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Abstract: COVID-19 has been spreading widely since January 2020, prompting the implementation
of non-pharmaceutical interventions and vaccinations to prevent overwhelming the healthcare system.
Our study models four waves of the epidemic in Munich over two years using a deterministic, biology-
based mathematical model of SEIR type that incorporates both non-pharmaceutical interventions and
vaccinations. We analyzed incidence and hospitalization data from Munich hospitals and used a two-
step approach to fit the model parameters: first, we modeled incidence without hospitalization, and
then we extended the model to include hospitalization compartments using the previous estimates
as a starting point. For the first two waves, changes in key parameters, such as contact reduction
and increasing vaccinations, were enough to represent the data. For wave three, the introduction of
vaccination compartments was essential. In wave four, reducing contacts and increasing vaccinations
were critical parameters for controlling infections. The importance of hospitalization data was
highlighted, as it should have been included as a crucial parameter from the outset, along with
incidence, to avoid miscommunication with the public. The emergence of milder variants like Omicron
and a significant proportion of vaccinated people has made this fact even more evident.
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1. Introduction

In December 2019, some local health workers in Wuhan city (Hubei region, China) reported cases
of pneumonia-like symptoms with an unknown cause. On February 11, 2020, the disease was
officially named the coronavirus disease 2019 (COVID-19), and its cause was determined to be the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1]. Following more than 118,000
confirmed COVID-19 cases in 114 countries and 4,291 deaths, the World Health Organization
declared COVID-19 as a pandemic on March 11, 2020 [2]. Since then, there have been outbreaks
worldwide with approximately 603 million confirmed cases and over 6.4 million deaths as of
September 2022 [3].

The first cases of COVID-19 were detected in Germany’s Munich municipality in late January
2020, and, due to the virus’ high contagion rate, the number of cases rapidly increased [4]. To prevent
the collapse of the healthcare system, the government quickly implemented non-pharmaceutical
interventions, such as social distancing, face mask wearing, isolation of infected individuals,
nationwide lockdowns and contact tracing, to slow down and control the virus’ spread [1, 5]. In
addition, vaccines against SARS-CoV-2 were promptly developed, and they have been available in
Germany since December 26, 2020 [6]. All vaccines licensed in Germany have been observed to offer
a high level of protection against severe cases of the disease [7].

Depending on the severity of symptoms, individuals infected with SARS-CoV-2 can be classified
as follows [8]:

• mild,
• moderate (no or mild pneumonia, no or mild upper respiratory infection combined with febrile

illness, dry cough and sore throat),
• severe with hospitalization (dyspnea, respiratory rate ≥ 30/min, blood oxygen saturation ≤ 93%

and/or pulmonary infiltrates > 50%) and
• critical with hospitalization (respiratory insufficiency, septic shock due to bacterial

superinfections, multiple organ dysfunction or failure, death).

In the first 20 weeks of the outbreak, the Robert Koch Institute (RKI) categorized about 80% of
infections as mild or moderate, 18% as severe and the remaining 2% as critical [1, 8]. This resulted
in a hospitalization rate of 20%. This value was significantly higher than the hospitalization rate of
the flu in 2018–2019 (which was only 1.31%) and demonstrated the potential for a collapse of the
healthcare system without intervention [9]. To manage the number of hospitalized cases, the daily
number of new cases and the 7-day incidence became critical indicators [10]. However, the relationship
between incidence and hospitalization changes depending on the virus variant, making it an unreliable
indicator [10]. Due to this variability and the emergence of the Omicron variant, the focus has now
shifted to the hospitalization rate [10].

Biology-based mathematical models can be used to contain the pandemic by predicting its spread.
Linking such models with data is crucial for making informed decisions about public health, as
evidenced by efforts to estimate the number of asymptomatic HIV infections and the impact of SARS
and influenza outbreaks [11, 12]. With the ongoing COVID-19 pandemic, many researchers are fitting
models to data to analyze the effects of government interventions such as contact restrictions, face
mask usage and isolation of infected individuals. For instance, Chumachenko et al. [13] used machine
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learning methods to predict COVID-19 incidence in multiple countries, while Ying and O’Clery [14]
developed an agent-based model to study the spread of infection in a supermarket. Other researchers
used relatively simple deterministic models composed of four or fewer compartments to analyze the
spatial spread of COVID-19 [15–17], while Okuonghae and Omame [18] incorporated face mask
usage and social distancing into their non-linear models of the SARS-CoV-2 epidemic in Nigeria.
Barbarossa et al. [19] extended a deterministic model of SEIR type to simulate the effects of
non-pharmaceutical interventions on the COVID-19 outbreak in Germany, and different strategies for
mitigating the outbreak were explored.

In this study, we utilized a mathematical model of deterministic differential equations to simulate
the spread of COVID-19 in Munich’s population from January 2020 for over two years, encompassing
four waves of the epidemic. Our approach focused on a biology-based method that mimicked the actual
contribution of individuals in various compartments of an extended SEIR model, incorporating non-
pharmaceutical interventions and, later, vaccinations. The transmission rates and reproduction number
are proportional to the number of infectious contacts, which were reduced by the non-pharmaceutical
measures. Our model is unique in that it captured the effects of these measures and quantified them
not only between waves, but also within the same wave. Another distinctive aspect of our analysis
is the inclusion of the number of patients in the intensive care unit (ICU) and normal hospital ward
of Munich’s hospitals. We fitted the model’s parameters in a two-step process to prevent overfitting
and increase stability in the model fitting. First, we fitted a model without hospitalization solely to
the incidence data. Second, we extended the model with hospitalization compartments, using the
parameters obtained from the first fit as given parameters to support the remaining hospitalization
parameters’ fit.

The emphasis in previous COVID-19 management strategies has been on tracking the number of
cases, rather than focusing on the more critical issue of hospitalization. Our analysis shows that, from
the outset of the pandemic, it was possible to simulate hospitalization data as a primary metric
alongside case incidence. By doing so, we could have avoided confusion among the public and
provided a clearer picture of the pandemic’s status. This approach is especially important when
dealing with milder variants like Omicron, in conjunction with a significant percentage of
vaccinated individuals.

It is widely recognized that the number of infectious contacts is directly proportional to transmission
rates and reproduction numbers. As a result, implementing non-pharmaceutical interventions reduces
the number of contacts, which is reflected in Eqs (2.1) through (2.6) in the article. This quantification
is a crucial aspect of our paper’s development.

2. Materials and method

2.1. Prevalence data on daily detected COVID-19 cases

To gain an understanding of the pandemic situation, the daily number of COVID-19 infections can
be used as one of multiple indicators. The RKI provides the 7-day incidence, which represents
the number of new cases reported in the past 7 days per 100,000 inhabitants, and it is used to guide
certain measures like the emergency brake [10]. The RKI platform offers the number of daily detected
COVID-19 infections in Munich, starting from the first observed case on January 29, 2021. Figure 1
displays the occurrence of three main waves in Munich until the end of June, with varying (non-)
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pharmaceutical interventions and hygiene awareness among the population influencing the
pandemic’s progression. Consequently, time-dependent model parameters were utilized not just for
the three waves, but also for each wave individually (Table 1).

Table 1. Interventions during the first [20], second [21–23], third [24–26] and beginning of
the fourth wave of COVID-19 in Munich. For each wave the first day is considered as day 0.

