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Abstract: Background: Epigenetic changes, such as DNA methylation and miRNA-target gene 
mechanisms, have recently emerged as key provokers in Ischemic stroke (IS) onset. However, 
cellular and molecular events harboring these epigenetic alterations are poorly understood. Therefore, 
the present study aimed to explore the potential biomarkers and therapeutic targets for IS. Methods: 
miRNAs, mRNAs and DNA methylation datasets of IS were derived from the GEO database and 
normalized by PCA sample analysis. Differentially expressed genes (DEGs) were identified, and GO 
and KEGG enrichment analyses were performed. The overlapped genes were utilized to construct a 
protein-protein interaction network (PPI). Meanwhile, differentially expressed mRNAs and miRNAs 
interaction pairs were obtained from the miRDB, TargetScan, miRanda, miRMap and miTarBase 
databases. We constructed differential miRNA-target gene regulatory networks based on 
mRNA-miRNA interactions. Results: A total of 27 up-regulated and 15 down-regulated differential 
miRNAs were identified. Dataset analysis identified 1053 and 132 up-regulated and 1294 and 9068 
down-regulated differentially expressed genes in the GSE16561 and GSE140275 datasets, 
respectively. Moreover, 9301 hypermethylated and 3356 hypomethylated differentially methylated 
sites were also identified. Moreover, DEGs were enriched in terms related to translation, peptide 
biosynthesis, gene expression, autophagy, Th1 and Th2 cell differentiation, primary 
immunodeficiency, oxidative phosphorylation and T cell receptor signaling pathway. MRPS9, 
MRPL22, MRPL32 and RPS15 were identified as hub genes. Finally, a differential miRNA-target 
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gene regulatory network was constructed. Conclusions: RPS15, along with hsa-miR-363-3p and 
hsa-miR-320e have been identified in the differential DNA methylation protein interaction 
network and miRNA-target gene regulatory network, respectively. These findings strongly posit 
the differentially expressed miRNAs as potential biomarkers to improve ischemic stroke 
diagnosis and prognosis. 

Keywords: ischemic stroke; DNA methylation; miRNA-target; regulatory network; PPI 
 

1. Introduction  

Stroke, also known as cerebral apoplexy, is a brain disease caused by obstruction of blood 

drainage and poor blood flow to the brain and is among the leading causes of mortality and 

disability [1–5]. An inadequate supply of oxygen and nutrient-rich blood to the brain can lead to 

reduced blood flow and cell death. Strokes have two main subtypes: ischemic stroke (IS) due to lack 

of blood flow, and hemorrhagic stroke (hemorrhagic stroke) develops due to bleeding [6,7]. Ischemic 

stroke accounts for about 80% of the 780,000 new stroke cases worldwide, making stroke one of the 

deadliest diseases [8,9]. Stroke is the third major cause of disability worldwide and the second 

leading mortality factor following ischemic heart disease [10]. With the onset of stroke, the patient 

requires long-term follow-up and medication, which imposes a substantial mental, financial and time 

strain. Several risk factors have been found, including smoking, diabetes, hyperlipidemia and 

hypertension. However, the precise molecular pathways underlying IS have not been fully elucidated. 

A broader literature hailed early IS diagnosis as an improvement factor in patient outcomes [11]. 

Although mainstay treatment approaches for acute ischemic stroke (AIS) have improved survival, 

narrow treatment time windows have prompted researchers to search for new treatments [12–16]. 

This information demonstrates the urgency and significance of elucidating the underlying 

mechanisms of IS to probe the novel biomarkers and therapeutic targets. 
MicroRNAs (miRNAs) is a class of small RNAs constituting about 22–24 conserved 

nucleotide sequence, which may couple to its target complementary messenger RNAs (mRNAs) 
sequences. Generally, miRNAs are post-transcriptional regulators of translation or target mRNA 
degradation [17]. A single miRNA may regulate multiple target genes, and a single gene can be 
regulated by multiple miRNAs [18]. Over 2,000 miRNAs are identified in humans, which are 
presumed to regulate approximately 33% of human genes [19]. Therefore, changes in miRNAs can 
influence many diseases. Multiple research hailed miRNAs as fundamental constituent to play 
imperative organic roles in cell development, expansion, differentiation, apoptosis and remodeling of 
damaged and healthy tissue [20,21]. 

