAs and
the miRNAs functional similarity. A model between the miRNA-disease association predictive score
and it was established by Chen et al. [43], showing that the WBSMDA can predict the association
with illness in the absence of any known associated miRNA. And Liu et al. [44] integrated multiple
data information to compute the similarity between miRNA and disease, and they found heterogeneous
networks at the bottom of the known connections between disease and miRNA. Good results were ob-
tained by restarting the random walk to forecast the relationship between disease and miRNAs in the
network [45]. Chen et al. [46] constructed miRNA-miRNA functional network by using a generic net-
work similarity metric, and presented a miRNA-disease association (RWRMDA) Random Walk with
Restart for underlying disease-miRNA connections prediction. Unluckily, miRNA-related information
is ignored when random walks are made to specific diseases. And it is impossible to forecast novel
miRNAs of any unknown miRNA (isolated disease). An algorithm (referred to as HDMP) was put up
by Xuan et al. [47] to forecast the connections of disease and miRNA. With the purpose of predicting
potential candidate miRNAs for a certain illness, the HDMP binds to the properties and functional
similarity of miRNAs. It ignores the topology formed between the neighbors and only takes into ac-
count the k neighbors in the candidate set that are most similar. A novel random walk-based prediction
method was put out by Xuan et al. [48] by using various topological orderings and the properties
of nodes. Recently, Chen and Zhang [49] suggested a network-based consistency-based reasoning
(NetCBI) approach by using global network measurements to forecast the associations of potential
disease-miRNA. NetCBI is a heterogeneous network that combines known association networks and
disease-miRNA similarity networks to construct global associations that predict disease-miRNA as-
sociations. As compared to RWRMDA, NetCBI is able to forecast the disease-miRNA correlation in
isolated disease, but its cross-validation performance is less effective.

As stated above, there are certain limitations to the current calculating method for forecasting
disease-miRNA connection. First, some approaches based on machine learning face the challenge
of collecting negative samples. Second, a number of methods are unable to forecast shielded disease-
related miRNAs. Lastly, despite the fact that some approaches, like NetCBI, are able to forecast
separated diseases, their cross-validation performance is subpar [49]. For the sake of addressing these
challenging issues, we propose a method using the induction matrix to predict the miRNA-disease as-
sociation (IMC-MDA). IMC-MDA first discovers the potential by combining the similarity network
of illness semantic the miRNAs functional; then, the algorithm is finished through the matrix. The
IMC-MDA algorithm has obvious advantages over other approaches.

2. Materials and methods

2.1. Data preprocessing

The association between miRNAs and disease was mainly from a human miRNA-disease associa-
tion database (HMDD V2.0), which contains 5430 associated data sets, which were validated by bio-
logical wet experiments. First, we want to remove the association of the wrong name. The name of the
disease was compared to the name in the International Medicine Database (http://www.nlm.nih.gov/),
and the miRNA name is based on the name in miRBase 18.0 database. For example, hsa-let-7b was
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not found in the miRBase 18.0. Therefore, we will delete the data. Second, there are many useless data
points in the associated data provided in HMDD V2.0. For example, data associated with hsa-let-7a
and neoplasms indicate that hsa-let-7a in miRNA is associated with ”tumor.” However, ”tumor” has
many types, such as ”breast tumor”. Therefore, you need to delete this association. After processing,
5325 effective correlations were discovered, comprising 383 diseases and 495 miRNAs. Additionally,
383 diseases and 495 miRNAs were included in the 5325 effective connections that were found after
processing.

2.2. Measuring miRNA similarity and disease similarity

2.2.1. Disease similarity

Figure 1. Workflow of IMC-MDA for discovering potential disease-miRNA associations.