Intervention Time interval Time interval Contact Transmission Transmission

(date) (days) rate probability rate

First wave 2020/01/29–2020/06/15 day 0–138

No interventions 2020/01/29–2020/03/21 day 0–52 c0 p0 β0

Lockdown 2020/03/22–2020/04/19 day 53–81 0.37c0 0.3p0 0.1 · β0

Contact 2020/04/20–2020/06/15 day 82–138 0.5c0 0.3p0 0.15 · β0

interventions

Second wave 2020/06/15–2021/02/15 day 138–383

Contact 2020/06/15–2020/11/01 day 0–139 0.6c0 p · p0 0.6 · pβ0

interventions

Lockdown light 2020/11/02–2020/12/15 day 140–183 0.57c0 p · p0 0.57pβ0

Lockdown 2020/12/16–2021/01/18 day 184–217 c3c0 p · p0 c3 pβ0

FFP2 masks 2021/01/19–2020/02/15 day 218–245 c4c0 p4 · p0 c4 p4β0

Third wave 2021/02/15–2021/06/30 day 383–518

Lockdown 2021/02/15–2021/04/13 day 0–57 0.35c0 p · p0 0.35pβ0

Emergency brake 2021/04/14–2021/05/10 day 58–84 c2c0 p · p0 c2 pβ0

Relaxations 2021/05/11–2021/06/06 day 85–111 c3c0 p · p0 c3 pβ0

Opening 2021/06/07–2021/06/30 day 112–135 0.55c0 p · p0 0.55pβ0

Fourth wave 2021/06/30–2021/10/15 day 518–626 β
f ourth
0 = 1.6βthird

0

Relaxations 2021/06/30 – 2021/07/31 day 0–31 0.6 p · p0 0.6pβ f ourth
0

More relaxations 2021/08/01–2021/09/30 day 32–92 c2 p · p0 c2 pβ f ourth
0

More relaxations 2021/10/01–2021/10/16 day 93–108 c3 p · p0 c3 pβ f ourth
0
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Figure 1. Data description and model results. Detected COVID-19 cases in Munich reported
by the RKI [4]: (A) daily and (B) cumulative. Hospitalized COVID-19 cases in Munich for
the normal ward (NW) stations (C) and ICUs (D). The solid black lines denote the results
of the (A) and (B) preferred model and (C) and (D) hospitalization model. For the first and
second waves, no vaccination compartments were needed.

2.1.1. First wave

In Munich, the first wave of COVID-19 occurred from late January to mid-June (refer to Figure 1).
Three main interventions were implemented to prevent the spread of the disease:

1) no measures or, at least, no heavy measures were taken;

2) a lockdown was imposed throughout Munich;

3) the lockdown was lifted, but with severe contact reductions still in place (refer to Table 1).

To model the impact of these interventions, the time-dependent contact c(t) and transmission
probability p(t) rates were utilized. During the lockdown period, a 63% reduction in contacts
compared to normal was assumed, whereas the reduction during the lifting was around 50% [27].
Additionally, it was assumed that the population had greater awareness of hygiene, mask wearing, and
social distancing during and after the lockdown, leading to an approximate 70% reduction in the
transmission probability during contact [28]. This resulted in the following contact rate c(t) and
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transmission probability p(t):

c(t) =


c0 if t ≤ 52
0.37c0 if 53 ≤ t ≤ 81
0.5c0 if 82 ≤ t ≤ 138

, p(t) =


p0 if t ≤ 52
0.3p0 if 53 ≤ t ≤ 81
0.3p0 if 82 ≤ t ≤ 138,

(2.1)

where c0 is the normal average contact rate and p0 is the normal average transmission probability when
no interventions are taken. With this it follows that the transmission rate β(t) = c(t) · p(t) is also
time-dependent

β(t) = c(t)p(t) ≈


β0 if t ≤ 52,
0.1β0 if 53 ≤ t ≤ 81,
0.15β0 if 82 ≤ t ≤ 138,

(2.2)

where β0 = c0 p0 is the normal average transmission rate without interventions.

2.1.2. Second wave

The time frame of the second wave of COVID-19 in Munich was from June 15th, 2020 to February
15th, 2021. Similar to the first wave, the second wave was split into distinct phases aligned with efforts
to curb the spread of the disease (refer to Table 1). The initial intervention phase, spanning from June
to October, resulted in a contact reduction of roughly 40%, while the subsequent ”lockdown light”
period saw a contact reduction of about 43% [27].

The contact reduction for the subsequent lockdown was also fitted. During the final intervention
period, an FFP2 mask requirement was introduced in addition to the lockdown, which decreased the
probability of transmission upon contact. The transmission probability only changed during the last
intervention period and was also fitted. Therefore, the transmission rate for asymptomatic infected
individuals is given by

βa(t) ≈


0.6pβ0 if t ≤ 139,
0.57pβ0 if 140 ≤ t ≤ 183,
c3 pβ0 if 184 ≤ t ≤ 217,
c4 p4β0 if 218 ≤ t ≤ 245,

(2.3)

where c3 and c4 are the fitted reductions of the transmission rate for the third and fourth intervention
periods, respectively. In addition, the fitted reduction in transmission probability is described by p
during the first three intervention periods, while p4 describes the additional reduction of the
transmission probability due to wearing the FFP2 masks. During the second wave, the test capacity
increased and more infected individuals without symptoms were tested because of contact tracing.

2.1.3. Third wave

Between February 15, 2021 and June 30, 2021, Munich experienced its third wave of COVID-19
infections as shown in Figure 1. During this period, the lockdown measures from the previous wave
remained in effect and were strengthened with an “emergency brake” beginning in mid-April. These
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new measures included stricter contact reduction, a nighttime curfew and the closure of many stores,
as summarized in Table 1 [24]. The contact reduction during the lockdown was assumed to be
around 65%, while the contact rate during the ”emergency brake” and relaxation period was fitted to
the data. For the opening period, the contact rate was assumed to be similar to the beginning of the
second wave. Consequently, the transmission rate is given by

βa(t) ≈


0.35pβ0 if t ≤ 57,
c2 pβ0 if 58 ≤ t ≤ 84,
c3 pβ0 if 85 ≤ t ≤ 111,
0.55pβ0 if 112 ≤ t ≤ 135.

(2.4)

New variants of the SARS-CoV-2 virus were detected in the first half of 2021, including the B.1.1.7
variant, also known as Alpha, which became the predominant strain in many countries during this
time including Germany [29]. As of early March, the B.1.1.7 variant has accounted for over 40% of
positive cases in Germany, with this proportion continuing to rise each week [30]. The B.1.1.7 variant is
believed to have increased transmissibility, resulting in a higher transmission rate β0 [31]. Meanwhile,
in Germany, the vaccination campaign started in December 2020, and, by early June 2021, around 40%
of Munich’s population had received their first dose of the vaccine, while about 20% had received the
second dose [32]. To ensure an adequate simulation of the third wave, this vaccination aspect is also
taken into account in the model’s structure.

2.1.4. Beginning of the fourth wave with further prediction

On June 30, 2021, Munich entered its fourth wave of the pandemic, despite various interventions
and progress in vaccination having broken the third wave in spring of 2021. While 50% of Munich’s
population had received at least one vaccine dose and 36% had been fully vaccinated by the end of
June 2021, the number of cases rose again. The Delta variant of SARS-CoV-2, which is
approximately 60% more transmissible than the Alpha variant, became increasingly prevalent in
Germany during the end of the third wave and the beginning of the fourth wave. By mid-July 2021,
the Delta variant accounted for 74% of all cases in Germany [30]. To estimate the transmission rate
during the fourth wave, the fitted transmission rate during the third wave for the Alpha variant (β0)
was used as a baseline, as it was the dominant strain at the time:

β
f ourth
0 = 1.6 · βthird

0 . (2.5)

During July 2021, there were additional measures taken to ease COVID-19 restrictions, including
increased capacity at outdoor and cultural events, extended hours for restaurants, relaxed mask rules
and the reopening of bar interiors, as shown in Table 1 [33–35]. Contact reduction during July 2021
was assumed to be similar to that of the previous summer. For the intervention period from August
to September 2021, the contact reduction was estimated. In October 2021, further relaxations were
implemented, such as the reopening of clubs in Munich [36]. The contact reduction for October was
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also estimated. These measures resulted in an average transmission rate for asymptomatic individuals:

β f ourth
a (t) =


0.6pβ f ourth

0 if 0 ≤ t ≤ 31,
c2 pβ f ourth

0 if 32 ≤ t ≤ 93,
c3 pβ f ourth

0 if 94 ≤ t ≤ 109.

(2.6)

According to [33], it has been demonstrated that all vaccines authorized in Germany provide lower
protection against the Delta variant, especially in individuals who have only received one dose. As a
result, a vaccine ineffectiveness factor σ has been introduced, which depends on the time elapsed since
the first dose. The fourth wave was considered to be dominated by the Delta variant approximately one
week after it began; σ is hence defined by

σ(t) =

σalpha if 0 ≤ t ≤ 7,
σdelta if 8 ≤ t,

(2.7)

where σalpha = 0.25 is the vaccine inefficacy after the first dose against infection with the Alpha variant
and σdelta is the fitted vaccine inefficacy after the first dose against infection with the Delta variant.

The parameters for predicting the number of new COVID-19 cases were fitted by using data from
the first few months of the fourth wave, up until October 15, 2021. To make predictions for future
periods, various scenarios were considered. These include an optimal scenario, where vaccination
rates and contact rates remain constant from October 15, 2021, a severe scenario where vaccination
rates decrease while contact rates increase and an extreme scenario where vaccination is completely
stopped and contact rates increase rapidly.

