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Abstract: Several indoor positioning systems that utilize visible light communication (VLC) have 

recently been developed. Due to the simple implementation and high precision, most of these systems 

are dependent on received signal strength (RSS). The position of the receiver can be estimated 

according to the positioning principle of the RSS. To improve positioning precision, an indoor three-

dimensional (3D) visible light positioning (VLP) system with the Jaya algorithm is proposed. In 

contrast to other positioning algorithms, the Jaya algorithm has a simple structure with only one phase 

and achieves high accuracy without controlling the parameter settings. The simulation results show 

that an average error of 1.06 cm is achieved using the Jaya algorithm in 3D indoor positioning. The 

average errors of 3D positioning using the Harris Hawks optimization algorithm (HHO), ant colony 

algorithm with an area-based optimization model (ACO-ABOM), and modified artificial fish swam 

algorithm (MAFSA) are 2.21 cm, 1.86 cm and 1.56 cm, respectively. Furthermore, simulation 

experiments are performed in motion scenes, where a high-precision positioning error of 0.84 cm is 

achieved. The proposed algorithm is an efficient method for indoor localization and outperforms other 

indoor positioning algorithms. 

Keywords: indoor positioning system; received signal strength; visible light communication; Jaya 

algorithm; location accuracy 
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1. Introduction 

With the rapid development of wireless communication, the demand for location-based services 

(LBS) exhibited a significant growth trend [1,2]. In the positioning field, global positioning systems 

(GPSs) are extensively applied to outdoor positioning for high location precision and low cost. When 

a GPS is applied in the indoor environment, it has low accuracy owing to the severe attenuation of 

satellite signal strength [3]. To meet the increasing need for indoor positioning services, positioning 

systems with Bluetooth [4], wireless local area networks [5], and ultra-wide-band radio [6] 

technologies are used. These positioning systems are limited due to several factors, such as low 

accuracy, additional infrastructure, narrow tracking range, and low scalability. However, new indoor 

positioning systems with VLC have been proposed. VLC-based systems have the advantages of high 

precision, low cost, less additional equipment, and good security [7,8]. 

According to different receivers, indoor VLP systems could be classified into two types: image 

sensor-based (IS-based) [9] and photodiode-based (PD-based) [10]. The IS-based VLP systems require 

only a CMOS camera and use image processing technology to achieve highly accurate positioning. 

Guan et al. [11] presented a high-accuracy indoor robot VLP system, and the proposed system had a 

positioning accuracy within 1 cm and an average computational time of 0.08 s. Chen et al. [12] 

proposed a simultaneous localization and calibration VLP method based on double coplanar circular 

LED lights, and the proposed system on mobile devices obtained a mean positioning accuracy of 7.91 

cm and an average delay time of 0.182 s. 

The PD-based VLP systems employ several positioning algorithms to estimate the position of the 

PD, including RSS, angle of arrival (AOA), time difference of arrival (TDOA), and time of arrival 

(TOA) [13–15]. Due to the limited distances between the transmitters and the receivers and the high 

optical transmission rates, small-time errors can lead to large position estimation errors. Hence, TOA 

and TDOA technologies require the use of strictly synchronized clock cycles for all transmitters, which 

increases the complexity of the VLP system. Because of the camera’s limited field of view (FOV), 

AOA technology requires a very dense lighting grid, and this also increases the complexity and cost 

of the VLP system. In contrast, the indoor RSS-based VLP system easily estimates the location 

according to the RSS, resulting in a high-precision positioning. Consequently, several RSS-based VLP 

systems have been proposed [10,16,17]. 

The well-known intelligent optimization algorithms are efficient for solving nonlinear optimization 

problems. Several complex problems have been solved using intelligent algorithms [18–23]. However, 

the problem of indoor 3D positioning can be seen as a global optimization problem. Many researchers 

have presented several indoor VLP systems with intelligent optimization algorithms. Chen et al. [24] 

improved the genetic algorithm (GA) and used it for an indoor localization system. The results obtained 

using this algorithm show that it could effectively reduce location errors. Chen et al. [25] presented a 

hybrid bat algorithm and applied it to an indoor positioning system. The average location error of the 

positioning system was 1.16 cm. Li et al. [26] proposed a VLP method using the bat algorithm and 

achieved fast localization, but the positioning accuracy of the algorithm could be improved. Chen et 

al. [27] analyzed the effect of environmental interference and presented a modified particle swarm 

optimization algorithm, which was applied to an indoor VLP system. The location system obtained an 

average location error of 3.12 cm. Wu et al. [28] applied a differential evolution algorithm to an indoor 

VLP system. This system provided high-speed positioning with a location error as low as 0.69 cm. 

