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Abstract: In this paper, we investigate the effects of ambient air pollution (AAP) on the spread
of influenza in an AAP-dependent dynamic influenza model. The value of this study lies in two
aspects. Mathematically, we establish the threshold dynamics in the term of the basic reproduction
number R0: If R0 < 1, the disease will go to extinction, while if R0 > 1, the disease will persist.
Epidemiologically, based on the statistical data in Huaian, China, we find that, in order to control the
prevalence of influenza, we must increase the vaccination rate, the recovery rate and the depletion rate,
and decrease the rate of the vaccine wearing off, the uptake coefficient, the effect coefficient of AAP
on transmission rate and the baseline rate. To put it simply, we must change our traveling plan and stay
at home to reduce the contact rate or increase the close-contact distance and wear protective masks to
reduce the influence of the AAP on the influenza transmission.

Keywords: ambient air pollution; influenza model; partial Immunity; vaccination; basic reproduction
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1. Introduction

Influenza is an acute respiratory disease caused by influenza viruses, types A, B, C and D, which
circulate in all parts of the world. The World Health Organization (WHO) reported that influenza
occurs globally with an annual attack rate estimated at 5%−10% in adults and 20%−30% in children,
and these annual epidemics are estimated to result in about 3,000,000 to 5,000,000 cases of severe
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illness and about 290,000 to 650,000 deaths [1].
In recent years, ambient air pollution (AAP), contamination of the indoor/outdoor environment by

any chemical, physical or biological agent that modifies the natural characteristics of the atmosphere,
is one of the greatest environmental risks to health and has become a severe problem across the world.
Environmental toxins spread at all levels of biological systems, extending from atoms to biospheres,
and they have impacts on cells, organs, organisms, populations and the whole ecosystem. For
example, fog and haze can be taken as a proof of air pollution resulting in health problems in big
cities, containing harmful toxic substances like sulfur dioxide, nitrogen oxides, etc., invading bodies
and causing health damage. WHO estimated in 2019 that ambient (outdoor) air pollution caused 4.2
million premature deaths worldwide, and this mortality is due to exposure to fine particulate matter
(PM), which causes cardiovascular and respiratory disease, and cancers [2]. It is reported that particle
droplets are considered to be a primary transmission mode for influenza virus infection due to
sneezing and coughing [3]. Therefore, contagious PM may cause influenza disease spread [4, 5].

Mathematical modeling approaches in epidemiology have been a great tool to reveal deep
understanding of the mechanisms underlying the spread and thus provide effective methods for the
control of influenza disease [6–12]. Recently, some epidemiological studies revealed associations of
air pollution with influenza infection. There are reports that PM2.5, PM10, SO2, NO2 and CO are
associated with the influenza positivity rate [13–15]. Huang et al. [16] investigated the the adverse
health effects of air pollution and the cause of influenza-like illness (ILI). Meng et al. [17] observed
that air pollution may be associated with the risk of influenza in a broad sense. Lu et al. [18] reported
a greater short-term impact on childhood pneumonia from PM1 in comparison to PM2.5 and PM10.
Taken together, air pollution could be one of the determinant factors of influenza infection. It should
be noted that the results above are based on the statistical analysis. However, it is rare to study the
effect of AAP on influenza transmission by a using dynamical model.

Figure 1. The location of Huaian in Jiangsu province, China.

Huaian is located in the ranges of 32◦43′00′′ − 34◦06′00′′ N and 118◦12′00′′ − 119◦36′30′′ E, in
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the transition region between the southern warm temperate zone and the northern subtropical zone.
Huaian, the central area of northern Jiangsu province, China, is composed of four districts, namely,
Qingjiangpu, Huaiyin, Huaian and Hongze, and three counties, namely, Lianshui, Xuyi and Jinhu (see
Figure 1). The maximum linear distance between east and west is 132 kilometers, and the maximum
linear distance between north and south is 150 kilometers, covering an area of 10.03 thousand square
kilometers. By the end of 2021, the permanent population of Huaian was 4.5622 million.

Beyond all doubt, influenza is an acute epidemic in Huaian, China. The data of reported cases of
ILI and the AAP, including PM2.5, PM10, SO2, NO2, O3 and CO, from the 1st week of 2019 to 52nd

week of 2019 in Huaian, China, are shown in Figure 2.
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Figure 2. The weekly reported number of ILI cases and the data of the AAP in Huaian,
China, in year 2019.