2.2. Number of COVID-19 hospitalized patients: IVENA software

The crucial indicators for determining the severity of the pandemic are the number of hospitalized
patients and those requiring intensive care (IC), as stated in [10]. Maintaining control over these
numbers is essential in making decisions regarding potential interventions.

A web-based software called Interdisciplinary Evidence of Care (IVENA) is utilized to facilitate
the exchange of information among emergency departments, ambulance services and clinics. This
tool aids in optimizing the allocation of resources and patient management, and it also reports on the
number of COVID-19 patients in normal wards and ICUs across Munich hospitals, as cited in [37].

However, in the IVENA dataset, some days in October and November 2021 were missing data on
the number of patients in normal wards or ICUs in Munich hospitals. To fill these gaps, alternative data
sources were used, as referenced in [32].

2.3. Biology-based deterministic models: Considering different types of infectious individuals

The analysis uses models based on the SEIR theory, which assumes that susceptible individuals (S)
can become infected through contact with infected individuals (I) [12]. After infection, individuals
move from the susceptible class to the exposed class (E), where they are asymptomatic and not
infectious. Infected individuals then move to the infectious class (I) and eventually recover (R) [38].
A more detailed description of the SEIR model is available in the Supplemental Material.
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(a)

(b)

Figure 2. Schematic description of the applied models: (A) the preferred model and (B) the
hospitalization model, both with vaccination expansion.
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The top of Figure 2 is an extension of the SEIR model, with the infectious class (I) split into
asymptomatic infected individuals (Ia), presymptomatic infected individuals (I p), symptomatic
infected individuals (I s) and detected individuals (P). After infection, individuals move to the exposed
class E, where they are asymptomatic and not infectious. Exposed individuals can hence develop
symptoms with rate ρ, moving first to the presymptomatic class I p, then to the symptomatic class I s

and finally to the detected class P with rate η1. Exposed people staying asymptomatic
(probability 1 − ρ) move directly to the detected class (P) with rate η0. Individuals in the
asymptomatic, presymptomatic, symptomatic and detected classes spend an average time of 1

γa
, 1
γp

, 1
γs

and 1
γpos

, respectively, before recovering (R from detected and Ru for undetected cases) and becoming
immune to reinfection. Individuals who die (D) from COVID-19 are removed from the population. In
Germany, it is very likely that a critical infection will be detected. Therefore, we assume that infected
individuals who have not been diagnosed with COVID-19 are unlikely to die due to the disease. The
case fatality ratio (CFR) of detected infections δ was calculated with the help of the RKI data [4]. The
transmission rates for asymptomatic, presymptomatic, symptomatic and detected individuals are βa,
βp, βs and βpos, respectively. We assume that asymptomatic and presymptomatic infected individuals
do not restrict their contacts to others and therefore have higher transmission rates than symptomatic
and detected infective people. Vaccination is assumed to be given only to susceptible individuals (S )
at a rate of v1, who then move to compartment V1. After the first dose, individuals have approximately
75% protection against infection with SARS-CoV-2, as defined by (1 − σ) [39]. After the second
dose, individuals move to compartment V2 at a rate of v2. Fully vaccinated individuals are assumed to
be protected against infection, and the time lag of two weeks after the second dose needed to build up
immunity is neglected for simplicity.

The preferred model is presented in Figure 2 (top), and it is described by the following system of
differential equations:

Ṡ = −λS − v1S ,

Ė = λS + σλV1 − γeE,

V̇1 = v1S − σλV1 − v2V1,

V̇2 = v2V1,

İa = (1 − ρ)γeE − γaIa,

İ p = ργeE − γpI p, (2.8)
İ s = (1 − η0)γpI p − γsI s,

Ṗ = η0γaIa + η0γpI p + η1γsI s − γposP,

Ṙ = (1 − δ)γposP,

Ḋ = δγposP,

Ṙu = (1 − η1)γsI s + (1 − η0)γaIa,
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where λ(t) = βaIa+βpIp+βsI s+βposP
N−D is the force of infection and N the total population size. For this model

we assume that the transmission rate of asymptomatic infectious individuals βa is time-dependent (see
Chapters 2.1.1–2.1.4). Consequently, it follows that the other transmission rates, βp, βs and βpos, are
also time-dependent. To model the epidemic already since the first days cases were tested, as initial
values for the preferred model, we used S (0) = N − 2, E(0) = V1(0) = V2(0) = Ia(0) = I p(0) =
R(0) = D(0) = Ru(0) = 0 and I s(0) = P(0) = 1. The whole population is susceptible, except for
two people: one is a detected individual and the other a symptomatic detected individual. All other
compartments are empty. For waves 1 and 2, the initial conditions for the vaccination compartments
were V1(0) = V2(0) = 0 (no vaccination available, so compartments are empty), while for wave 4,
V1(0) = 25000 and V2(0) = 15000 (vaccination campaign started fully working). For time intervals
without a vaccination campaign, we set the rate v1 = 0, keeping the compartment empty until the start
of vaccination. To compare the model results with the RKI data, the newly detected infections d̂(t)
at day t need to be defined. At the starting point, the number of daily detected cases corresponds to
the number of detected individuals at day 0: P(0). For any further time point t > 0, our approach
was as follows:

• The population N is constant, including deaths D if included in the model: N(t) − N(t + 1) = 0;
• The newly detected cases on day t, d̂(t), correspond only to the individuals who leave

compartment S at that day, S (t) and not of interest are all other “internal changes” between
different compartments. To calculate this in formula, it is the individuals in S on that day t, S (t),
minus the individuals in S the next day, S (t + 1): S (t) − S (t + 1) = d̂(t);
• In an extended SIR-model, the individuals leaving S can go to more compartments than only I. In

our specific case, they can go to the compartments of detected individuals (P), to dead individuals
(D) and to recovered individuals (R). Therefore, for out model, the total population corresponds
to N = S + P + D + R, or S = N − P − D − R;
• Looking at individuals leaving compartment S , this can be formulated as follows: d̂(t) = S (t) −

S (t + 1) = N(t) − N(t + 1) − P(t) + P(t + 1) − D(t) + D(t + 1) − R(t) + R(t + 1);
• Remembering that we assume a constant population N(t)-N(t+1) = 0, this leads to d̂(t) = S (t) −

S (t + 1) = P(t + 1) − P(t) + D(t + 1) − D(t) + R(t + 1) − R(t).

The formula can be interpreted as follows: the daily detected cases in the RKI data can be located
to different compartments in the model. They can be just “detected individuals” by polymerase chain
reaction (PCR) or later on by rapid testing. They could be detected after death, which really happened
in the first two waves since the laboratories were struggling with test capacities. Or, they could be
detected at recovery. The daily detected cases d̂(t) at day t are hence calculated by the
following formula:

d̂(t) =

P(0) if t = 0,
[P(t + 1) − P(t)] + [D(t + 1) − D(t)] + [R(t + 1) − R(t)] if t > 0.

Parameter assumptions are given in Tables 2 and 3.
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Table 2. Parameters of the preferred model for wave one and two without hospitalization
compartments. Short forms: CFR, mean duration (MD).

Parameter Description Value (unit) [Refs.]
First wave
β0 Init. transm. rate of asympt. I 0.66 1

d·individual [fitted]
βp Transm. rate of presympt. I βa [assumed]
βs Transm. rate of symptomatic I 0.6βa [assumed]
βpos Transm. rate of detected I 0.1βa [assumed]
1
γe

Mean latent period 5.5 d [38, 40]
1
γa

MD of asympt. infection 6 d [assumed]
1
γp

MD of presympt. infection 2 d [38]
1
γs

MD of sympt. infection 7 d [assumed]
1
γpos

MD of infection 6 d [fitted]
ρ Prob. of developing symptoms 0.69 [41]
η0 Prob. of detection while asympt. 0.07 [assumed]
η1 Prob. of detection while sympt. 0.56 [fitted]
δ CFR of detected infections 0.033 [4]
v1 Vacc. rate first dose 0
v2 Vacc. rate second dose 0
N Tot. population size 1,484 million [42]
Second wave (new parameters)
pβ0 Init. transm. rate of asympt. I 0.37 1

d·individual [fitted]
with reduction in transm. prob.

c3 Reduction in contact rate 0.27 [fitted]
(third intervention period)

c4 p4 Reduction in transm. rate 0.24 [fitted]
(fourth intervention period)

η0 Prob. of detection while asympt. 0.15 [assumed]
η1 Prob. of detection while sympt. 0.85 [assumed]
δ CFR of detected infections 0.019 [4]
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Table 3. Parameters of the preferred model for waves three and four with vaccination
compartments. Short forms: CFR.