In this study, we computed the similarities between illness pairs by using hierarchical directed
acyclic graphs (DAGs) [50]. And the expression for a disease d’s DAG map is DAGd = (d,Td, Ed),
where Td denotes the group of disease d ancestor nodes and Ed denotes the associated link. Defining
Dd(t) as the disease t’s semantic contribution in DAGd to disease d is shown in Eq 2.1, where ∆ is the
semantic contribution element, assuming t is the t’parent node, penalized, with a range of [0,1] In this
work, we applied the value of 0.5.

Dd(t) =

1, if t = d

max{∆ ∗ Dd(t′)|t′ ∈ children of t}, if t , d
(2.1)
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Finally, semantic similarity is based on the DAG graph. Based on the hypothesis, it was assumed
that the more diseases shared by the DAG maps of the two diseases, the greater the similarity and vice
versa. Equation 2.2 considers the connection relationship between the ancestral nodes of the disease to
compute the likeness between diseases d1 and d2.

D(d1, d2) =
∑

t∈Td1∩Td2
(Dd1 (t) + Dd2 (t))∑

t∈Td1
Dd1 (t) +

∑
t∈Td2

Dd2 (t)
(2.2)

2.2.2. MiRNA functional similarity

There have been numerous studies showing that if diseases are more similar, then their associated
miRNAs will be more similar, and the converse is also the conclusion. Therefore, Wang et al. [50]
evaluated the likelihood between miRNAs based on known correlation data. Particularly, for two
miRNAs ma and mb, let DTa = {da1, da2, ..., dak} and DTb = {db1, db2, ..., dbl} denote lots of diseases
related to ma and mb, respectively. Then, the likelihood between ma and mb is computed as follows:

R(ma,mb) =

∑k
i=1 S (dai,DTb) +

∑l
j=1 S
(
db j,DTa

)
k + l

(2.3)

where l and k stand for, respectively, the number of illnesses in DTb and DTa. The similarity of
miRNAs is, according to the definition, a number between zero and one.

2.2.3. Gaussian interaction profile kernel similarity of diseases and miRNAs

Similar illness-associated miRNAs ought to have more in common functionally, and vice versa.
Then we computed the similarity of miRNA and disease by computing the nuclear similarity of the
Gaussian interaction distribution. In order to indicate whether each miRNA has a known link to the
illness d, we first use the vector VP(di). Then, the interaction spectrum is used to compute the Gaussian
interaction kernel similarity of the diseases d j and di, as follows:

KD
(
di, d j

)
= exp

(
−γd

∣∣∣∣∣∣∣∣VP (di) − VP
(
d j

)∣∣∣∣∣∣∣∣2) (2.4)

where the kernel bandwidth adjustment coefficient is γd, and the coefficient γ′d needs to be updated by
taking the evenness of the associations with the miRNAs for total illnesses and dividing it by the new
bandwidth coefficient γd.

γd =
γ′d

1
nd

∑nd
i=1 ||VP(di)||2

(2.5)

Equally, it is possible to derive the kernel similarity of the Gaussian interaction distribution for miRNA
according to Eqs 2.4 and 2.5.

KM
(
ri, r j

)
= exp

(
−γm

∣∣∣∣∣∣∣∣VP (ri) − VP
(
r j

)∣∣∣∣∣∣∣∣2) (2.6)

γm =
γ′m

1
nm

∑nm
i=1 ||VP(ri)||2

(2.7)
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2.2.4. Integrated similarity for miRNAs and diseases

We constructed a matrix of illness similarity by using the semantic similarity, simultaneously, it also
shares similarities in its chemical structure. Therefore, we only took the disease’s semantic similarity
into account, which will cause the similarity matrix’s sparsity. In our work, we introduce Gaussian
kernel similarity and solve sparsity by integrating Gaussian kernel similarity and semantic similarity.
Therefore, the similarity matrix of disease di and d j is constructed as follows:

S d(di, d j) =

D(di, d j), di and d j has semantic similarity

KD(di, d j), otherwise
(2.8)

Equally, miRNA similarity is re-defined as follows:

S m(ri, r j) =

R(ri, r j), ri and r j has f unctional similarity

KM(ri, r j), otherwise
(2.9)

2.3. Predictive disease-miRNA association based on induction matrix

We developed a new approach that is based on the induction matrix completion algorithm (IMC-
MDA) to more precisely forecast the unknown relationship between diseases and miRNAs, and it
entails two steps (Figure 1). First, on the basis of the converged data sources, the similarity of miRNA
to disease was computed, and for a more thorough similarity, the similarities of the calculations were
integrated. Second, we used our proposed matrix completion algorithm framework to infer potential
associations.