Naturally, there comes a question: What is the relation between the incidence of ILI and the AAP?
The main goal of this paper is to investigate the effect of the AAP on the incidence of ILI in Huaian,

China, and to provide some useful strategies to control the spreading of influenza. The rest of the paper
is organized as follows: In the following section, we formulate an environmental AAP-dependent SIPS
influenza model with partial immunity and vaccination. In Section 3, we study the dynamics of the
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proposed model, including the positivity and boundedness of the model, equilibrium analysis with
basic reproduction number. In Section 4, based on the statistic data, we estimate the parameters of the
model, and study controlling the prevalence of influenza in Huaian, China. The last section includes a
general discussion and some concluding remarks.

2. Model formulation

Suppose that, in the absence of air pollution, the total population N(t) is divided into three parts,
the susceptible S (t), the infectious I(t) and the partial immunity P(t), i.e., N(t) = S (t) + I(t) + P(t).
Recovered individuals from influenza infection are not permanently immune to the next influenza
virus [19]. The influenza model incorporating partial immunity of the recovered individuals and
vaccination of the susceptible is presented by the following SIPS model:

dS
dt
= Λ − β

S I
N
− µS − ϕS + σ(1 − p)I + γP,

dI
dt
= β

S I
N
− µI − σI,

dP
dt
= ϕS + σpI − µP − γP.

(1)

The biological meanings of the parameters of model (1) are shown in Table 1.

Table 1. Biological interpretations of parameters in models (1) and (4).

Parameter Description
Λ Recruitment rate of the population
m Effect coefficient of the AAP on transmission rate
µ Natural death rate
σ Recovery rate
ϕ Vaccination rate
α Rate of the vaccine wearing off
p Probability of the recovered becoming the susceptible
ρ Uptake coefficient
ξ Depletion rate of the AAP in the population
β(t) = b1 sin(b2t + b3) Transmission rate from susceptible to infective population
a(t) = a1 + a2 sin( π26 t + a3) Exogenous input rate of the AAP into the environment
η(t) = c1 sin( π26 t) Depuration rate of the AAP in the environment

To mechanistically incorporate the AAP into the basic SIPS model (1), we apply some of the
existing models in this direction [20–23]. Let E(t) be the concentration of the AAP in the
environment, and C(t) is the concentration of the AAP in the population, at time t ≥ 0, respectively.
Assume that the AAP may be externally introduced into the environment according to some
prescribed rate a(t). The AAP in the environment is washed out or broken down with time-dependent
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rate η(t), which may occur if the environment is a lake which on occasion drains into another body of
water, or if the AAP is subject to chemical decomposition. Further, we assume that the AAP from the
environment is absorbed by the population in direct proportion to its concentration (i.e., ρNE), and
the AAP in the population may also be removed from the total environment directly with rate ξ. We
apply the term mC(t) to describe the impact of the AAP on the transmission rate, and then the
transmission rate becomes

λ(C) := β(t) (1 + mC) . (2)

The schematic diagram is provided in Figure 3 for clear understanding of the model system. Then,
we can obtain the extended model as follows:

dS
dt
= Λ − λ(C)

S I
N
− µS − ϕS + σ(1 − p)I + αP,

dI
dt
= λ(C)

S I
N
− µI − σI,

dP
dt
= ϕS + σpI − µP − αP,

dC
dt
= ρNE − ξC,

dE
dt
= a(t) − η(t)E − ρNE.

(3)

Figure 3. Flow diagram of the influenza transmission routes in a polluted environment.

The biological meanings of all parameters of model (3) are also shown in Table 1.
It is true that the amount of the AAP consumed by the population is usually very small in quantity,

and hence the term −ρNE in the fifth equation in model (3) can be neglected. Then, the research object
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of this paper is as follows:

dS
dt
= Λ − λ(C)

S I
N
− µS − ϕS + σ(1 − p)I + αP,

dI
dt
= λ(C)

S I
N
− µI − σI,

dP
dt
= ϕS + σpI − µP − αP,

dC
dt
= ρNE − ξC,

dE
dt
= a(t) − η(t)E.

(4)

The total population N(t) satisfies the following system:

dN
dt
= Λ − µN.

Then,

lim
t→∞

N(t) =
Λ

µ
:= N∗.

The initial values of model (4) are:

S (0) > 0, I(0) ≥ 0, P(0) ≥ 0, C(0) ≥ 0, E(0) > 0.