Parameter Description Value (unit) [Refs.]
Third wave (new parameters)
pβ0 Init. transm. rate of asympt. I 0.79 1

d·individual [fitted]
with reduction in transm. prob.

c2 Reduction in contact rate 0.11 [fitted]
(second intervention period)

c3 Reduction in transm. rate 0.11 [fitted]
(third intervention period)

η0 Prob. of detection while asympt. 0.25 [assumed]
η1 Prob. of detection while sympt. 0.9 [assumed]
δ CFR of detected infections 0.008 [4]
N Tot. population size 1,488 million [42]
Third wave with vaccination
pβ0 Init. transm. rate of asympt. I 0.82 1

d·individual [fitted]
with reduction in transm. prob.

c2 Reduction in contact rate 0.15 [fitted]
c3 Reduction in transm. rate 0.15 [fitted]
v1 Vacc. rate first dose, t ≤ 75 0.0014 1

d·individual [fitted]
Vacc. rate first dose, 75 ≤ t ≤ 135 0.0243 1

d·individual [fitted]
v2 Vacc. rate second dose, t ≤ 60 0.0325 1

d·individual [fitted]
Vacc. rate second dose, 60 ≤ t ≤ 135 0.0151 1

d·individual [fitted]
σ Vacc. inefficacy after first dose 0.25 [39]
Fourth wave with vaccination
c2 Reduction in contact rate 0.65 [fitted]
c3 Reduction in transm. rate 0.66 [fitted]
δ CFR of detected infections 0.004 [4]
σalpha Vacc. inefficacy after first dose 0.25 [39]

against Alpha-variant infection
σdelta Vacc. inefficacy after first dose 0.6 [fitted]
v1 Vacc. rate first dose, t ≤ 75 0.0101 1

d·individual [fitted]
Vacc. rate first dose, 75 ≤ t ≤ 108 0.0171 1

d·individual [fitted]
v2 Vacc. rate second dose, t ≤ 50 0.0129 1

d·individual [fitted]
against Delta-variant infection

v2 Vacc. rate second dose, 50 ≤ t ≤ 108 0.0037 1
d·individual [fitted]

against Delta-variant infection

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10304–10338.



10317

2.4. Model expansion with hospital compartments

In order to simulate the number of COVID-19 patients in both regular hospital wards and ICUs in
Munich, the model must be expanded. When a person is diagnosed with the virus and has mild or no
symptoms, they stay in compartment P. If a person’s symptoms are severe, they are admitted to the
regular hospital ward (Hnorm), with the probability of hospitalization described as h0. Those in the
hospital who develop critical symptoms have a probability of h1 of being transferred to the ICU
(HICU). Patients in the ICU who do not survive the virus (death rate δ) are moved to the deceased
compartment (D). Once a patient’s condition stabilizes in the ICU, they are transferred back to the
regular ward for continued monitoring, but no longer require IC. Finally, after their infection has
resolved, all individuals move to the recovered compartment (R). The hospitalization model’s
dynamics are displayed at the bottom of Figure 2. Additionally, more information regarding
parameter assumptions can be found in Tables 4 and 5. The hospitalization model is then given by the
following system of differential equations:

Ṡ = −λS − v1S ,

Ė = λS + σλV1 − γeE,

V̇1 = v1S − σλV1 − v2V1,

V̇2 = v2V1,

İa = (1 − ρ)γeE − γaIa,

İ p = ργeE − γpI p,

İ s = (1 − η0)γpI p − γsI s,

Ṗ = η0γaIa + η0γpI p + η1γsI s − (h0γpos1 + (1 − h0)γpos2)P, (2.9)
Ḣnorm = h0γpos1 P + (1 − δ)γicuHICU − (h1γnorm1 + (1 − h1)γnorm2)H

norm,

ḢICU = h1γnorm1 Hnorm − γicuHICU ,

Ḋ = δγicuHICU ,

Ṙ = (1 − η0)γaIa + (1 − η1)γsI s + (1 − h0)γpos2 P + (1 − h1)γnorm2 Hnorm,

where λ(t) = βaIa+βpIp+βsI s+βposP
N−D is the force of infection and N is the total population size. βa(t) is

time-dependent and defined in Chapters 2.1.1–2.1.4.
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Table 4. Parameters of the preferred model with hospitalization for waves one and two. Short
forms: CFR, MD, mean time (MT), NW, ICU, IC.

Parameter Description Value (unit) [Refs.]
First wave

1
γpos1

MD from detection to hospitalization 2 d [fitted]
1
γpos2

MD of infection 8 d [fitted]
1

γnorm1
MT from hospitalization to ICU 1 d [38]

1
γnorm2

MT on NW, no IC 7 d [38]
1
γicu

MT on ICU 9 d [8]
h0 Prob. of hospitalization 0.14 [fitted]
h1 Prob. of requiring IC 0.07 [fitted]
δ CFR of detected infections 0.34 [43]
ρ Prob. of developing symptoms 0.69 [41]
η0 Prob. of detection while asympt. 0.07 [assumed]
v1 Vacc. rate first dose 0 1

d·individual
v2 Vacc. rate second dose 0 1

d·individual
Second wave

1
γpos1

MD from detection to hospitalization 2 d [fitted]
1
γpos2

MD of infection 6 [fitted]
h0 Prob. of hospitalization 0.06 [fitted]
h1 Prob. of requiring IC 0.04 [fitted]
η0 Prob. of detection while asympt. 0.15 [assumed]
η1 Prob. of detection while sympt. 0.85 [assumed]

2.5. Data fitting

In order to accurately represent the data, a two-step method was employed. Initially, a model
excluding hospitalization was used to fit the incidence data for all rounds. Subsequently, the model
was expanded to incorporate hospitalization compartments, and the parameters from the first fit were
utilized as fixed parameters to achieve a proper fit for the remaining hospitalization parameters. This
approach prevents overfitting and enhances the stability of the fit, resulting in a final model that
accurately fits the hospitalization data. The advantage of this technique is its ability to merge two
distinct datasets. The incidence model provides information on pandemic progression, whereas the
second step focuses on hospitalization. Since the pandemic’s development is identical with or without
hospitalization parameters, the parameters obtained in the first fit can be directly integrated into the
second model for a better fit.
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Table 5. Parameters of the preferred model with hospitalization. Short forms: MD and IC.

Parameter Description Value (unit) [Refs.]
Third wave

1
γpos1

MD from detection to hospitalization 2 d [fitted]
1
γpos2

MD of infection 6 d [fitted]
h0 Prob. of hospitalization 0.06 [fitted]
h1 Prob. of requiring IC 0.08 [fitted]
η0 Prob. of detection while asympt. 0.25 [assumed]
η1 Prob. of detection while sympt. 0.90 [assumed]
v1 Vacc. rate first dose, t ≤ 75 0.004 1

d·individual [fitted]
Vacc. rate first dose, 75 ≤ t ≤ 135 0.008 1

d·individual [fitted]
v2 Vacc. rate second dose, t ≤ 60 0.03 1

d·individual [fitted]
Vacc. rate second dose, 60 ≤ t ≤ 135 0.024 1

d·individual [fitted]
σ Vacc. inefficacy after first dose 0.25 [39]
Fourth wave
h0 Prob. of hospitalization 0.014 [fitted]
h1 Prob. of requiring IC 0.077 [fitted]
v1 Vacc. rate first dose, t ≤ 75 0.0464 1

d·individual [fitted]
Vacc. rate first dose, 75 ≤ t ≤ 108 0.04 1

d·individual [fitted]
v2 Vacc. rate second dose, t ≤ 50 0.0085 1

d·individual [fitted]
Vacc. rate second dose, 50 ≤ t ≤ 108 0.0012 1

d·individual [fitted]

2.6. Positivity and boundedness

To be realistic and meaningful, solutions of our model system should preserve positivity, or, to be
more precise non-negativity and boundedness. As is usual in this context, all parameter values are
assumed to be non-negative. One can easily see that a solution of (2.9) with non-negative initial values
at t = 0 for all variables stays non-negative for all t ≥ 0. For the variables V2, D and R, this holds
in general, as there are only non-negative entries on the corresponding right-hand sides; for all other
variables, the derivative is also ≥ 0 if the corresponding variable itself is equal to zero, using that
0 ≤ ρ, η0, η1, h0, h1 ≤ 1 by definition.