The aforementioned optimization algorithms in the PD-based VLP system could achieve high-
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accuracy, however, the algorithms require the execution of multiple phases and have a high level of 

complexity. 

Some RSS-based VLP systems that use artificial neural networks (ANNs) and intelligent 

algorithms have been presented in recent years. Guan et al. [29] utilized a modified GA and ANN for 

an indoor positioning system, and a location error of 1.02 cm was obtained. Mahmoud et al. [30] 

developed a multilayer perceptron neural network and used it for an indoor VLP system, which 

accurately estimated the location with an average error of 1.98 cm. This type of VLP system has a high 

positioning accuracy. However, it requires the use of data to train the network, which may require 

additional computational time. 

To solve these problems, an indoor high-precision VLP system based on the Jaya algorithm is 

presented. As a novel intelligent optimization algorithm, the Jaya algorithm performs using only 

common control parameters [31]. Due to the simple structure of the Jaya algorithm with only one stage, 

it is calculated in a short computational time and can be simply implemented for indoor positioning. 

The main contributions of this paper are as follows. 

1) The indoor visible positioning system model is described, the problem of position optimization 

estimation is explained, and the Jaya algorithm is used to address the problem. 

2) The positioning performance of the Jaya algorithm is validated with multipoint tests in 

stationary and motion scenes, and the positioning accuracy of the indoor VLP system has been 

effectively improved. 

This paper can be organized as follows. The indoor 3D positioning system model and the VLC 

channel model are presented in Section 2. The Jaya algorithm for 3D positioning is described in Section 

3. Section 4 describes the experimental simulations and analysis. Finally, Section 5 depicts the 

conclusions and future work. 

2. System model 
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Figure 1. Typical indoor VLP system model. 

The model of the VLP system for a typical indoor environment is illustrated in Figure 1. The 

system mainly consists of light-emitting diodes (LEDs) and a PD. Four LEDs are mounted on the 

ceiling of the room as signal generators and illumination source. Each LED has a unique ID 
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information that is closely related to the 3D coordinates, and the ID information is transmitted after 

modulation using the code division multiple access (CDMA) scheme [24]. As a receiver, the PD can 

receive signals from different LEDs and obtain ID information by demodulation. According to the 

RSS method, the distance between the receiver and the transmitter is calculated from the signal strength 

received, and the position of the PD is estimated [32]. 

The signal transmission path of the transmitter consists mainly of the line-of-sight (LOS) path 

and non-line-of-sight (NLOS) path in a VLC system [33,34]. The channel model of the VLC system 

is presented in Figure 2. It is deduced from [35] that the received power of the LOS path accounts for 

more than 95% of the total received power. Therefore, the influence of the directed light mainly 

determines the performance of the VLC system, and this study only considered the LOS path of the 

signal transmission. 
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Figure 2. Channel model of the VLC system. 

Due to the long distance transmission of light and the large beam divergence of the LEDs, the 

LEDs can be seen as Lambert radiation, and the direct current gain of the channel is calculated as [36] 
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where A  denotes the PD’s effective area,   denotes the angle of irradiance,   represents the 

angle of incidence, c  represents the FOV of the receiver, ( )sT   and ( )g   respectively represent 

the gain of the optical filter and the optical concentrator, d  denotes the distance between the LED 

and PD, and m  represents the Lambert parameter expressed as 

1/2log 2 / log(cos( ))m = − ,       (2) 
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where 1/2  is the half-power angle of the LED. 

Then, ( )g   can be computed as 
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where n  is the PD’s refractive index. 

Assuming that the transmitting signal power of the LED is defined as tP , and the receiving signal 

power of PD is given by 

(0)r t LOSP P H=  .          (4) 

The total noise variance of the location system 
2

noise is composed of the thermal noise variance

2

thermal , shot noise variance 
2

shot , and inter-symbol interference 
risiP . The total noise of the system is 

typically represented by an additive white Gaussian noise (AWGN) model [10]. The RSS of the PD is 

determined by the value of the signal-to-noise ratio (SNR), represented as [27]: 

2
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=

+

,       (5) 

where pR  represents the transformation efficiency. 

3. Jaya algorithm for 3D positioning 

According to the aforementioned system model, the high-precision indoor location problem is to 

search for the optimal position in an interior space. The Jaya algorithm as one of the intelligent 

optimization algorithms can be used for indoor positioning [37]. It has a simple structure with only 

one stage and is used in a variety of applications [31,38]. The specific stage of the Jaya algorithm can 

be expressed as Eq (6) [37]. 