3. Dynamics analysis

3.1. Positivity and boundedness

In this subsection, we analyze the positivity and boundedness of model (4) to ensure that the model
is well-posed.

Theorem 1. All solutions of model (4) that start in R5
+ = {(S , I, P,C, E) : S > 0, I > 0, P > 0,C ≥

0, E > 0} remain non-negative for all the time.

Proof. Since the right hand side of model (4) is continuous and locally Lipschitzian on C (space of
continuous functions), the solution (S (t), I(t), P(t)) of model (4) exists and is unique on [0, τ), where
0 < τ ≤ +∞ [24]. From the second equation of model (4), we can obtain that

I(t) = I(0) exp
{∫ t

0

(
λ(C)

N
S (s) − (µ + σ)

)
ds

}
,

which implies that when I(0) > 0, I(t) > 0 for t > 0. Note that I(t) may tend to zero when t → ∞. Thus,
we put I(t) ≥ 0. Next, we show that, S (t) > 0, ∀t ∈ [0, τ). If it does not hold, then ∃ t1 ∈ [0, τ) such

that S (t1) = 0,
dS
dt

∣∣∣∣∣
t=t1
≤ 0 and S (t) > 0,∀ t ∈ [0, t1). So, there must be P(t) > 0,∀ t ∈ [0, t1). Suppose
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the statement is not true. Then, ∃ t2 ∈ [0, t1) such that P(t2) = 0,
dP
dt

∣∣∣∣∣
t=t2
≤ 0 and P(t) > 0,∀ t ∈ [0, t2).

From the third equation of (4), we get
dP
dt

∣∣∣∣∣
t=t2
= ϕS (t2) + σpI(t2) > 0,

which is a contradiction to
dP
dt

∣∣∣∣∣
t=t2
≤ 0. So, V > 0,∀ t ∈ [0, t1). Following from the first equation of

(4), we have
dS
dt

∣∣∣∣∣
t=t1
= Λ + σ(1 − p)I(t1) + αP(t1) > 0,

which is a contradiction to
dS
dt

∣∣∣∣∣
t=t1
≤ 0. It shows that S (t) > 0, ∀t ∈ [0, τ).

Next, we claim C(t) ≥ 0, ∀t ∈ [0, τ). Otherwise, ∃ t3 ∈ [0, τ) such that C(t3) = 0,
dC
dt

∣∣∣∣∣
t=t3
< 0 and

C(t) ≥ 0,∀ t ∈ [0, t3). Hence, there must be E(t) ≥ 0,∀ t ∈ [0, t3). If this statement is not true, then

∃ t4 ∈ [0, t3) such that E(t3) = 0,
dE
dt

∣∣∣∣∣
t=t3
< 0 and E(t) ≥ 0,∀ t ∈ [0, t4). From the fifth equation of (4),

we get
dE
dt

∣∣∣∣∣
t=t4
≥ a(t) ≥ 0,

which is a contradiction to
dE
dt

∣∣∣∣∣
t=t2
< 0. So, E ≥ 0,∀ t ∈ [0, t3). Following from the fourth equation of

(4), we have
dC
dt

∣∣∣∣∣
t=t3
= ρNE(t3) ≥ 0,

which is a contradiction to
dC
dt

∣∣∣∣∣
t=t3
< 0. It shows that C(t) ≥ 0, ∀t ∈ [0, τ). Therefore,

S (t),V(t) > 0, I(t) ≥ 0,C(t), E(t) ≥ 0, ∀ t ≥ 0.

This completes the proof.

It is easy to know that, for model
dE
dt
= a(t) − η(t)E(t), t > 0,

E(0) = E0,

(5)

there is a unique continuous periodic solution E∗(t) which is globally asymptotically stable, where

E∗(t) = exp
{
−

∫ t

0
η(s)ds

} (
E0 +

∫ t

0
a(s) exp

{∫ s

0
η(τ)dτ

}
ds

)
. (6)

The study of the dynamics of model (4) requires the introduction of the following set:

Γ =

{
(S , I,V,C, E) ∈ R5

+ : 0 < S + I + V ≤
Λ

µ
, 0 < C ≤ Ĉ, 0 < E ≤ Ê

}
,

where Ê = sup
t∈[0,ω)

E∗(t), Ĉ =
ρΛÊ
µξ

. Γ is a positive invariant set for model (4).
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3.2. The basic reproduction number and threshold dynamics

When the disease dies out, we can get the following system from model (4):

dS
dt
= Λ − µS − ϕS + αP,

dP
dt
= ϕS − µP − αP,

dC
dt
= ρ(S + P)E∗(t) − ξC.