Recent advents in research techniques have led to a thorough understanding of the relationship 
between epigenetics and disease. DNA methylation has been identified as a key area of epigenetics [22], 
and it is most prevalent on the CpG islands, basically in the human genome’s proximal promoter 
regions [23], which changes an individual’s natural function by directing gene expression or genomic 
stability [24]. Two gene promoters can be protected from transcription factors, which hamper the 
bindings of transcription factor binding and modify chromatin structure. Gene promoters are 
fundamental cis-acting regulatory elements in gene expression initiation and regulation [25]. DNA 
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methylation takes place and, in some instances, can even be detected before disease manifestation. 
This vital finding in the current study proposes DNA methylation to be utilized as a marker for the 
early screening of fundamental infections [26]. Therefore, studying differential DNA methylation 
sites is of great significance for early screening and treatment of IS. 

In this study, we examined differentially expressed miRNAs, differentially expressed genes and 
differential DNA methylation sites obtained between ischemic stroke patients and healthy controls 
based on five published gene datasets in the GEO database. Furthermore, we identified the 
protein-protein interaction network of differentially DNA-methylated genes in IS by DNA 
methylation analysis and identified a potential differentially expressed miRNA-target gene 
regulatory network. 

2. Materials and methods 

2.1. Data sources and preprocessing 

The unstandardized Series Matrix File of the corresponding dataset was downloaded from Gene 
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/). Differential analysis was performed 
to elucidate the ischemia DNA methylation and （miRNA-mRNA）regulatory network in stroke. The 
miRNA data of GSE55937 was generated from GPL163845, including 24 IS and 24 control samples. 
Gene expression data included the GSE16561 dataset from GPL6883 and the GSE140275 dataset 
from GPL16791. The GSE16561 dataset includes 39 IS samples and 24 control samples. The 
GSE140275 dataset includes 3 IS samples and 3 control samples. The obtained expression data were 
quantile normalized [28] using Limma [27] package (limma_3.50.3). At that point, log2 logarithmic 
change is performed to get the gene expression network of the test group finally. DNA methylation 
data includes the datasets GSE69138 and GSE77056 generated from GPL13534. IS and control 
samples were unavailable in the same dataset. Thus, we combined 404 IS samples from GSE69138 
and 24 control samples from GSE77056. 

2.2. Sample correlation analysis 

Principal Component Analysis (PCA) algorithm reduces the data dimension in an unsupervised 
feature learning and classifies data based on the expression of samples. PCA analysis was used to 
reduce the dimension of the data, and the intuitive distribution of samples between the control and 
experimental groups was obtained. We used the genes exhibiting the significant mean difference 
(ANOVA) across all samples (P value < 0.05) for PCA analysis and drew the PCA map (all genes 
were used for the PCA map without repeated samples). 

2.3. Differentially expressed gene screening 

The samples were grouped, and the differentially expressed miRNAs and mRNAs were 
calculated using the R package Limma [27]. The threshold was set as |log2(Fold Change)| > 1.2 and 
P-value < 0.05 to screen differentially expressed miRNAs. Next, the GSE16561 dataset was analyzed 
with |log2(Fold Change)| > 1.2 (P-value < 0.05) as a threshold to screen DEGs. The GSE140275 
dataset screened DEGs by |log2(Fold Change)| > 1.5 and P-value < 0.05. Moreover, Differential 



10267 

Mathematical Biosciences and Engineering  Volume 20, Issue 6, 10264–10283. 

DNA methylation analysis was also performed on the DNA methylation Beta value using the limma 
package, and | log2 screened the number of differential DNA methylation sites (Fold Change)| > 1.5 
and P-value < 0.05. 

2.4. miRNA and gene regulatory network analysis 

miRDB v1.0 [29], TargetScan v7.2 [30], miRanda v1.2 [31], miRMap v1.1 [32] and miTarBase 
v8.0 [33] databases were used to find the relationship between down-regulated miRNA-upregulated 
mRNA and up-regulated miRNA-downregulated mRNA. The miRNA-mRNA regulatory network 
map was constructed using Cytoscape [34]. 