2.3.1. Construction of disease-miRNA double-layer network

We constructed a bilayer network for disease-miRNA by integrating miRNA function and disease-
similar networks, miRNAs and Gaussian nuclear similarity of disease with known miRNAs and dis-
eases.

Suppose D = {D(i, j)n,n
i=1, j=1} is the illness similarity network matrix, R = {R(i, j)m,m

i=1, j=1} is the miRNA
similarity network matrix and A = {A(i, j)m,n

i=1, j=1} is the disease-miRNA interaction network, where m
and n stand for the actual amounts of miRNAs and disease respectively. Figure 2 provides a straight-
forward illustration of a heterogeneous network. The heterogeneous network’s adjacency matrix can
be expressed as below:

H =
D A

AT R

 (2.10)

AT represents the transpose of matrix A.
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Figure 2. Heterogeneous network associated with miRNA and disease.

2.4. IMC-MDA

Currently, an efficient technology for predicting missing values in data has been extensively uti-
lized, known as Matrix Completion. Its purpose is to find a suitable matrix to achieve an optimal
approximation of the original matrix. We introduce the IMC-MDA model, which is a new induction
matrix-bedded model for the prediction of the connections of disease-miRNA. On the basis of estab-
lished connections, disease and miRNA similarity, the IMC-MDA model was put into practice. Here,
we chose the matrix of disease similarity S d = Rnd×nd and the matrix of miRNA similarity S m = Rnm×nm

as the characteristic matrix of the disease nd and the nm of the miRNA, and S m( j) and S d(i) denote
the feature vector of the miRNA m( j) disease d(i) respectively. The IMC’s major thought is making
use of a known entry from the disease-miRNA correlation matrix A to renew the matrix Z = Rnd×nm in
the shape Z = WHT , where H ∈ Rnm×r and W ∈ Rnd×r, and r is the wanted level (rank(W)), rank(H))
equal to min. The inductive matrix completion algorithm’s convergence speed will be impacted by
the coefficient r; however, the influence on the outcome is minimal. The parameter S core(d(i),m( j))
is computed to represent the expected probability of connections in disease d(i) and miRNA m( j).
Solving the following optimization problems can yield the matrices W and H:

Emin =
1
2

∣∣∣∣∣∣A − S dWHT S T
m

∣∣∣∣∣∣2
F
+
λ1

2
||W ||2F +

λ2

2
||H||2F +

λ1

2

∣∣∣∣∣∣WWT − S m

∣∣∣∣∣∣2
Fro
+
λ2

2

∣∣∣∣∣∣HHT − S d

∣∣∣∣∣∣2
Fro

(2.11)

where λ1 and λ2 are regularization parameters which balance the tracking norm constraints and the
observed losses of the entries. In the experiment, we set λ1 = λ2 = 1 and the matrix’s Frobenius norm
is ||·||F . λ1

2 ||W ||
2
F and λ2

2 ||H||
2
F prevent over fitting problems, and we are able to employ the method

proposed by Jain and Dhillon to address the minimum issues [51]. W and H are first created as random
dense matrices. And the iterative equation is then used to update W and H. When the convergence
requirement is met, the iterative procedure ought to come to an end. Generally, the convergence criteria
is set to 106. The iterative equation in the flowchart shown in Figure 1 provides the stage of the detailed
algorithm to address the minimum issue. The forecasted marks of miRNA m( j) and disease d(i) are
able to be computed by using H and W as follows:
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S core(d(i),m( j)) = S d(i)WHT S T
m( j) (2.12)

If newd(i) is a novel disease for which no known miRNAs are connected, we can calculate all
miRNA entries newd(i) as long as we have the disease’s eigenvector S core(newd(i), j).