, , 1 , , 2 , ,( ) ( )newi j i j best j i j worst j i jx x r x x r x x= +  − −  −
,       (6) 

where 
,newi jx  represents the new solution of 

,i jx ,
,i jx  denotes the j-th variable of the i-th candidate 

solution, 
,best jx  and 

,worst jx  are respectively the j-th variable of the best solution and the worst 

solution, ,i jx  represents the absolute value of 
,i jx , and 1r  and 2r  are random numbers that obey a 

normal distribution in the range [0,1]. The detail of the Jaya algorithm is presented in Figure 3. 
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Figure 3. Flowchart of the proposed algorithm. 

The detailed optimization procedure for indoor 3D positioning is described as follows: 

Step 1: Setting the parameters. 

The main parameters need to be set before the algorithm is executed. These parameters consist of 

the population size 
pN , variable dimension D , maximum number of iterations N , and search space 

[ , ] j jLb Ub . 

Step 2: Initialize the algorithm. 

A random position is given to each individual as PD’s initiation position. The location is limited 

by room size. The initial population 
,0iX  can be represented as  

,0 = ( ),  1,2,...i i i i pX Lb rand Ub Lb i N+  − =
.      (7) 

Step 3: Calculate the value of the fitness function of each individual. 

According to the indoor positioning system model, the fitness function is given by [39]. 

4
2

1

ˆ( , , ) ( )i i

r r

i

Fitness x y z P P
=

= −
,        (8) 
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where i

rP represents the RSS of the test point for the i-th LED, and ˆ i

rP denotes the RSS of the 

estimated point for the i-th LED. 

Through the calculation of the individual fitness function values, the positions that have the worst 

and best values are then selected. 

Step 4: Generating a new population. 

In this step, a new position is generated, denoted as 

, 1 , 1 , , 2 , ,( )  ( )i G i G i best i G i worst i GX X r X X r X X+ = +  − −  −
,      (9) 

where ,i GX , , 1i GX +  denote the position vectors in the current iteration and the next iteration, 

respectively. , 1i GX +  is the absolute value of ,i GX , ,i bestX represents the best solution in the current 

iteration, and ,i worstX  denotes the worst solution in the current iteration. 

In addition, the positioning algorithm is improved in the search for the optimal position. If the 

coordinate of the individual exceeds the range of the room, then the coordinate of this individual 

position is moved to the room boundary. 

Step 5: The algorithm iteration termination criteria. 

The algorithm is terminated iteratively when the maximum number of iterations is N , and the 

global optimal solution bestX  is obtained. Otherwise, the algorithm continues to search for the best 

solution using steps 3 and 4. 

4. Simulation results and analysis 

4.1. The simulation model setup 

Table 1. Main parameters of the indoor VLP system. 

Parameter Value 

Transmitter power of the LED, tP  2.2 W 

Coordinates of the four LEDs [5,0,6] , [0,0,6] , [0,5,6] , [5,5,6]  

Effective area of the PD, A  1 cm2 

Half-power angle of the LED, 1/2  60° 

FOV of the PD, c  90° 

Refractive index, n  1.5 

Conversion efficiency of the PD, pR  0.5 A/W 

SNR of the positioning system, SNR 45dB 

Population size, pN  50 

Variable dimension, D  3 

Max iteration number, N  100 
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To verify the localization capability of the proposed algorithm, simulation experiments are 

performed in an indoor environment as shown in Figure 1, and the size of the room is 5 m × 5 m × 

6 m. As signal generators, four LEDs are installed on the top of the room. Each LED transmits the 

encoding information based on CDMA modulation, which is subsequently received by the PD. The 

main parameters are set as displayed in Table 1. The simulations are performed with MATLAB on a 

computer (AMD Ryzen 5 @ 3 GHz, 16 GB of RAM, Windows 10). 

4.2. Results and discussions 

  

    (a)                            (b)                               (c) 

 

          (d)                                 (e)     

Figure 4. Iterative search process of the Jaya algorithm. 
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Figure 5. Convergence of the fitness values of the Jaya, HHO, ACO-ABOM and MAFSA 

algorithms. 