2.5. DNA methylation combined expression profiling 

Gene expression is typically suppressed by DNA methylation but boosted by hypomethylation. 
The significant differential DNA methylated genes were identified. Next, the hypermethylated genes 
and continuously down-regulated genes, and the hypomethylated genes and continuously 
up-regulated genes were intersected to obtain high methylation and low expression, and low 
methylation and high expression genes. These genes are most likely to have significant changes in 
their expression due to DNA methylation regulation.  

2.6. PPI network prediction 

The online tool STRING v10.5 (https://string-db.org/) was utilized to build the protein-protein 
interaction (PPI) network of differential genes and DNA-methylated genes [35]. Required 
Confidence (combined score) > 0.7 was considered the PPI threshold. 

Cytoscape v3.8 was used to analyze the topological structure of the PPI network. As most 
biological networks comply with the properties of scale-free networks. Hence, the analysis of the 
Connectivity Degree in network statistics was used to obtain the important nodes involved in protein 
interaction in the PPI network, namely the hub protein [36]. The node analysis was performed based 
on the obtained interaction network, and the hub protein was identified using the scale-free nature of 
the interacting protein network. 

2.7. Gene functional enrichment analysis 

Gene Ontology (GO) [37] and the KEGG pathway database (v86.1) [38] were used for pathway 
functional enrichment analysis of the above DEGs in the PPI network. Fisher’s exact test was applied 
to elucidate the most enriched functional pathways. Each analysis responded to a statistical esteem 
P-value to show significance. A lower P-value leads to a higher significance [39]. 

2.8. Statistical analysis 

Comparisons between the two groups were statistically performed using the t-test or one-way 
analysis of variance (ANOVA). The statistical analysis was performed using R 4.2.1 (R Foundation 
for Statistical Computing, Vienna, Austria) and SPSS 26.0 (IBM, Armonk, NY, USA) software. 
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Statistical significance was defined as P < 0.05. Continuous data were expressed as mean ± 
standard deviation (SD). 

3. Results 

This study was based on the differences between IS patients and normal people. At the same 
time, its potential regulatory mechanism was explored from the perspective of miRNA and DNA 
methylation. The research route of this research is shown in Figure 1. 

 

Figure 1. The overall flow chart analysis. 

3.1. Identification of differentially expressed miRNAs 

First, we evaluated the miRNA-sequencing samples by PCA and segregated samples into IS and 
their control groups (Figure 2A), which validated the samples’ usability. Subsequently, we analyzed 
the expression of miRNAs in IS and identified differentially expressed miRNAs in IS samples. The 
findings revealed that 27 miRNAs were up-regulated and 15 miRNAs were down-regulated in IS 
samples (Figure 2B). Clustering analysis revealed that differentially expressed miRNAs could be 
divided into two clusters of IS and control samples (Figure 2C). Among them, in IS samples, the 
up-regulated miRNAs included hsa-miR-1271-5p, hsa-miR-1285-5p, hsa-miR-140-3p, 
hsa-miR-145-5p and hsa-miR-200c- 5p and so on (Table 1). The down-regulated miRNAs 
included hsa-miR-145-5p, hsa-miR-99b-5p, hsa-miR-330-3p, hsa-miR-409-3p and 
hsa-miR-339-3p (Figure 2B). 
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Table 1. Partial results of up-regulated miRNAs. 

miRNA log2FC p_value q_value Ctr IS 

hsa-miR-1271-5p 0.5827 0.0490 0.7037 3.3427 3.9253 

hsa-miR-1285-5p 0.4305 0.0203 0.7037 6.0413 6.4718 

hsa-miR-140-3p 0.3598 0.0016 0.6764 12.0492 12.4090 

hsa-miR-145-5p 0.6165 0.0017 0.6764 8.1832 8.7997 

hsa-miR-200c-5p 0.4733 0.0341 0.7037 4.2747 4.7480 

Figure 2. Results of IS differentially expressed miRNAs. A: sample PCA results; B: 
volcano plot of differentially expressed miRNAs; C: heat map of differentially 
expressed miRNAs. 