3. Results and discussion

3.1. Performance evaluation index

In order to more fairly evaluate the predictive accuracy of IMC-MDA, we implemented a cross-
validation experimental framework for known miRNA-disease connections: for each illness d(i), we
selected every known miRNA-disease pairs (miRNA-disease pairs (m( j) − d(i)) used as an example)
as the test samples, and the remaining pairs were treated as training samples. At first, the known
miRNA-disease pair (m( j)−d(i)) was intentionally transformed into an unproven miRNA-disease pair.
MiRNA-disease pair d(i) that has not been verified is regarded as a candidate sample, and then the
forecasted scores of the miRNA-disease pair (m( j) − d(i)) are ranked against it. The model can be
deemed to successfully predict the miRNA-disease pair (m( j) − d(i)) if the level of the test miRNA-
disease pair (m( j)− d(i)) is greater than a specified threshold. On the basis of the LOOCV framework,
the IMC-MDA method is compared to the RLSMDA, MCMDA, RWRMDA, HDMP, Maxflow and
MiRAI in this paper.

3.2. Performance on predicting miRNA-disease associations

We contrasted our method with a few basic methods in order to confirm its effectiveness. The de-
tails of the comparison algorithm are provided below. Maxflow [52]: It uses miRNA, disease similarity
and the association network of disease and miRNAs. Subsequently, a mapped miRNAome-phenome
network map was created by further combining the three networks (the metrics we utilized for com-
parison were α = 0.1, γ = 100, β = 0.6, σ = 10, η = 6). MCMDA: MCMDA introduces a matrix
completion algorithm for known disease and miRNA association matrices to predict unknown asso-
ciations. RLSMDA: This method combines two disease space and miRNAs space training classifiers
based on the regularized least squares algorithm (coefficients were set to ω = 0.9, ηd = ηm = 1).
HDMP: In order to establish a more trustworthy correlation score for unlabeled miRNAs, the k nearest
neighbors and miRNA functional similarity for each miRNA were connected. Additionally, the HDMP
weights miRNAs differently depending on miRNA families or clusters (the factors that we compared
are α = 4, β = 4, k = 20). RWRMDA: In order to predict probable disease miRNAs, Chen added
random walks to the miRNA functional similarity network (parameter setting is r = 0.2).

Utilizing the consequences of LOOCV plots the receiver operating characteristic (ROC) curve. The
true positive rate (TPR) and false positive rate (FPR) are plotted on the ROC graph’s Y and X axes,
respectively. Figure 3 demonstrates the ROC curve on the ground of LOOCV. The assessment metric
for the model can be determined by the area under the curve (AUC). Thus, LOOCV, RWRMDA,
IMC-MDA, MCMDA, RLSMDA, Maxflow and HDMP respectively obtained AUC values of 0.7891,
0.8372, 0.7718, 0.6953, 0.7774 and 0.7702. Therefore, compared to the previous model, it is easier to
see an enhancement in forecasting the correlation between miRNA-disease and IMC-MDA.

In particular, the paired t-test was used to further study how the algorithms differed in their capacity
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for reasoning. The outcomes of LOOCV were subjected to a paired t-test. We can see how IMC-MDA
differs significantly from the previous models (MCMDA, HDMP, MRLSMDA, RWRMDA, Maxflow),
as the P values were 2.14E-13, 5.27E-26, 2.7E-87, 9.31E-13 and 8.8E-20.

Figure 3. Comparison of IMC-MDA with five best performers for miRNA-disease associa-
tions.