(7)

Then, model (7) with initial condition (S (0), P(0),C(0)) has a unique positive ω-periodic solution
u∗(t) = (S ∗, P∗,C∗(t)), where

S ∗ =
Λ (µ + α)
µ(α + µ + ϕ)

, P∗ =
Λϕ

µ(α + µ + ϕ)
, C∗(t) = C(0)e−ξt +

Λρ

µ

∫ t

0
e−ξ(t−s)E∗(s)ds. (8)

Let X(t) = (I(t),C(t), S (t), P(t), E(t))T and then model (4) admits a unique disease-free ω-periodic
solution

X∗(t) = (0,C∗(t), S ∗, P∗, E∗(t))T,

where E∗(t) is defined as (6), and C∗(t), S ∗(t), P∗(t) satisfy (7).

Remark 1. If a(t) = 0, i.e., the exogenous input rate of the AAP into the environment is zero, it follows
that

lim
t→∞

E(t) = lim
t→∞

E∗(t) = E0 exp
{
−

∫ t

0
η(s)ds

}
= 0,

lim
t→∞

C(t) = lim
t→∞

(
C(0)e−ξt + ρ

∫ t

0
e−ξ(t−s)N(s)E∗(s)ds

)
= 0,

which implies that the AAP is eventually washed out of the environment in its totality. This agrees with
our intuition. Of course, the time for this occurrence could be very long if the washout rate is small.

The basic reproduction number R0 is the number of new infective individuals that are generated
by a single infectious individual in a completely susceptible population. Now, we define the basic
reproduction number R0. Thanks to [25, 26], let F (t, X) be the input rate of newly infected individuals
andV(t, X) be the rate of transfer of individuals. Then,

F (t, X) =


λ(C)

N
S I

0

 , V(t, X) =

 µI + σI

−ρNE + ξC

 .
Then,

F(t) = DF
∣∣∣
X∗(t)
=


β(t)(1 + mC∗(t))S ∗(t)

S ∗(t) + V∗(t)
0

0 0

 ,
V(t) = DV

∣∣∣
X∗(t)
=

 µ + σ 0

0 ξ

 .
Mathematical Biosciences and Engineering Volume 20, Issue 6, 10284–10303.
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We can see that the eigenvalues of −V are the diagonal elements and negative.
Let Y(t, s), t ≥ s be the evolution operator of the linear ω−periodic system

dY
dt
= −V(t)y.

That is, for each s ∈ R, the 2 × 2 matrix Y(t, x) satisfies
d
dt

Y(t, s) = −V(t)Y(t, s), ∀ t ≥ s,

Y(s, s) = I,

where I = diag(1, 1) is the identity matrix. Following [27], let ϕ(s) be ω-periodic in s and the initial
distribution of infectious individuals, so F(s)ϕ(s) is the rate of new infections produced by the infected
individuals who are introduced at time s. When t ≥ s, Y(t, s)F(s)ϕ(s) gives the distribution of those
infected individuals who are newly infected by ϕ(s) and remain in the infected compartments at time
t. Naturally, ∫ t

−∞

Y(t, s)F(s)ϕ(s)ds =
∫ ∞

0
Y(t, t − a)F(t − a)ϕ(t − a)da

is the distribution of accumulative new infections at time t produced by all those infected individuals
ϕ(s) introduced at time previous to t.

Let Cω be the ordered Banach space of all ω-periodic functions from R to R2, which is equipped
with the maximum norm ∥ · ∥ and the positive cone C+ω := {ϕ ∈ Cω : ϕ(t) ≥ 0,∀t ∈ R}. Then, we define
a linear operator L which implies that

(Lϕ)(t) =
∫ ∞

0
Y(t, t − a)F(t − a)ϕ(t − a)da, ∀t ∈ R, ϕ ∈ Cω,

which is called the next infection operator, and the spectral radius of L is defined as the basic
reproduction number

R0 := ρ(L) (9)

for the periodic epidemic model (4).

Furthermore, we can obtain the global threshold dynamics of model (4).