3.2. Identification of differentially expressed genes  

Similarly, the gene expression data from GSE16561 and GSE140275 datasets were evaluated by 
the PCA method, revealing that the IS and their control samples of the two datasets can be separated 
(Figures 3A and 2B), recommending the samples for further analysis. Subsequently, we analyzed the 
gene expression pattern in the GSE16561 dataset and found that 1053 DEGs were up-regulated, 
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whereas 1294 DEGs were down-regulated in IS samples (Figure 3C, Table 2). GSE140275 dataset 
analysis identified 132 up-regulated and 9068 down-regulated DEGs (Figure 3D, Table 3). DEGs 
clustering showed that GSE16561 and GSE140275 datasets were segregated into clusters based on 
IS and control samples (Figure 3E,F). Among them, for the GSE16561 dataset, in IS samples, the 
up-regulated genes include ARG1, MMP9, S100A12, ORM1 and HLA-DRB1, etc., and the 
down-regulated genes include CD6, MAL, CCR7, VPREB3 and HLA−DQB1 and so on (Figure 3C). 
In addition, HBZ, SLC4A1, HBB, HBG1 and AC104389.5 were up-regulated in the GSE140275 
dataset, whereas RPS25, RGS18, RPL39, CTSS and EEF1A1 were found to be down-regulated 
(Figure 3D). 

Table 2. Partial results of differential expression analysis of GSE16561. 

Gene_Name log2FC p_value q_value Ctr_GSE16561 IS_GSE16561 

AADACL1 0.2924 9.73E-05 1.34E-03 -0.1676 0.1249 

ABCA1 0.7927 1.40E-05 3.02E-04 -0.3886 0.4041 

ABCC3 0.4440 1.38E-03 1.05E-02 -0.3074 0.1366 

ABHD5 0.6791 1.73E-07 1.26E-05 -0.4232 0.2559 

ABLIM3 0.3542 1.94E-04 2.30E-03 -0.2771 0.0770 

Subsequently, the DEGs were integrated, and the interaction between up-regulated and 
down-regulated DEGs was examined. The findings revealed that 15 genes were up-regulated in both 
GSE16561 and GSE140275 datasets (Figure.4A), including ADIPOR1, ATP6V0C, BLVRB, CA1, 
CHPT1, FECH, GRINA, HBM, HBQ1, MBNL3, MBOAT2, MKRN1, PLEK2, RNF10 and TSPAN5. 
Furthermore, 811 genes were down-regulated in both datasets (Figure 4B), including AARS, 
ABHD14A, ABHD14B, ABLIM1, ACACB, ACAD11, ACAT1, ACOT4 and ACP1, etc. 
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Figure 3. Results of IS differentially expressed genes. A: GSE16561 sample PCA result 
graph; B: GSE140275 sample PCA result graph; C. GSE16561 sample differentially 
expressed gene volcano plot; D. GSE140275 sample differentially expressed gene 
volcano plot; E. GSE16561 sample differentially expressed gene heat map; F: 
GSE140275 sample Differentially expressed genes heat map. 
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Figure 4. Results of integration analysis of differentially expressed genes. A: Venn 
diagram of the intersection of up-regulated genes in GSE16561 sample and GSE140275 
sample; B: Venn diagram of the intersection of down-regulated genes in GSE16561 
sample and GSE140275 sample; C. Top 10 items of GO-BP enrichment results of 
down-regulated intersection genes; D. Down-regulated intersection genes GO-BP 
enrichment results of GO-BP and the corresponding gene circle map; E. The top 10 items 
of GO-CC enrichment results of down-regulated intersection genes; F: The top 10 items 
of GO-MF enrichment results of down-regulated intersection genes. 