3.3. Predicting novel disease-related miRNAs

On the other hand, we performed simulation tests on individual diseases with the same cross-
validation approach for the purpose of assessing the effectiveness of IMC-MDA the new diseases in the
absence of any known linked miRNAs. Different from cross-validation tests, all connections related to
the test disease were removed during training. This operation ensures that the prediction-related can-
didates only use information about the remaining diseases as well as the disease and miRNA similarity
information. We applied all eliminated d-related miRNAs as the non-negative test samples.

For the purpose of obtaining an impartial comparison, we conducted a study on six prevalent dis-
eases that are linked to at least 80 proven connections. The main performance evaluation metric was
the area under the precise recall curve (AUPR). Because MCMDA, HDMP, and RWRMDA do not pre-
dict new disease associations, we only compared two methods. The results are shown in Table 1. The
mean AUPR for IMC-MDA, RLSMDA and Maxflow were 0.6353, 0.5573 and 0.5589, respectively,
for the eight test diseases. IMC-MDA performed best for most of these diseases, with an average
AUPR higher than those of other algorithms by 0.078 and 0.076.

3.4. Case studies

The effectiveness of IMC-MDA predictions for novel miRNA diseases was demonstrated through
the use of three different kinds of case studies. They all displayed positive results. Three prevalent hu-
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man diseases were considered in the first case study (colon tumors, kidney tumors, lung tumors). Three
databases—dbDEMC, Phenomir and miR2Disease—were used to analyze the predicted miRNAs for
these diseases. Case studies help us confirm the effectiveness of IMC-MDA even further. Then, we
noted that the validated miRNAs’ number was linked to the three illnesses in the top 10 and top 50,
respectively, based on these two databases.

Table 1. Results of LRMCMDA and other approaches on predicting new diseases whose
connections had been eliminated.

Disease name AUPR
IMC-MDA Maxflow RLSMDA

Breast neoplasms 0.6795 0.6689 0.6749
Colorectal neoplasm 0.6327 0.5412 0.5415

Glioblastoma 0.5580 0.4537 0.4012
Heart failure 0.5728 0.5327 0.5310
Melanoma 0.7028 0.6357 0.6740

Prostatic neoplasms 0.6458 0.5023 0.5208
Stomach neoplasms 0.6351 0.6001 0.6021

Urinary bladder neoplasms 0.6309 0.5238 0.5255

In the gastrointestinal tract, the most universal malignant tumor at the moment is a colon tumor.
By 2018, there were an estimated 97,220 colon tumors in the USA, of which roughly 50,630 resulted
in death. However, plenty of miRNAs related to colon tumors have also been validated by some
biological studies recently. For instance, when the basic expression level of colonic epithelial cells in
our normal humans, the miR-106a’s expression in colon tumors was lower. In colon cancer cells, it
has also been proved that MiR-145 is able to down-regulate the IRS-1 protein. Hence, targeting the
IRS-1-30-untranslated region prevents the development of colon carcinoma cells. IMC-MDA was used
in this case study to forecast possible colon tumor-associated miRNAs. The results demonstrated that
dbDEMC and miR2Disease included 10 of the top 10 forecasted colon tumor-related miRNAs (see
Table 2).

According to research, approximately 3% of adult malignancies are kidney tumors, which are also
one of the most pervasive types of malignant tumors of the human genitourinary system. Each year,
there are more than 250,000 new instances of renal tumors that are diagnosed. Certain miRNAs may be
helpful in treating kidney tumors. For instance, miR-141 is expressed at a considerably lower level in
kidney tumor cells than in healthy human kidney cells. By implementing IMC-MDA, we demonstrated
potential kidney tumor-associated miRNAs. As a consequence, dbDEMC or miR2Disease confirmed
nine of the top 10 candidates for kidney tumor-associated miRNAs (see Table 2).