For the boundedness, let us consider the sum of all variables, which corresponds to the total
population in the system. Its time derivative satisfies

Ṡ + Ė + V̇1 + V̇2 + İa + İ p + İ s + Ṗ + Ḣnorm + ḢICU + Ḋ + Ṙ = 0,

as all terms on the right-hand side of (2.9) cancel out. Thus, the total population stays constant, and
it is a closed compartmental model. As we have seen already that all variables stay non-negative, it
follows directly that all variables are bounded by the sum of the initial values: S (0) + E(0) + V1(0) +
V2(0) + Ia(0) + I p(0) + I s(0) + P(0) + Hnorm(0) + HICU(0) + D(0) + R(0).

Please note that this can be shown analogously for the other model variants here.
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2.7. Parameter estimation

To obtain the best estimated parameter set θ = (p1, ..., pk) that is dependent on unknown parameters
p1, ..., pk, and to analyze the performance of a model, the model itself has to be validated using real-life
data [44]. In this analysis, we first model the prevalence that directly corresponds to the model-output
I(t). Following, the fitted parameters are used to support a further fit with the hospitalization data that
directly correspond to the model outputs Hnorm and HICU .

To find the best estimated parameter set θ, we determine the sum-of-squares error (SSE), i.e., the
sum of squares of the vertical distances from the real data points d(t) to the points of the solution curve
I(t) of the model [44]:

S S E =
∑

t

(d(t) − I(t))2. (2.10)

To achieve the optimal performance of the model, the least-squares approach is hence applied,
minimizing the SSE [44]:

θ̂ = argmin
θ

S S E(θ). (2.11)

The programming language R, version 4.0.5, was used for model fitting. Furthermore, for
minimizing, the SSE the L-BFGS-B optimization method was used. A definition of the
goodness-of-fit method, Akaike information criterion (AIC) and model comparison are presented in
detail in the Supplemental Material.

3. Results

3.1. Modeling the number of daily detected and hospitalized COVID-19 cases

The model results for the first wave are presented in Figure 3(A) and (B) and Tables 2 and 4. It can
be appreciated that the model adequately simulates the real data. The results obtained for the last day
of the first wave will be used as initial values for modeling the second wave, the results of which are
presented in Figure 3(C) and (D). Also, for the second wave, it can be seen that the model captures the
structure of the data, confirming the fact that neither the virus nor the immune status of the population
changed from the first to the second wave. The parameters used for the third wave are summarized
in Tables 3 and 5. The results of the last day of the second wave were used as initial values. Results
of the third wave can be seen in Figure 3(E) and (F). Although a lockdown was implemented, the
number of COVID-19 cases increased again, and the third wave began. As new variants appeared, the
model needed to be adapted, and the parameters were changed accordingly. Toward the end of the
third wave, there was a discrepancy between the modeled number of daily detected COVID-19 cases
and those reported by the RKI, which was solved by adding compartments representing the vaccinated
population [32]. The parameters used for this model are presented in Tables 3 and 5, and the results
are shown in Figure 4. The accuracy of the model was significantly improved by incorporating the
vaccinated population.

Model results of the hospitalizations in Munich are presented in Figure 5 and Tables 4 and 5. It can
be noticed that, for all three waves, the structure of the data can be well captured by the model. Due to
its importance in the third wave, the model with vaccination compartments was directly applied due to
its effectiveness.
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Figure 3. Performance evaluation of the preferred model: Comparison of model output
(black) with RKI data (red). (A), (C) and (D): Daily detected COVID-19 cases in Munich in
waves one, two and three, respectively. (B), (D) and (E): Total detected COVID-19 cases in
Munich in waves one, two and three, respectively. The preferred model captures the structure
of the data for the first and second wave very well. For the third wave some discrepancies
can be noticed.
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Figure 4. Performance evaluation of the preferred model with vaccination extension for wave
three: Comparison of model output (black) with RKI data (red). (A): Daily detected COVID-
19 cases in Munich. (B): Total detected COVID-19 cases in Munich. (C): Completely
vaccinated individuals in Munich, reported by [32].
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Figure 5. Performance evaluation of the hospitalization model: Comparison of model output
(lines) with IVENA data (dots) for (A) the first wave, (B) the second wave and (C) the third
wave. The NW station is represented in blue, while the ICU is represented in red. For wave
one and two, no vaccination compartments were needed.

3.2. Predictions for the fourth wave

The beginning of the fourth wave was used as the starting point for predictions. From Figure 6, it
can be seen that the amount of new COVID-19 cases and, therefore, also the number of hospitalized
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patients, dramatically depends on the vaccination campaign. It can be appreciated that the time of the
peak shifts with that dependency. The lower the vaccination success, the higher and later the peak.

Figure 6. Model predictions for wave four: Optimal scenario (green), severe scenario (blue)
and extreme scenario (violet). Model prediction for daily (A) and cumulative (B) detected
COVID-19 cases in Munich. Model prediction for hospitalized COVID-19 patients in the
ward station (C) and ICU (D).

4. Conclusions

We utilized biology-based mathematical models to simulate the number of new COVID-19
infections and hospitalizations in Munich’s ward and ICUs during the first four waves of the
pandemic. Our findings suggest that monitoring hospitalized cases may have been crucial at the
pandemic’s outset.

By comparing various models, we determined that incorporating an exposed class was essential.
Neglecting this class would result in an immediate drop in infection numbers, which is not realistic
given the latent period of the disease. Our models also included divisions between
undetected/detected cases and asymptomatic/symptomatic courses, as these distinctions were
necessary. Undetected cases have a higher transmission rate, and a significant proportion of
individuals become infected by presymptomatic individuals. We also tried a model with a quarantine
state for detected cases, but it did not improve the results (Supplemental Figure A1 bottom,
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Supplemental Table A1). While other authors have previously used simpler models [13, 15, 16], our
focus was on understanding the biological processes and parameters. Our data cover the first four
pandemic’s waves, and, therefore, some compartments of our model may not have been necessary for
other analyses that concentrate on the reproduction number.

In the first half of 2021, new virus variants of SARS-CoV-2 were observed. When modeling the
third wave, the much more contagious Alpha variant resulted in a higher transmission rate, being
the cause of the outbreak of the third wave despite a lockdown being in place. In addition, when
simulating the third wave, classes representing the vaccinated population had to be included into the
model. Without taking into account the progressive immunization of the population at the end of the
third wave, the number of cases in the model would increase again, although the data from the RKI
show that the number of cases continue to decrease.

Predictions for different scenarios during the fourth wave are summarized in Figure 6. Even though
a large proportion of the population is already vaccinated, the number of new COVID-19 cases is
predicted to increase with rising contact rates and decreasing willingness to vaccinate. Rapid reopening
with a standstill in vaccination could result in an extreme fourth wave with a higher incidence than the
previous three. Furthermore, it was assumed that completely vaccinated individuals could no longer
become infected with SARS-CoV-2. However, since it has been demonstrated that even completely
vaccinated individuals can become infected, especially with the Delta variant, the daily incidence could
be even higher than predicted by Model 2.8 [45].

Although the incidence during the fourth wave in the extreme scenario was even greater than
during the second wave, we see in Figure 1(B) that the hospitalization rate decreases with an
increasing number of fully vaccinated individuals. This confirms that vaccinations help against a
severe course of COVID-19. However, the number of patients in normal wards could be higher than
predicted since vaccine protection against a severe course wanes after approximately six months.

A discrepancy between IVENA data and model output was observed in Figure 5, where the number
of hospitalized patients briefly decreased in the former while continuing to increase in the latter. This
may be due to younger individuals being infected, and the lower hospitalization rate among them was
not accounted for in the model. Barbarossa et al. [19] applied complex and age-structured SEIR models
to incidence data, but they were without hospitalization information. Our models presented here could
also be expanded with age structure. Differences in infections would be expected not only between age
categories, but also between the pandemic waves.

The ICU occupancy could increase sharply even though the hospitalization rate decreased during
the fourth wave due to the increasing immunity of the population. This is because non-vaccinated
individuals are hospitalized and a large proportion of inpatients must be admitted to the ICU, which
can still lead to an overload of the healthcare system.

In Figure 1(D), the hospitalization rate decreased during the fourth wave due to the increasing
immunity of the population, but the number of ICU patients could again increase sharply. This is
because non-vaccinated individuals are hospitalized [46] and a large proportion of inpatients must be
admitted to the ICU, which can still lead to an overload of the healthcare system.