Furthermore, intersecting genes were subjected to Gene ontology and KEGG functional 
enrichment analyses (Tables 4 and 5). Gene functions were divided into 3 categories: Biological 
Process (BP), Molecular Function (MF) and Cellular Component (CC). The GO-BP entries include 
cellular nitrogenous compounds metabolic process, translation, peptide biosynthetic process, gene 
expression, etc. (Figure 4C). The downregulated genes attributed to these pathways included RPL19, 
RPL4, MRPS18B, EIF4B, EEF1G and PPA1. Notably, GO-BP entry was enriched in 
chaperone-mediated autophagy. The enriched GO-CC entries include the Ribonucleoprotein complex, 
Ribosome, Mitochondrial envelope, Mitochondrial membrane and Mitochondrial inner membrane, 
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etc. (Figure 4E). Entries such as Structural constituent of ribosome, RNA binding, NAD(P)H 
Oxidoreductase activity, and NADH dehydrogenase (ubiquinone) activity were mainly enriched in 
GO-CC (Figure 4F). As for the enrichment of Ribosomes in the KEGG pathway, Primary 
immunodeficiency, Oxidative phosphorylation, Th1 and Th2 cell differentiation, Parkinson's disease 
and T cell receptor signaling pathway, etc. (Figure 5A). Among them, the Ribosome functional 
pathways contain down-regulated genes RPS23, RPS26, RPL17 and RPL19, etc. (Figure 5B). In 
addition, the most significant enriched KEGG pathway is Ribosome (Figure 5C). 

 

Figure 5. KEGG enrichment analysis results of differentially expressed genes. A: Top 10 
entries of KEGG pathway enrichment results of down-regulated intersection genes; B: 
KEGG enrichment pathway of down-regulated intersection genes and corresponding 
gene circle map; C. Schematic diagram of KEGG enrichment pathway hsa03010. 

Table 3. Partial results of differential expression analysis of GSE140275. 

Gene_Symbol log2FC p_value q_value Ctr_GSE140275 IS_GSE140275 

ABCB10 1.0261 0.0083 0.0131 2.9508 3.9770 

AC104389.5 4.5460 0.0143 0.0215 5.8358 10.3818 

ACKR1 0.7957 0.0006 0.0013 0.0614 0.8571 

ADIPOR1 2.2693 0.0002 0.0006 5.1251 7.3944 

AHSP 2.4005 0.0039 0.0067 1.0493 3.4498 
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Table 4. GO enrichment part result table. 

ID Term p_value FDR Enrichment_Score 

GO: 0034641 Cellular nitrogen_compound_... 1.59E-24 5.97E-21 23.79833 

GO: 0006412 Translation 2.56E-24 5.97E-21 23.59214 

GO: 0043043 Peptide biosynthetic process 9.51E-23 1.48E-19 22.02163 

GO: 0010467 Gene expression 2.45E-22 2.86E-19 21.61022 

GO: 0044237 Cellular metabolic process 8.27E-21 7.73E-18 20.08245 

Table 5. KEGG enrichment part result table. 

ID Term p_value FDR Enrichment_Score 

hsa03010 Ribosome 1.83E-17 5.36E-15 16.7376 

hsa05340 Primary immunodeficiency 2.39E-07 2.39E-05 6.6217 

hsa00190 Oxidative phosphorylation 2.45E-07 2.39E-05 6.6108 

hsa04658 Th1 and Th2 cell differentiation 7.83E-07 4.82E-05 6.1061 

hsa05012 Parkinson disease 8.22E-07 4.82E-05 6.0852 

3.3. Identification of differential DNA methylation sites 

A total of 404 IS, and 24 control DNA methylation samples were used for differential DNA 
methylation site analysis. PCA was performed to ensure the quality of the samples (Figure 6A). The 
findings were clustered into two categories, which were identified in subsequent analyses. The 
findings revealed 12,657 differentially DNA methylation sites in IS sample, including 9301 
hypermethylated sites and 3356 hypomethylated sites (Figure 6B). Further analysis revealed two 
different clusters of differentially DNA methylation sites (Figure 6C), which were: C1orf114, 
NFKBIL1, AGA, IL1RAPL2 and HMGN5 (Table 6). 

Table 6. Partial results of differential DNA methylation analysis. 