Lung cancer is one of the world’s most threatened human life cancers. Its cancer incidence and
mortality rate are among the highest for all cancers worldwide. Moreover, there is a clear upward trend
in many countries every year. Among them, the male mortality rate for lung cancer ranks first among
all cancers, and the female rank is also very high, ranking second. Previous studies have revealed that
lung cancer is firmly correlated with many miRNAs. Moreover, by means of biological experiments,
more than 120 relevant miRNAs have been identified. Through the IMC-MDA algorithm for those
miRNAs that are unknown but may be related to lung cancer, it can be clearly seen that PhenomiR
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and dbDEMC have identified all top 10 candidates (see Table 2); the results also fully confirm the
effectiveness of the IMC-MDA algorithm.

Table 2. Top 10 potential miRNA candidates detected by IMC-MDA based on the databases
for the three selected diseases.

Cancer No. of miRNAs confirmed
by the databases

Top 10 ranked predictions
Rank miRNAs Evidences

Conlon Neoplasms 10

1 hsa-mir-19b miR2Disease
2 hsa-mir-211b miR2Disease
3 hsa-mir-18a miR2Disease
4 hsa-mir-155 miR2Disease
5 hsa-mir-34a miR2Disease
6 hsa-mir-223 miR2Disease
7 hsa-mir-7e dbDEMC
8 hsa-mir-7d dbDEMC
9 hsa-mir-34b dbDEMC
10 hsa-mir-143 dbDEMC

Kidney Neoplasms 9

1 hsa-mir-23a dbDEMC
2 hsa-mir-7a miR2Disease
3 hsa-mir-145 dbDEMC
4 hsa-mir-19b miR2Disease
5 hsa-mir-20a miR2Disease
6 hsa-mir-17 dbDEMC
7 hsa-mir-200b dbDEMC
8 hsa-mir-7d Unconfirmed
9 hsa-mir-126 dbDEMC
10 hsa-mir-19a miR2Disease

Lung Neoplasms 10

1 hsa-mir-15a PhenomiR
2 hsa-mir-16 dbDEMC 2.0
3 hsa-mir-429 dbDEMC 2.0
4 hsa-mir-451a dbDEMC 2.0
5 hsa-mir-383 dbDEMC 2.0
6 hsa-mir-449a dbDEMC 2.0
7 hsa-mir-141 dbDEMC 2.0
8 hsa-mir-193b dbDEMC 2.0
9 hsa-mir-302d dbDEMC 2.0
10 hsa-mir-106b PhenomiR

4. Conclusions

A growing body of evidence suggests that miRNAs are crucial in the emergence of illnesses, partic-
ularly cancers. Identifying disease-related miRNAs helps us to comprehend how diseases are triggered
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as well as how to treat them.The use of network-based models and machine learning for forecasting
miRNA-disease connections is widespread, but localizations still remain.The difficulty of obtaining
negative training samples needs to be addressed, and the prediction accuracy has to be enhanced. In
order to address these issues, we have proposed an inductive matrix completion model which was
founded on the prediction of MiRNA-disease association (IMC-MDA). The IMC-MDA model com-
bines disease similarities and miRNA similarities with known disease-miRNA connections to obtain
a projected score for each miRNA-disease combination. We can clearly see that the IMC-MDA algo-
rithm has generated more accurate prediction results than the five most sophisticated approaches.

IMC-MDA, however, has certain drawbacks. First, the similarity measure in IMC-MDA might not
be the best one. We define miRNA similarity via disease and utilize disease semantic similarity. How-
ever, there exist some similarities. For instance, shared causative genes can characterize the similarity
of the diseases. This approach will eventually be strengthened by merging other miRNA similarities
and disease sources. Second, it is important to note that IMC-MDA only utilizes miRNAs and disease
information. Since miRNAs and diseases are linked to other molecular components, such as proteins,
miRNA and long non-coding RNA, to further enhance the prediction efficiency, it would be intriguing
to incorporate this additional information.
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