To summarize, we applied biology-based mathematical models to predict the fourth wave of
COVID-19 in Munich. We give a rough idea of the possible courses of the pandemic and not an
accurate prediction of a particular outcome. The best, most likely and worst case scenarios are
presented to help policymakers make decisions about interventions. During the epidemic,

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10304–10338.



10326

non-pharmaceutical interventions changed rapidly. Also, the introduction of vaccines and the advent
of new variants significantly modified the settings of the pandemic. The models need to be adapted
after every change, but since its structure remains similar and the computational time is short, this can
be done quickly. The models applied are complex; therefore, the reliability of the parameters was
supported by splitting the analysis in two steps: the incidence data supporting the
biology-pandemic-dependent parameters, while the hospital data were used to support the
hospitalization process. We have to underline that the forecasts presented here completely depend on
the previously fitted parameters. The next steps could be to add a sensitivity analysis to
show dependencies.

During the first three waves, the incidence and the 7-day incidence were key indicators for
interventions, but since a large part of the population in Munich is fully vaccinated, the importance of
incidences as an indicative value decreases while that of the hospitalization rate and ICU treatments
increases. The incidence must still be monitored in the future since the higher the incidence, the more
difficult it will be to track contacts and use interventions to keep infection numbers down. We support
the thesis that monitoring the hospitalization should have been introduced at the beginning of the
pandemic, together with the 7-day incidence, to clarify its importance and avoid miscommunication
with the members of the public.

Acknowledgments

This work was supported by the Bavarian State Ministry of Science and the Arts; University
Hospital; Ludwig Maximilian University Munich; German Ministry for Education and Research
(proj. nr.: 01KI20271).

Conflict of interest

The authors declare that there is no conflict of interest.

Code availability

To facilitate reproducibility and reuse, we made the code used to perform the analyses and generate
the figures available on GitHub (accessed on November 30, 2022) https://github.com/NoemiCastelletti/
Hospitalization Munich COVID-19.git.

References

1. B. Ganesh, T. Rajakumar, M. Malathi, N. Manikandan, J. Nagaraj, A. Santhakumar, et al.,
Epidemiology and pathobiology of SARS-CoV-2 (COVID-19) in comparison with SARS, MERS:
An updated overview of current knowledge and future perspectives, Clin. Epidemiol. Glob. Health,
10 (2021), 100694. https://doi.org/10.1016/j.cegh.2020.100694

2. World Health Organization, WHO Director-General’s Opening Remarks
at the Media Briefing on COVID-19-11 March 2020, 2020.
Available from: https://www.who.int/director-general/speeches/detail/
who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10304–10338.

https://github.com/NoemiCastelletti/Hospitalization_Munich_COVID-19.git
https://github.com/NoemiCastelletti/Hospitalization_Munich_COVID-19.git
http://dx.doi.org/https://doi.org/10.1016/j.cegh.2020.100694
https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020


10327

3. World Health Organization, WHO Coronavirus (COVID-19) Dashboard, 2022. Available from:
https://covid19.who.int/

4. Robert Koch-Institute (RKI), Table showing current Covid-19 infections per day as
time series, 2021. Available from: https://npgeo-corona-npgeo-de.hub.arcgis.com/datasets/
dd4580c810204019a7b8eb3e0b329dd6 0/explore

5. Robert Koch-Institute (RKI), Kontaktpersonen-Nachverfolgung bei SARS-CoV-2-Infektionen,
2021. Available from: https://www.rki.de/DE/Content/InfAZ/N/Neuartiges Coronavirus/
Kontaktperson/Management.html;jsessionid=78E4E999E14B2E6A3E8F02E5957D2C97.
internet121?nn=13490888#doc13516162bodyText14

6. Robert Koch-Institute (RKI), Tabelle mit den gemeldeten Impfungen nach Bundesländern und
Impfquoten nach Altersgruppen, 2021. Available from: https://www.rki.de/DE/Content/InfAZ/N/
Neuartiges Coronavirus/Daten/Impfquotenmonitoring

7. Robert Koch-Institute (RKI), Kurz und Knapp: Faktenblätter zum Impfen - COVID-19 Impfung,
2021. Available from: https://www.rki.de/DE/Content/Infekt/Impfen/Materialien/Faktenblaetter/
Faktenblaetter inhalt.html

8. J. Schilling, A. Lehfeld, D. Schumacher, M. Diercke, S. Buda, W. Haas, et al.,
Krankheitsschwere der ersten COVID-19-Welle in Deutschland basierend auf den Meldungen
gemäß Infektionsschutzgesetz, J. Health Monit., 5 (2020), 2–20. https://doi.org/10.25646/7169

9. Centers for Disease Control and Prevention (CDC), National Center for Immunization and
Respiratory Diseases (NCIRD), Disease Burden of Flu, 2022. Available from: https://www.cdc.
gov/flu/about/burden/index.html/

10. Robert Koch-Institute (RKI), Coronavirus SARS-CoV-2: Fallzahlen und Meldungen,
2021. Available from: https://www.rki.de/SharedDocs/FAQ/NCOV2019/FAQ Liste Fallzahlen
Meldungen.html

11. R. M. Anderson, The role of mathematical models in the study of HIV transmission and the
epidemiology of AIDS, J. Acquir. Immune Defic. Syndr., 1 (1988), 241–256.

12. F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology,
Springer, New York, 2012.

13. D. Chumachenko, I. Meniailov, K. Bazilevych, T. Chumachenko, S. Yakovlev, Investigation
of statistical machine learning models for COVID-19 epidemic process simulation: Random
Forest, K-Nearest Neighbors, Gradient Boosting, Computation, 10 (2022), 2079–3197.
https://doi.org/10.3390/computation10060086

14. F. Ying, N. O’Clery, Modelling COVID-19 transmission in supermarkets using an agent-based
model, PLoS One, 16 (2021), 0249821. https://doi.org/10.1371/journal.pone.0249821

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10304–10338.

https://covid19.who.int/
https://npgeo-corona-npgeo-de.hub.arcgis.com/datasets/dd4580c810204019a7b8eb3e0b329dd6_0/explore
https://npgeo-corona-npgeo-de.hub.arcgis.com/datasets/dd4580c810204019a7b8eb3e0b329dd6_0/explore
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Kontaktperson/Management.html;jsessionid=78E4E999E14B2E6A3E8F02E5957D2C97.internet121?nn=13490888#doc13516162bodyText14
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Kontaktperson/Management.html;jsessionid=78E4E999E14B2E6A3E8F02E5957D2C97.internet121?nn=13490888#doc13516162bodyText14
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Kontaktperson/Management.html;jsessionid=78E4E999E14B2E6A3E8F02E5957D2C97.internet121?nn=13490888#doc13516162bodyText14
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Daten/Impfquotenmonitoring
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Daten/Impfquotenmonitoring
https://www.rki.de/DE/Content/Infekt/Impfen/Materialien/Faktenblaetter/Faktenblaetter_inhalt.html
https://www.rki.de/DE/Content/Infekt/Impfen/Materialien/Faktenblaetter/Faktenblaetter_inhalt.html
http://dx.doi.org/https://doi.org/10.25646/7169
https://www.cdc.gov/flu/about/burden/index.html/
https://www.cdc.gov/flu/about/burden/index.html/
https://www.rki.de/SharedDocs/FAQ/NCOV2019/FAQ_Liste_Fallzahlen_Meldungen.html
https://www.rki.de/SharedDocs/FAQ/NCOV2019/FAQ_Liste_Fallzahlen_Meldungen.html
http://dx.doi.org/https://doi.org/10.3390/computation10060086
http://dx.doi.org/https://doi.org/10.1371/journal.pone.0249821


10328

15. R. Nistal, M. de la Sen, J. Gabirondo, S. Alonso-Quesada, A. J. Garrido, I. Garrido, A Study
on COVID-19 incidence in Europe through two SEIR epidemic models which consider mixed
contagions from asymptomatic and symptomatic individuals, Appl. Sci., 11 (2021), 2076–3417.
https://doi.org/10.3390/app11146266

16. R. Nistal, M. de la Sen, J. Gabirondo, S. Alonso-Quesada, A. J. Garrido, I. Garrido, A
Modelization of the Propagation of COVID-19 in regions of Spain and Italy with evaluation
of the transmission rates related to the intervention measures, Biology, 10 (2021), 121.
https://doi.org/10.3390/biology10020121