Gene_Name log2FC p_value q_value IS Ctr 

C1orf114 0.5939 0.000144 0.000461 -4.7939 -5.3877 

NFKBIL1 0.7167 1.95E-12 4.71E-11 -3.1213 -3.8380 

AGA 1.1932 7.80E-10 1.02E-08 -2.6137 -3.8069 

IL1RAPL2 1.1559 2.06E-05 8.35E-05 -2.6677 -3.8236 

HMGN5 2.2856 3.10E-05 0.000119 -2.8330 -5.1186 
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Figure 6. IS differential DNA methylation site results. A: sample PCA result map; B: 
differential DNA methylation clustering volcano plot; C: differential DNA methylation 
heat map. 

3.4. Combined analysis of differential DNA methylation and differential genes 

We further conducted an integrative analysis of differential genes and differential DNA 
methylation sites, and intersecting genes demonstrating both differential DNA methylation site and 
expression were obtained for further analysis. Here, the consensus genes of promoter up-regulated, 
hypomethylated, and promoter down-regulated hypermethylated were found separately for 
subsequent analysis. The results showed two genes intersecting: IS up-regulated and hypomethylated 
genes (Figure 7A), including FECH and MKRN1. Similarly, 144 intersecting genes were found 
between IS-downregulated genes and hypermethylated genes (Figure 7B), including AARS, 
ABLIM1, AKR1B1, ANAPC1, ANGEL2, ARID5B, BACH2, BAG3, BYSL, CAMTA1, CBLB, 
CBR4, CCND2, CD320, CD6 and CD69, etc. 



10276 

Mathematical Biosciences and Engineering  Volume 20, Issue 6, 10264–10283. 

 

Figure 7. Results of combined analysis of differential DNA methylation and differential 
genes. A: Venn diagram of up-regulated genes and hypomethylated genes; B: Venn 
diagram of down-regulated genes and hypermethylated genes; C. PPI network diagram of 
genes at the intersection of differentially expressed and differentially methylated genes; 
D. Display of up-regulated genes on the PPI network Figure, blue is down-regulated 
genes, red are up-regulated genes; E. Top 10 entries of GO-BP enrichment results of 
PPI network genes; F: Top 10 entries of KEGG pathway enrichment results of PPI 
network genes. 

Table 7. Partial gene connectivity table in PPI network. 

name degree name degree name degree Name degree 

MRPS9 13 MRPS30 10 RPL32 9 BYSL 9 

MRPL22 12 MRPS31 10 RPS4X 9 POLR1C 7 

MRPL32 12 MRPL46 10 MRPL52 9 RPMS17 7 

RPS15 11 MRPL49 10 WDR75 9 DKC1 6 

MRPS21 10 OXA1L 9 RPS23 9 DDX24 5 
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Table 8. GO enrichment part results table. 

ID Term p_value FDR Enrichment_Score 

GO:0034641 Cellular nitrogen_compound... 9.29E-16 1.40E-12 15.03193 

GO:0044237 Cellular metabolic_process 1.73E-14 9.38E-12 13.76312 

GO:0006412 Translation 1.86E-14 9.38E-12 13.72949 

GO:0043604 Amide biosynthetic process 3.34E-14 1.26E-11 13.47680 

GO:0043043 Peptide biosynthetic process 5.34E-14 1.61E-11 13.27226 

Table 9. KEGG enrichment part result table. 