The simulations are performed for a single point (1.5, 1.5, 1.5) (m) to validate the effectiveness 

of the Jaya algorithm. The convergence process of the algorithm is shown in Figures 4(a)–(e), where 

the blue cross represents the scattered individuals of the Jaya algorithm and the red dot represents the 

test point. In the initialization step of the algorithm, 50 individuals are randomly distributed in the 

space, many individuals moved toward the test point with increasing iteration number, and after 70 

iterations all the scattered individuals concentrate at the test point. The final estimated position for this 

optimization is (1.4964, 1.5064, 1.5074) (m), the fitness function value is 1.3434 × 10−9, and the 

estimation error of 3D positioning is 1.05 cm. 

Next, Harris Hawks optimization (HHO) algorithm [40], ant colony algorithm with an ACO-

ABOM [41] and modified artificial fish swam algorithm (MAFSA) [42] are simulated to validate the 

superior property of the Jaya algorithm. The simulation experiments are implemented in the same 

simulation environment for the above-mentioned algorithms. Figure 5 shows the convergence curves 

of the Jaya, HHO, ACO-ABOM and MAFSA algorithms. From Figure 5, the Jaya algorithm achieves a 

higher solution accuracy than the HHO, ACO-ABOM and MAFSA algorithms. 

To demonstrate the capability of the proposed algorithm for multiple points, the test positions are 

placed at different heights (1.0, 2.0 and 3.0 m), while 361 test points are produced at each height. The 

cumulative distribution function (CDF) of the localization error is employed to represent the 

optimization performance of the algorithm. 

With the Jaya optimization iterations, high-accuracy position estimation can be obtained for each 

test point. The intelligent algorithm search iterations are randomized, which can lead to large errors. 

To reduce the estimation error, for each test point, the algorithm is independently run 30 times and the 

best position is chosen from the run results. Figures 6(a)–(e) indicate the location of the test and 

estimation points at different heights. From Figures 6(a)–(c), the “×” symbol represents the test 

positions and the “△” symbol denotes the estimated positions. It can be seen that the estimated 

positions have a small estimation error with the test positions, which demonstrates the accuracy of 

visible light localization. 
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Figures 6(d),(e) show the histograms of the positioning errors and the CDF curves for all the test 

points, respectively. As shown in Figure 6(d), the average error of 3D positioning is 1.06 cm. In 

addition, it can be observed from Figure 6(e), if 95% is an acceptable coverage rate for location 

services, the 3D, horizontal, and vertical positioning errors of the Jaya are less than 2.308 cm, 1.806 

cm and 1.895 cm, respectively. 

 
(a)                                     (b)  

 
(b)                                         (d)  

 
(e) 

Figure 6. The test position and its estimated position. (a) Representation of test position 

and its estimated position (z = 1 m). (b) Representation of test position and its estimated 

position (z = 2 m). (c) Representation of test position and its estimated position (z = 3 m). 

(d) Histograms of the location errors. (e) CDF curves of the location error. 
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The HHO, ACO-ABOM and MAFSA algorithms are simulated with multiple points to further 

validate the efficiency of the Jaya algorithm. The positioning results of different algorithms are listed 

in Table 2. The histograms of positioning error and the CDF curves obtained with the Jaya, HHO, 

ACO-ABOM and MAFSA algorithms are shown in Figures 7 and 8, respectively. From Table 2, the 

average error of 3D positioning with the Jaya, HHO, ACO-ABOM, and MAFSA algorithms are 1.06 

cm, 2.21 cm, 1.86 cm and 1.56 cm, respectively. The average localization times of the Jaya, HHO, 

ACO-ABOM, and MAFSA algorithms are 0.52 s, 1.08 s, 0.78 s and 0.92 s, respectively. From Figure 

7, the positioning error of the Jaya is better than the HHO, ACO-ABOM and MAFSA algorithms. It 

can be observed from Figure 8 that, if 95% is an acceptable coverage rate for location services, the 

errors of 3D positioning using the Jaya, HHO, ACO-ABOM, and MAFSA algorithms are less than 

2.308 cm, 5.321 cm, 3.405 cm and 2.918 cm, respectively. The simulation results indicate that the Jaya 

algorithm highly outperforms the HHO, ACO-ABOM and MAFSA algorithms. 

Table 2. Positioning results of different algorithms. 

Algorithm Average positioning 

error 

Maximum 

positioning error 

Minimum 

positioning error 

Average positioning 

time 

Jaya 1.06 cm 4.75 cm 0.11 cm 0.52 s 

HHO 2.21 cm 12.53 cm 0.22 cm 1.08 s 

ACO-ABOM 1.86 cm 5.80 cm 0.13 cm 0.78 s 

MAFSA 1.56 cm 5.50 cm 0.15 cm 0.92 s 

 

Figure 7. Histograms of the positioning errors of the Jaya, HHO, ACO-ABOM, and 

MAFSA algorithms. 
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Figure 8. Cumulative distribution curves of the Jaya, HHO, ACO-ABOM, and MAFSA algorithms. 