17. J. Ozaki, Y. Shida, H. Takayasu, M. Takayasu, Direct modelling from GPS data reveals daily-
activity-dependency of effective reproduction number in COVID-19 pandemic, Sci Rep., 12,
(2022), 17888. https://doi.org/10.1038/s41598-022-22420-9

18. D. Okuonghae, A. Omame, Analysis of a mathematical model for COVID-19
population dynamics in Lagos, Nigeria, Chaos, Solitons Fractals, 139 (2020), 110032.
https://doi.org/10.1016/j.chaos.2020.110032

19. M. V. Barbarossa, J. Fuhrmann, J. H. Meinke, S. Krieg, H. V. Varma, N. Castelletti, et al., Modeling
the spread of COVID-19 in Germany: Early assessment and possible scenarios, PLoS ONE, 15,
(2020). https://doi.org/10.1371/journal.pone.0238559
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Supplementary

Model selection

Model selection is the task of choosing the best model out of a set of candidate models with the
smallest possible number of parameters, which still represents the data adequately [47]. A model with
too few parameters can lead to underfitting, not capturing the true relationship in the data. In contrast, a
model with too many parameters can lead to overfitting, capturing the noise in the underlying data [47].
Assume a set of data D : (xi, yi) is generated by a true function y = f (x)+ ϵ, where ϵ is the noise of the
data (normally distributed with mean E[ϵ] = 0 and variance Var[ϵ] = σ2). The unknown function f̂ (x)
can be fitted to the data minimizing the SSE, and the formula for the expected error has the form [48]

E[(y∗ − f̂ (x∗))2] = σ2 + Bias2( f̂ (x∗)) + Variance( f̂ (x∗)). (A.1)

From (A.1) we can see that the expected error between the data points and the model depends on
the noise, the bias and the variance. The noise is difficult to reduce because, in practice, it is often
unknown. Bias and variance depend instead on the complexity of the model. If model complexity (i.e.,
the number of parameters) increases, the bias decreases, whereas the variance increases. On the other
hand, if model complexity decreases, the bias increases while the variance decreases [48]. The goal is
to minimize the expected error between the model and the data, which is equivalent to minimizing the
bias and the variance of the model. It follows that both a too simple model and a too complex model
are not optimal, as the data will either be underfitted or overfitted.
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In this analysis, model selection was performed by applying the AIC, which measures the relative
goodness of fit of a mathematical model [44]. For a given model, the AIC is computed as

AIC = n[ln(
S S E

n
)] + 2(k + 1), (A.2)

where n is the number of available data points in the dataset, k is the number of unknown parameters
to be fitted, and SSE is the least-squares error [44].

We calculate the AIC for each candidate model. The best model is the one with the smallest AIC.
From (A.2), we can see that the AIC is directly proportional to the number of fitted parameters,
penalizing too complex models and, hence, preventing overfitting [44]. In addition, the AIC rewards
models with a good fit, i.e., models with a small SSE, which prevents underfitting.

Table A1. Comparison of model attempts

Model SSE No. Parameters AIC
Model 1 659041.0 1 937.6512
Model 2 231249.3 1 825.5912

Preferred model 108642.9 3 748.7602
Model 3 114436.7 3 754.3195

Defining the preferred model

Now, the question is, which models can capture the data best while also not being unnecessarily
complicated? For this purpose, the AIC values of the four different models are compared in Table A1.
We can see that the preferred model has the smallest AIC value. Therefore, the preferred model is
the most appropriate among all four candidate models for simulating the first wave of COVID-19 in
Munich. By comparing the AIC from Model 1 and Model 2, it follows that the inclusion of an exposed
class is essential, as the AIC decreases significantly. Additionally, a significant improvement in AIC
follows from the differentiation between undetected and detected cases, as well as between individuals
with asymptomatic and symptomatic course. This suggests that undetected infectious individuals and
individuals without any symptoms also play an important role in the dynamics of the pandemic. For
instance, according to the RKI, a relevant proportion of people become infected via presymptomatic
individuals [38]. The inclusion of a quarantine compartment does not improve the AIC, at least under
the current conditions, which suggests that Model 3 is unnecessarily complicated. Since the preferred
model can best simulate the first wave of the COVID-19 pandemic in Munich, it is also the model used
for the analysis of the other pandemic waves.

Model Attempts

Model 1: SIR Model

First, we attempted to model the first wave of COVID-19 by using the basic SIR model
(Figure A1(A)) [12]. It was assumed that the susceptible individuals (S ) have not yet had the disease
but can become infected through contact with an infected individual (I). Furthermore, for this model,
only detected cases are considered to make it possible to compare model output and the RKI data.
Approximately 10 days after symptom onset, the contagiousness of the infected person decreases
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significantly [38]. After recovery of infected individuals (R), they become immune to reinfection.
Further details on parameter assumptions are given in Table A2. Model 1 is then given by the
following system of differential equations:

Ṡ = −λS ,

İ = λS − αI,

Ṙ = αI,

where λ(t) = β(t) I(t)
N is the force of infection and N ≈ 1.484 million is the total population size of

Munich [42]. Furthermore, β(t) is the time-dependent transmission rate. Since the RKI reported one
COVID-19 case on the first day of the first wave, we used S (0) = N − 1, I(0) = 1 and R(0) = 0 as
initial values for the three compartments.

(a)

(b)

(c)

Figure A1. Scheme of the model attempts: (A) Model 1, (B) Model 2 and (C) Model 3.
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Figure A2. Performance evaluation of the model attempts. Comparison of model output
(black) with RKI data (red). (A), (C) and (D): Daily detected COVID-19 cases in Munich in
wave one for Models 1, 2 and 3, respectively. (B), (D) and (E): Total detected COVID-19
cases in Munich in wave one for Models 1, 2 and 3, respectively. The basic SIR Model 1
cannot capture the structure of the data. The SEIR Model 2 shows a clear improvement
compared to the SIR model. The more complex Model 3 can capture the structure of the data
very well, with, however, a worse AIC than the preferred model.
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To compare Model 1 with the RKI data, we calculate the newly detected infections d̂(t) at day t
from the output of Model 1 as follows:

d̂(t) =

I(0) if t = 0
S (t) − S (t + 1) if t > 0.

In Figure A2(A) and (b), it can be seen that the simple SIR model cannot capture the spread of
COVID-19 in Munich during the first wave. One reason for this is the exclusion of an exposed class.
When the lockdown starts after 52 days and the transmission rate decreases, we can see that the number
of infected individuals immediately drop off. However, this is not realistic because, at this point in time,
there are a lot of individuals who are already infected with COVID-19 but neither have symptoms nor
are they infectious. These individuals are called exposed individuals. After infection with the disease,
the virus needs some time to develop in the human body. The time during which an individual is
infected but not yet infectious is called the latent period [44]. So, at the start of the lockdown, there are
still a lot of individuals moving to the infected class although there are no or less new infections. So,
for the next model, we will include an exposed (latent) class.

Model 2: Including an Exposed Class

In addition to the three compartments of the previous model, an exposed class (E) is now included
in Model 2 (Figure A1 middle). After infection, individuals move from the susceptible to the exposed
class, where they have neither symptoms nor are they infectious. After a latent period of
approximately 5.5 days, the infected individuals become infectious and develop symptoms and
therefore move to class I [38]. Details on parameter assumptions are given in Table A2.
Model 2 is then given by the following system of differential equations:

Ṡ = −λS ,

Ė = λS − γeE,

İ = γeE − αI,

Ṙ = αI,

where, again, λ(t) = β(t) I(t)
N is the force of infection and β(t) the time-dependent transmission rate. As

initial values for the four compartments, S (0) = N − 1, E(0) = 0, I(0) = 1 and R(0) = 0 were used.
The newly infected individuals d̂(t) at day t are calculated from the output of the SEIR model as

follows:

d̂(t) =

I(0) if t = 0,
[I(t + 1) − I(t)] + [R(t + 1) − R(t) if t > 0.