ID Term p_value FDR Enrichment_Score 

hsa03010 Ribosome 3.74E-06 0.0004 5.4272 

hsa03018 RNA degradation 1.39E-03 0.0755 2.8584 

hsa00061 Fatty acid biosynthesis 5.39E-03 0.1716 2.2682 

hsa04110 Cell cycle 7.06E-03 0.1716 2.1513 

hsa00190 Oxidative phosphorylation 9.00E-03 0.1716 2.0457 

In addition, a PPI network was constructed, and Hub genes were identified (Figure 7C) 
(Table 7). Finally, the PPI network contains 75 hub genes and 145 pairs of protein-protein 
interactions. Among the DEGs, 2 genes were up-regulated, and others were down-regulated. Among 
Hub genes, the MRPS9 constituted the highest gene connection degree of 13, followed by the 
MRPL22 and MRPL32 having 12 each, and RPS15 with 11. Subsequently, the expression of each 
gene in the PPI network was examined (Figure 7D), and most down-regulated genes are connected to 
form a larger sub-network to interact and function. In addition, small sub-networks consist of two or 
more different genes, showing interactions between them. Finally, the extracted genes in the PPI 
network were subjected to GO and KEGG enrichment analysis (Tables 8 and 9). The results showed 
that the significantly enriched GO-BP entries included the cellular nitrogen compound metabolic 
process, Cellular metabolic process, Translation, Amide biosynthetic process, Peptide biosynthetic 
process and Translational termination, etc. (Figure 7E), while the significantly enriched KEGG 
pathway, including ribosome, RNA degradation, fatty acid biosynthesis, Cell cycle, Oxidative 
phosphorylation and Spliceosome, etc. (Figure 7F). 

3.5. miRNA-target gene regulatory network in IS 

The regulatory relationship between down-regulated miRNA-up-regulated genes and 
up-regulated miRNA-down-regulated genes took the intersection genes of the differential genes in 
the GSE16561 and GSE140275 datasets, and the differential miRNAs identified by the above 
analysis, according to the miRDB, TargetScan, miRanda, miRMap and miTarBase databases. 
Differential miRNAs with corresponding differential genes (Table 10). Taking the differential 
miNRA hsa-miR-1271-5p as an example, the target genes ZCCHC3, LRIG1 and EOMES were 
identified in the miRDB, TargetScan, miRanda and miRMap databases. We took the least correlated 
pairs found in the database for subsequent analysis. Using Cytoscape, based on the relationship 
between differentially expressed genes and differential miRNA target genes, we drew a 
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miRNA-target gene regulatory network diagram in IS. In all, we obtained 242 pairs of miRNA-target 
genes in the network. The network contains 26 miRNAs and 242 mRNAs (Figure 8). The network 
mainly consists of up-regulated miRNAs and down-regulated genes to construct a larger sub-network, 
including the hsa-miR-1271-5p and its target genes ZCCHC3, LRIG1, and EOMES. Among them, 
EOMES is also the target of hsa-miR-363-3p. At the same time, the sub-network also includes 
up-regulated miRNAs hsa-miR-641, hsa-miR-425-3p, hsa-miR-200c-5p and its target genes, and so on. 

Table 10. Partial miRNA-gene relationship table. 

miRNA Target_Gene miRDB TargetScan miRanda miRMap miTarBase 

hsa-miR-1271-5p ZCCHC3 1 1 1 1 0 

hsa-miR-1271-5p NCALD 1 1 0 1 0 

hsa-miR-1271-5p PURA 1 0 0 0 0 

hsa-miR-1271-5p LRIG1 1 1 1 1 0 

hsa-miR-1271-5p EOMES 1 1 1 1 0 

Note: 1 means that the miRNA and Target_Gene relationship pair exists in the database, 0 means 
that it does not exist.  

 

Figure 8. Regulatory network diagram of differentially expressed miRNAs and 
differentially expressed genes. Red is up-regulated, blue is down-regulated, circles are 
genes and diamonds are miRNAs. 

4. Discussion 

Ischemic stroke is an intricate disease with high mortality rates and long-term impairment 
consequences. Despite efforts to reduce stroke risk factors and management, recent years have seen 
an increase in stroke cases [40]. Therefore, intense interest has focused on identifying new 
intermediate-risk biomarkers. The involvement of epigenetics, especially DNA methylation, is still 
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mostly unknown. Shen et al. stated MTRNR2L8 methylation as a promising diagnostic and 
prognostic target for stroke [41]. According to research by Fujii et al., Daily consumption of a lot of 
vegetables may diminish the ABCA1 gene methylation and reduce cholesterol and atherosclerosis. 
Interestingly, only women validated the research [42]. The flow chart for the current study showed 
that differential miRNA, differential genes and differentially methylated sites were obtained. The 
intersecting genes were then subjected to the PPI network analysis for hub genes identification. The 
GO terms and KEGG pathways enrichment analysis was performed to find the enrichment pathway 
the hub genes are involved in. our findings revealed that MRPS9, MRPL22, MRPL32 and RPS15 
were identified as the potential diagnostic and therapeutic target for IS progression.  