Theorem 2. If R0 < 1, model (4) admits a unique disease-free periodic solution
X∗(t) = (0,C∗(t), S ∗,V∗(t), E∗(t)) which is globally asymptotically stable, while if R0 > 1, it is
unstable. If R0 > 1, there exists a positive constant ζ > 0 such that for any initial values X(0) ∈ Γ, the
solution of model (4) satisfies

lim inf
t→∞

X(t) ≥ (ζ, ζ, ζ, ζ, ζ, ζ).

That is, model (4) is uniformly persistent.

The proof of Theorem 2 is standard, and we omit it here. We refer the reader to the proof of Theorem
3.9 in [28].
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3.3. The special autonomous case

We now focus on the influenza transmission dynamics of model (4) in a special case of β(t) =
β, a(t) = a, η(t) = η. In this case, model (4) can be rewritten as follows:

dS
dt
= Λ − β(1 + mC)

S I
N
− µS − ϕS + σ(1 − p)I + αP,

dI
dt
= β(1 + mC)

S I
N
− µI − σI,

dP
dt
= ϕS + σpI − µP − αP,

dC
dt
= ρNE − ξC,

dE
dt
= a − ηE.

(10)

Model (10) always has a disease-free equilibrium (DFE) X∗ = (0,C∗, S ∗,V∗, E∗), where

C∗ =
ρΛa
µξ η
, S ∗ =

Λ (µ + α)
µ(α + µ + ϕ)

, V∗ =
Λϕ

µ(α + µ + ϕ)
, E∗ =

a
η
.

The basic reproduction number R0 of model (10) is

R0 :=
β (µ + α)

(µ + α + ϕ) (µ + σ)
+

βΛ (µ + α) mρ a
µξ η (µ + α + ϕ) (µ + σ)

. (11)

If R0 > 1, model (10) has an endemic equilibrium (EE) X∗ = (I∗,C∗, S ∗,V∗, E∗), where

I∗ =
Λ(µ + α)(R0 − 1)

µ (pσ + α + µ) R0

,

S ∗ =
Λ (µ + α)

µ (µ + α + ϕ)R0

,

P∗ =
Λ(pσ

(
R0 − 1

)
(µ + α) + ϕ

(
pσR0 + α + µ

)
)

µR0 (pσ + α + µ) (µ + α + ϕ)
,

C∗ = C∗ =
ρΛa
µξ η
,

E∗ = E∗ =
a
η
.

Three eigenvalues of the Jacobian matrix of model (10) at the endemic equilibrium X∗ are
−µ,−ξ,−η, and the other two satisfy the following quadratic equation with respect to ζ:

(pσ+α+µ)ζ2+(µ+α+ϕ)
(
µR0+ pσ+α+σ(R0−1)

)
ζ+(R0−1)(µ+σ)(µ+α+ϕ)(pσ+α+µ) = 0. (12)

Obviously, the solutions of (12), ζ1,2, are less than 0, and hence the endemic equilibrium X∗ of
model (10) is locally asymptotically stable.
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Theorem 3. If R0 > 1, the endemic equilibrium X∗ of model (10) is global asymptotically stable.

Proof. In order to study the globally asymptotical stability of X∗, we consider

dN
dt
= Λ − µN,

dC
dt
= ρNE − ξC,

dE
dt
= a − ηE.

Then, N,C and E approach N∗,C∗ and E∗ as t → ∞, respectively. Asymptotically the second and
third equations of model (10) can be rewritten as

dI
dt
= β(1 + mC∗)

(N∗ − I − P)I
N∗

− µI − σI,

dP
dt
= ϕ(N∗ − I − P) + σpI − µP − αP.

(13)

It follows that model (13) has an interior equilibrium X = (I∗, P∗). Two eigenvalues of the Jacobian
matrix of model (13) at X satisfy (12). Hence X is locally asymptotically stable.

We now prove that model (13) has no periodic orbits. We choose the Dulac function

B(I, P) =
1
IP
.

Let
f (I, P) = β(1 + mC∗)

(N∗ − I − P)I
N∗

− µI − σI,

g(I, P) = ϕ(N∗ − I − P) + σpI − µP − αP.

Then,
∂

∂I
(B f ) +

∂

∂P
(Bg) =

β(1 + mC∗)
N∗P

−
pσI + ϕ(N∗ − I − P)

IP2 −
ϕ

IP
< 0.

According to the Bendixson-Dulac criterion, model (13) has no periodic orbits, so the interior
equilibrium X = (I∗, P∗) is globally asymptotically stable, which completes the proof.