After minimizing the SSE between the daily detected COVID-19 cases d(t) reported by the RKI and
d̂(t) from the model output, the results of the fitted model can be seen in Figure A2(c)–(d). Compared
to Model 1, a significant improvement in the performance of Model 2 can be recognized.
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Table A2. Parameters of Models 1, 2 and 3 for the first wave

Parameter Description Value (unit) [Refs.]
Model 1
β0 Initial transmission rate 0.24 1

d·individual [fitted]
1
α

Mean duration of infection 10 d [38]
Model 2
(added parameters)
β0 Initial transmission rate 0.45 1

d·individual [fitted]
1
γe

Mean duration of latent phase 5.5 d [38]
Model 3
(added parameters)
β0 Initial transmission rate 0.67 1

d·individual [fitted]
η0 Prob. of detection while asympt. 0.62 [fitted]

1
γpos

Mean duration to go to quarantine 1 d [assumed]
1
γq1

Mean duration of quarantine 14 d [5]
1
γq2

Mean duration from start 2 d [fitted]
of quarantine until death

Model 3: Including Quarantine

We extended the model presented in the main manuscript (called the preferred model in the
following) and have included a compartment representing the quarantined individuals (Q) (Figure A1
bottom). All people with a detected SARS-CoV-2 infection go directly into quarantine, where they
are supposed to have no contact with other people. Therefore, we assume that individuals who are in
compartment Q can no longer infect anyone. During quarantine, individuals can die because of the
disease and then move to the deceased compartment D, or they leave quarantine after
approximately 14 days and go to the recovered compartment R [5].

Model 3 is then given by the following system of differential equations:

Ṡ = −λS ,

Ė = λS − γeE,

İa = (1 − ρ)γeE − γaIa,

İ p = ργeE − γpIp,

İ s = (1 − η0)γpIp − γsIs,

Ṗ = η0γaIa + η0γpIp + η1γsIs − γposP,

Q̇ = γposP − (1 − δ)γq1 Q − δγq2 Q,

Ṙ = (1 − δ)γq1 Q,

Ḋ = δγq2 Q,

Ṙu = (1 − η1)γsIs + (1 − η0)γaIa,

where the force of infection λ(t) is time-dependent and defined like before in the model presented in
the main manuscript. In addition to the initial values from the main model, we used Q(0) = 0. The
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parameters can be found in Table A2.
It follows that the number of daily detected infections in Model 3 is described by the class P, i.e.,

d̂(t) = P(t). After minimizing the SSE between the daily detected COVID-19 cases d(t) reported by
the RKI and d̂(t), the results of the fitted model can be seen in Figure A2(e)–(f). The performance of
Model 3 seems very similar to that of the preferred model, however, without any improvement in the
goodness of fit (Table A1).

Model analysis

As part of a standard analysis for such epidemiological models, one may be interested in the
reproduction number R. To establish a unique disease-free equilibrium, we modify the model in such
a way that we take into account the (slow) population dynamics. For that, we assume that all
newborns (constant rate Λ) go into the susceptible compartment, and we have a natural per capita
death rate µ for all compartments. The compartment D is left out for that purpose. The model version
for this analysis reads as

Ṡ = Λ − λ(t)S − v1S − µS ,

Ė = λ(t)S + σλV1 − γeE − µE,

V̇1 = v1S − σλV1 − v2V1 − µV1,

V̇2 = v2V1 − µV2,

İa = (1 − ρ)γeE − γaIa − µIa,

İ p = ργeE − γpI p − µI p,

İ s = (1 − η0)γpI p − γsI s − µI s,

Ṗ = η0γaIa + η0γpI p + η1γsI s − (h0γpos1 + (1 − h0)γpos2)P − µP, (A.3)
Ḣnorm = h0γpos1 P + (1 − δ)γicuHICU − (h1γnorm1 + (1 − h1)γnorm2)H

norm − µHnorm,

ḢICU = h1γnorm1 Hnorm − γicuHICU − µHICU ,

Ṙ = (1 − η0)γaIa + (1 − η1)γsI s + (1 − h0)γpos2 P + (1 − h1)γnorm2 Hnorm − µR,

still with λ(t) = βaIa+βpIp+βsI s+βposP
N−D and N the total population size. In this model version, as well as in

the versions in the main part, the non-negativity of solutions is kept when starting with non-negative
initial values. This can be easily seen because all negative terms on the right-hand side are
proportional to the respective variable. Furthermore, by having a compartmental model including a
constant birth term and death terms in all compartments, the solutions stay bounded. Here, we use a
constant βa(t). Setting the right-hand sides of (A.3) equal to zero, we can easily solve it for the
disease-free equilibrium, which reads as

(Ŝ , 0, V̂1, V̂2, 0, 0, 0, 0, 0, 0, 0) = (Λ/(v1 + µ), 0,
v1

(v2 + µ)(v1 + µ)
Λ,

v2v1

µ(v2 + µ)(v1 + µ)
Λ, 0, 0, 0, 0, 0, 0, 0).

The total population in this equilibrium situation is N = Λ · (v2+µ)µ+v1µ

(v1+µ)(v2+µ)µ
.

Please note that, for the disease-free equilibrium, it does not matter that λ(t) is not constant, as this
term becomes equal to zero; also, it is an autonomous equation, which means that, even if we calculate
an endemic equilibrium, it would work.
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We follow the van den Driessche and Watmough approach for calculating the reproduction number
as formulated in [44]. For that, we need to sort the compartments into infected ones,
X = (E, Ia, I p, I s, P), and the non-infected ones, Y = (S ,V1,V2,R) (the hospital compartments are left
out for this purpose, as they do not have any further influence). Next, we split the right-hand side
terms of X into new infections in the compartment and remaining terms, i.e.,

X′ = F(X,Y) − V(x,Y) =


λ(t)S + σλV1

(1 + ρ)γeE
ργeE

(1 − η0)γpIp

η0γaIa + η0γpIp + η1γsIs


−


γeE
γaIa

γpIp

γsIs

(h0γpos1 + (1 − h0)γpos2)P


;

F and V have to satisfy some general conditions, as Fi(0,Y) = 0 and Vi(0,Y) = 0 for i = 1, . . . , 5,
Fi(X,Y) ≥ 0 for all X,Y ≥ 0, Vi(X,Y) ≤ 0 for Xi = 0, i = 1, . . . , 5, and

∑5
i=1 Vi(X,Y) ≥ 0 for all X,Y ≥ 0,

which is easy to see in this case. Next, we need two matrices (using the notation Y0 = (Ŝ , V̂1, V̂2, 0)):

F =

[
∂Fi(0,Y0)
∂X j

]
=


0 βaŜ

N +
σβaV̂1

N
βpŜ
N +

σβpV̂1

N
βsŜ
N +

σβsV̂1
N

βposŜ
N +

σβposV̂1

N
(1 − ρ)γe 0 0 0 0
ργe 0 0 0 0
0 0 (1 − η0)γp 0 0
0 η0γa η0γp η1γs 0


and

V =

[
∂Vi(0,Y0)
∂X j

]
=



γe 0 0 0 0
0 γa 0 0 0
0 0 γp 0 0
0 0 0 γs 0
0 0 0 0 (h0γpos1 + (1 − h0)γpos2)︸                         ︷︷                         ︸

=:h∗


.

The latter one, being a diagonal matrix, can be easily inverted, which we need in the following step.
For easier writing and to make the structure of the matrix more visible, we introduce the short notations
B1 := βaŜ

Nγ1
+
σβaV̂1

Nγ1
, B2 := βpŜ

Nγp
+
σβpV̂1

Nγp
, B3 := βsŜ

Nγs
+
σβsV̂1

Nγs
and B4 := βposŜ

Nh∗ +
σβposV̂1

Nh∗ . Then, we find that

K = FV−1 =


0 B1 B2 B3 B4

(1 − ρ) 0 0 0 0
ρ 0 0 0 0
0 0 (1 − η0) 0 0
0 η0 η0 η1 0


.

The corresponding characteristic polynomial has the form

0 = λ · {−λ4 + (ρ − 1)[−B1λ
2 − η0B4λ

2] + ρ[B2λ
2 + B4η0λ + B4(1 − η0)η1]}

(λ denotes here the eigenvalues, not to mix up with the λ(t) from the model formulation).
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The square root of the spectral radius of this matrix would yield us the reproduction number.
Unfortunately, only one eigenvalue can be read out easily, and that is the 0. For the others, we
maintain the roots of a polynomial of grade four, but this formula is not convenient, and is thus not
useful in the general form. But, using concrete parameter values, one could apply these in matrix K
and calculate the eigenvalues, and, consequently, numerically calculate the spectral radius. Please
recall that βa(t) may vary, e.g., due to restrictions, and also influence the reproduction number.

The calculation and consideration of the endemic equilibrium is left out here, as the long-time
behavior might not be so relevant for this purpose, as too many other properties and environmental
conditions change with time.
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