Recently, with the advancement of technology, the relationship between IS and genome-wide 
methylation has been steadily affirmed [43]. This study also constructed a differential 
methylation-related PPI network followed by hub genes identification. This research revealed RPS15 
as the integrative hub gene responsible for IS progression. Our results are concordant with the 
findings of the previous studies reporting RPS15 as a potential marker gene of AIS, and this 
conclusion was verified by quantitative qPCR experiments [44]. PPI network showed that RPS15 
interacted with RPS23, MRPS9 and other proteins.  

The differential gene analysis revealed that ARG1, MMP9, S100A12, ORM1 and HLA-DRB1 
genes were differentially expressed between IS and the control patient group in the GSE16561 
dataset. This confirms the findings of Deng et al., which stated that HLA-DRB1 and HLA-DQB1 
gene's prominence in IS pathogenesis leading to the connection of DNA methylation and gene 
expression, the expression of HLA-DRB1 and HLA-DQB1 genes were lower in the IS group as 
compared to control groups [45]. In addition, a mouse stroke model study showed that BAG3 is 
involved in the molecular switch from the ubiquitin-proteasome to the autophagy pathway, which has 
a particular impact on stroke [46]. In the current study, BAG3 was also present in down-regulated 
hypermethylated promoter-related genes.  

Furthermore, noncoding RNAs play an important role in many diseases [47,48]. Bioinformatics 
analysis is a powerful tool for finding novel targets [49]. A recent study has shown that the 
expression of miR-363 and miR-487b is elevated in AIS patients [50]. Our miRNA-target gene 
network also revealed that hsa-miR-363-3p was up-regulated in IS patients and regulated target 
genes MED19, FNBP4, CD69, etc. Additionally, IS patients had lower levels of the miRNAs 
hsa-miR-320e and hsa-miR-320d, which may act as early indicators for acute stroke in humans. 
Stroke has also been linked to the hypomethylation and altered expression of the miR-223 gene, a 
member of the same miR genecroRNA family we are studying [51]. Similarly, the miRNA-target 
gene network in this study also showed that hsa-miR-320e was down-regulated in IS patients and 
regulated the target gene RNF10. This corroborates the reliability of our miRNA-target gene network 
analysis. Meanwhile, in the regulatory network, miRNAs, including hsa-miR-363-3p and 
hsa-miR-320e, may serve as biomarkers for detecting and diagnosing ischemic stroke. 

Although this study has been analyzed in sufficient detail, there are some limitations of our 
study. First, there are few DNA methylation samples included in the study. The samples from 
ischemic stroke and healthy controls in this study came from two datasets; therefore, there may be 
differences in methylation samples from different sources. Second, DNA methylation's 
protein-protein interaction networks may have a role in the pathogenic phase of IS; however, this has 
not been well investigated and established in vivo or in vitro. Finally, the expression changes of the 
miRNA-target gene network in IS patients also need to be further experimentally verified. 
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The current study comprehensively analyzed the expression and related regulatory mechanisms 
on a public dataset of ischemic stroke from GEO. The overall comprehensive analysis enabled us to 
obtain the PPI network and differential miRNA-target gene regulatory network of IS differentially 
DNA methylation genes, hub genes in the PPI network, and miRNAs in the miRNAs regulatory 
network as new and reliable potential markers to predict the prognosis of IS and reveal its possible 
regulatory mechanisms. 

5. Conclusions 

Collectively, our findings yielded a series of differentially expressed miRNAs, DEGs and 
differentially expressed DNA methylation-related genes, which may play crucial roles in the 
progression of IS, by integrating differentially expressed correlation analysis by analyzing the 
interaction with other proteins, PPI network of IS differential DNA methylation gene and differential 
miRNA target gene regulatory network was obtained. In conclusion, the hub gene and miRNAs 
should be considered a potential IS prognostic detection target and therapeutic direction. 
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