4. Numerical results via influenza disease dynamics

4.1. Data collection

In China, influenza has been classified as a class III statutory reportable disease in the National
Infectious Disease Reporting System. Hospitals and clinics collect nasopharyngeal swabs for each
confirmed case, then send them to a designated laboratory for virus isolation and further identification
and submits the result online within 24 h [17, 29]. The data of ILI cases in Huaian city during the 1st

week of 2019 (the data of 2019 is used for model simulation) to the 12th week of 2020 (the data of
2020 is used to test the model prediction) were derived from the Huaian Center for Disease Control
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and Prevention, which included information about ILI case number, vaccination number and the
demographic data [30]. The ILI case is defined as a person with a sudden onset of fever (≥ 38◦C),
chills, cough and/or sore throat, a generalized feeling of weakness and pain in the muscles, together
with varying degrees of soreness in the head and abdomen. The information regarding the AAP was
gathered from the China Online Air Quality Monitoring and Analysis Platform [31]. The details can
be found in Figure 2.

4.2. The selection of E(t) in the model

In model (4), E(t) is the concentration of the AAP in the environment. For studying the relations
between ILI and the AAP (e.g., PM2.5, PM10, SO2, NO2, O3 and CO), we compute the Spearman’s rank
correlation coefficients between them.

Spearman’s correlation coefficient, the strength of the rank correlation between variables, is given
by

ρs := 1 −
6
∑n

i=1 d2
i

n(n2 − 1)
,

where
∑n

i=1 d2
i represents the sum of the squared differences between x = (x1, x2, · · · , xn) and y =

(y1, y2, · · · , yn) variable ranks, and n is the sample size.
Form Table 2, we can see that the Spearman’s rank correlation coefficients between PM2.5, PM10,

SO2, NO2, O3, CO and ILI are 0.34, 0.40, 0.07, 0.02, -0.17, 0.56, respectively, which indicates that
PM2.5, PM10, SO2, NO2 and CO are positively significantly correlated with the incidence of ILI, while
O3 is negatively significantly correlated with the incidence of ILI. Noting that ρs of CO, PM10 and PM2.5

are the three largest Spearman’s rank correlation coefficients, we choose CO, PM10 and PM2.5 as E(t)
and focus on the effects of these factors on the prevalence of influenza in Huaian, China, respectively.

Table 2. Spearman’s rank correlation coefficients between ILI and the AAP.

PM2.5 PM10 SO2 NO2 O3 CO ILI
PM25 1
PM10 0.86∗ 1
SO2 0.60∗ 0.36∗ 1
NO2 0.82∗ 0.80∗ 0.59∗ 1
O3 −0.36∗ −0.58∗ 0.12∗ −0.44∗ 1
CO 0.73∗ 0.86∗ 0.26∗ 0.57∗ −0.43∗ 1
ILI 0.34∗ 0.40∗ 0.07∗ 0.02∗ −0.17∗ 0.56∗ 1
∗Note: P < 0.05.

4.3. The values of parameters

From the statistical data [30–32], we adopt

Λ = 50508,m = 10−10, µ = 0.0128, σ = 0.485, φ = 0.365, α = 0.15, p = 0.275, ρ = 0.001, ξ = 0.5,
(14)
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and the initial values are taken as S (0) = 49, 885, I(0 = 623, V(0) = 0, C(0) = 100.
To parameterize the model, according to the statistical data of CO, PM10 and PM2.5 in Huaian,

China [31], we use the Matlab function fminsearch with Nelder-Mead algorithm and estimate a(t) and
η(t) via model (5).

1) With ECO(0) = 1.04, we can obtain

aCO(t) = −0.0063 − 0.0344 sin
(
π

26
t + 0.0197

)
, ηCO(t) = 0.0153 sin

(
π

26
t
)
.

2) With EPM10(0) = 107, we can obtain

aPM10(t) = −0.4079 − 8.2514 sin
(
π

26
t − 0.1222

)
, ηPM10(t) = 0.0579 sin

(
π

26
t
)
.

3) With EPM2.5(0) = 76, we can obtain

aPM2.5(t) = −0.1608 − 0.7986 sin
(
π

26
t + 0.1389

)
, ηPM2.5(t) = −0.0525 sin

(
π

26
t
)
.

Substitute the values above into model (4), respectively, and by using the Markov Chain Monte
Carlo (MCMC) method, we can get

1) β CO(t) = 1.6131 sin
(
0.0088 t + 0.9976

)
.