4.3. Extended result analysis 

A simulation of trajectory tracking is performed to assess the effectiveness of the Jaya algorithm 

in motion scenes. In this simulation, it is assumed that the target object moves in a 3D room to generate 

a spiral path and 315 points are considered as test points on the path. 

The location results of the Jaya algorithm in motion scenes are shown in Figures 9(a)–(e). In 

Figures 9(a)–(c), the blue line indicates the real movement path of the PD, and the red dots represent 

the estimated positions. The results of 3D, horizontal, and vertical positioning show that the estimated 

locations have a small estimation error with the true path. As shown in Figure 9(d), the average error 

of 3D location is 0.84 cm, the vertical location error is 0.68 cm, and the horizontal location error is 

0.67 cm. Finally, it can be seen from Figure 9(e), if 95% is an acceptable coverage rate for location 

services, the 3D, vertical, and horizontal location errors of the Jaya algorithm are less than 1.463 cm, 

1.338 cm and 1.315 cm, respectively. 

The simulation of the HHO, ACO-ABOM and MAFSA algorithms are conducted in motion 

scenes. The positioning results of different algorithms are displayed in Table 3. The histograms of 

positioning error and the CDF curves are displayed in Figures 10 and 11, respectively. From Table 3, 

the average errors of 3D positioning with the Jaya, HHO, ACO-ABOM, and MAFSA algorithms are 

0.84 cm, 1.28 cm, 1.33 cm and 1.21 cm, respectively. The average positioning times of the Jaya, HHO, 

ACO-ABOM, and MAFSA algorithms are 0.44 s, 0.95 s, 0.69 s and 0.85 s, respectively. From Figure 

10, the positioning error of the Jaya algorithm is obviously superior to the HHO, ACO-ABOM, and 

MAFSA algorithms. As shown in Figure 11, if 95% coverage is considered acceptable for location 

services, the average errors of 3D positioning using the Jaya, HHO, ACO-ABOM, and MAFSA 

algorithms are less than 1.463 cm, 2.320 cm, 2.489 cm and 2.236 cm, respectively. As a result, the 

Jaya algorithm has a lower average localization error than the HHO, ACO-ABOM and MAFSA 

algorithms. The positioning time of the Jaya algorithm is less than those of the HHO, ACO-ABOM, 

and MAFSA algorithms. The simulation results also validate the Jaya algorithm’s superiority 

performance in motion scenarios. 
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(a) The results of 3D location.            (b) The results of vertical location. 

  

(c) The results of horizontal positioning.       (d) Histograms of location error. 

 
(e) CDF curves of location error. 

Figure 9. Positioning results in motion scenes. 
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Table 3. Positioning results of different algorithms in motion scenes. 

Algorithm Average 

positioning error  

Maximum 

positioning error 

Minimum positioning 

error 

Average 

positioning time 

Jaya 0.84 cm 4.75 cm 0.01 cm 0.44 s 

HHO 1.28 cm 3.42 cm 0.21 cm 0.95 s 

ACO-ABOM 1.33 cm 3.32 cm 0.12 cm 0.69 s 

MAFSA 1.21 cm 4.25 cm 0.18 cm 0.85 s 

 

Figure 10. Histograms of the positioning errors of different algorithms in motion scenes. 

 

Figure 11. Cumulative distribution curves of different algorithms in motion scenes. 
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5. Conclusions 

This study presented an indoor VLP system with the Jaya algorithm, which effectively improves 

positioning accuracy. The Jaya algorithm has a simple structure with only one stage, and the 3D 

positioning problem can be solved by the Jaya algorithm according to the positioning principle of RSS. 

The effectiveness of the algorithm is verified with a multipoint test in stationary scenes. The simulation 

results indicated that the Jaya algorithm has better localization accuracy and positioning time compared 

with the HHO, ACO-ABOM and MAFSA algorithms. Furthermore, simulation experiments are 

performed in motion scenes, and the Jaya algorithm also obtained good positioning accuracy. The 

proposed method efficiently improves the positioning accuracy of indoor VLP systems and has broad 

application prospects. 

In future work, we will optimize the performance of the proposed algorithm and demonstrate the 

localization performance using a realistic VLP system with a robotic platform. 
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