2) β PM10(t) = 1.6135 sin
(
0.0088 t + 0.9972

)
.

3) β PM2.5(t) = 1.6135 sin
(
0.0088 t + 0.9972

)
.

4.4. Model fitting and prediction performance

In numerical experiments, the weekly cumulative number of influenza cases and the values of CO,
PM10 and PM2.5 of Huaian are respectively used to fit the number of infected cases. The model fits
the reported cases in Huaian well generally (see Figure 4). Also, we find a decreasing trend in the
projection results for the first twelve weeks in 2020 (see Figure 4). It should be noted that the model
does not consider any interventions.

To quantify the model’s simulation and prediction performance, denoted by the error between the
statistical data A = (a1, a2, · · · , am) and the model values B = (b1, b2, · · · , bm), we employ four
statistical indices:

1) the correlation coefficient (CC):

CC :=

m∑
i=1

(ai − ā)(bi − b̄)√
m∑

i=1

(ai − ā)2

√
m∑

i=1

(bi − b̄)2

,

where ā =
1
m

m∑
i=1

ai, b̄ =
1
m

m∑
i=1

bi.
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(a) The solutions of model (4) via CO
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(b) The solutions of model (4) via PM10
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(c) The solutions of model (4) via PM2.5

Figure 4. Fitting/Prediction model for the cumulative ILI cases for years 2019 and the first
twelve weeks in 2020, respectively. The red dots are the reported number of ILI, the black
line is the model fitting result, and the blue dotted line is the prediction result.

2) absolute error (AE):

AE :=
1
m

m∑
i=1

(bi − ai) = b̄ − ā.

3) root mean square error (RMSE):

RMS E :=

√√
1
m

m∑
i=1

(bi − ai)2.

4) the distance between indices of simulation and observation (DISO) [33–35]:

DIS O :=
√

(ρ − 1)2 + (AE/ā)2 + (RMS E/ā)2.

The performance is evaluated by the data from the 1st week of 2019 to the 12th week of 2020, and
the results of CC, AE, RMSE and DISO are displayed in Tables 3–5, respectively.

Table 3. Evaluation results of the simulation and prediction of weekly cumulative ILI in
Huaian, China, with CO.

CC AE RMSE DISO

Cumulative ILI cases 1.00 0.00 0.00 0.00
Fitting model 0.999 -73.47 391.34 0.02
Projection model 0.990 -797.09 2209.75 0.12

Figure 4 and Tables 3–5 show that the fitting/predicting results of our model with CO, PM10 and
PM2.5 have a certain reliability and rationality; hence, model (4) can well capture the history of
influenza transmissions in Huaian, China.
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Table 4. Evaluation results of the simulation and prediction of weekly cumulative ILI in
Huaian, China, with PM10.

CC AE RMSE DISO

Cumulative ILI cases 1.00 0.00 0.00 0.00
Fitting model 0.999 -52.81 430.88 0.02
Projection model 0.986 -761.5 2179.23 0.09

Table 5. Evaluation results of the simulation and prediction of weekly cumulative ILI in
Huaian, China, with PM2.5.

CC AE RMSE DISO

Cumulative ILI cases 1.00 0.00 0.00 0.00
Fitting model 0.999 -52.79 430.90 0.02
Projection model 0.986 -61.52 2179.31 0.11

Furthermore, from Table 2, we can also know that PM2.5 is significantly related to CO and PM10,
and the Spearman’s rank correlation coefficients are 0.73 and 0.86, respectively. Hence, for simplicity,
in the remainder, as an example, we only focus on the effect of PM2.5 on the spreading of influenza and
the corresponding control measures.

4.5. Controlling the prevalence of influenza

In this subsection, we will focus on the factors of controlling the prevalence of influenza. As
an example, in Figure 5, we show the relations between the cumulative solutions of model (4) and
parameters ϕ, σ and α. In Figure 5(a), if we decrease ϕ∗ = 0.365 by 5%, i.e., ϕ decreases from ϕ∗

to 0.95ϕ∗ = 0.34675, the solutions of model (4) increase; meanwhile, if we increase ϕ∗ by 5%, i.e.,
ϕ increases from ϕ∗ to 1.05ϕ∗ = 0.38325, the solutions of model (4) decrease. In Figure 5(b), if we
decrease σ∗ = 0.485 by 5%, i.e., σ decreases from ϕ∗ to 0.95σ∗ = 0.46075, the solutions of model
(4) increase; meanwhile, if we increase σ∗ by 5%, i.e., σ increases from σ∗ to 1.05σ∗ = 0.50925, the
solutions of model (4) decrease. In Figure 5(c), if we decrease α∗ = 0.15 by 10%, i.e., α decreases
from α∗ to 0.9α∗ = 0.135, the solutions of model (4) decrease; meanwhile, if we increase ϕ∗ by 10%,
i.e., α increases from α∗ to 1.1α∗ = 0.165, the solutions of model (4) increase. Hence, in order to
control the prevalence of influenza, we must increase the vaccination rate ϕ and the recovery rate σ
and decrease the rate of the vaccine wearing off α.

4.5.1. The effect of PM2.5

In the fourth equation of model (4), parameters ρ and ξ are closely related to the effect of the AAP
(e.g., PM2.5) on the incidence of ILI. The numerical results are shown in Figure 6. In Figure 6(a), if
we decrease ρ∗ = 1 by 50% and 75%, respectively, the solutions of model (4) decrease. In Figure 6(b),
if we decrease ξ∗ = 0.5 by 50%, i.e., α decreases from ξ∗ to 0.5α∗ = 0.5, the solutions of model (4)
increase; meanwhile, if we increase ξ∗ by 50%, i.e., ξ increases from ξ∗ to 1.5ξ∗ = 1.5, the solutions of
model (4) decrease. These results show that the decrease of the uptake coefficient ρ and the increase
of the depletion rate ξ are useful to control the spread of influenza.
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Figure 5. The relations between the solutions of model (4) and parameters (a) ϕ, (b) σ, (c)
α.

On the other hand, in model (2), the term mC(t) describes the impact of the AAP (e.g., PM2.5) on
the transmission rate. In Figure 6(c), we show the relations between the solutions of model (4) with
m. Obviously, m > 0 increases the values of transmission rate λ(C), which results in increases in the
solutions of model (4). In addition, when increasing m∗ = 10−10 by 50%, i.e., m increases from m∗ to
1.5 × 10−10, the solutions of model (4) increase. Hence, the decrease of PM2.5 (measured by m) can
efficiently suppress the influenza outbreak.
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Figure 6. The relations between the solutions of model (4) and parameters (a) ρ, (b) ξ, (c) m.

4.5.2. The effect of the baseline rate

It is widely known that the transmission rate β(t) = b1 sin(b2t + b3) plays an important role in
epidemic model (4), where b1 is called the baseline rate. In Figure 7, we give the relations between the
cumulative solutions of model (4) with the baseline rate b1, which shows that the cumulative influenza
cases increase with the increase of b1, and the decrease of the baseline rate b1 is beneficial to controlling
the incidence of influenza.
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Figure 7. The relations between the solutions of model (4) and the baseline rate b1.

5. Conclusions and discussions

It is now widely believed that ambient particulate air pollution is a key factor in the incidence of
influenza. More different from existing research [3, 4, 13–18], in this work, we have derived an AAP-
dependent dynamical model that incorporates partial immunity and vaccination, and the infection rate
with an AAP-dependent linear effect, and we proved that the basic reproduction number R0 can be
used to govern the threshold dynamics of model (4): If R0 < 1, the influenza disease will go extinct,
while if R0 > 1, model (4) is uniformly persistent, i.e., the influenza disease is always endemic. Based
on the statistical data, via numerical simulations, we find that, in order to control the prevalence of
influenza in Huaian, China, we must raise the vaccination rate ϕ (see Figure 5(a)) and the recovery
rate σ (see Figure 5(b)) and reduce the rate of the vaccine wearing off α (see Figure 5(c)), the uptake
coefficient ρ (see Figure 6(a)), the depletion rate ξ (see Figure 6(b)), the effect coefficient of the AAP
on transmission rate m (see Figure 6(c)) and the baseline rate b1 (see Figure 7). The theoretical and
numerical results show that the dynamics of model (4) provides a profile of the prevalence of influenza
in Huaian, China and gives us some useful information of controlling the influenza.

It is worthy to note that, decreasing/increasing the values of the parameters in model (4) or model
(10) is complex system engineering, involving the government’s intervention strategies and human
behavior. In reality, what we can do is change our behavior, especially, changing our traveling plan and
staying at home to reduce the contact rate β(t) and thus decrease the incidence rate λ(C), or increase
the close-contact distance and wear protective masks to reduce the influence of the AAP (measured by
m) on the influenza transmission.
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