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Abstract: To quickly and accurately realize the fault diagnosis of analog circuits, this paper introduces 
the graph neural network method and proposes a fault diagnosis method for digital integrated circuits. 
The method filters the signals present in the digital integrated circuit to remove noise signals and 
redundant signals and analyzes the digital integrated circuit characteristics after the filtering process 
to obtain the digital integrated circuit leakage current variation. To the problem of the lack of a 
parametric model for Through-Silicon Via (TSV) defect modeling, the method of TSV defect modeling 
based on finite element analysis is proposed. The common TSV defects such as voids, open circuits, 
leakage, and unaligned micro-pads are modeled and analyzed by using industrial-grade FEA tools Q3D 
and HFSS, and the equivalent circuit model of resistance inductance conductance capacitance (RLGC) 
for each defect is obtained. Finally, the superior performance of this paper in fault diagnosis accuracy 
and fault diagnosis efficiency is verified by comparing and analyzing with the traditional graph neural 
network method and random graph neural network method for active filter circuits. 
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1. Introduction  

With the development of the national economy, people's demand for power supply reliability is 
increasing, and the distribution network is an important link between the power system and users, so 
when the distribution feeder fault occurs, whether the fault line can be found in time, and timely 
restoration of power supply is an important guarantee to improve the reliability of power supply [1]. 
According to statistics, the distribution network line fault single-phase grounding fault rate accounted 
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for about 80% of the total fault, the advantage of a small-current grounding system is a single-phase 
grounding fault, because the grounding phase current is not large so that the line between the three 
phases of the electrical skin remains symmetrical, the load power supply temporarily does not affect. 
The system can continue to run for 1 to 2 hours, without immediately removing the grounding phase, 
the circuit breaker does not have to immediately jump Min [2]. This ensures an uninterrupted 
continuous power supply to users and improves the reliability of the power supply. However, as the 
scale of the distribution network continues to grow, the line continues to increase, and the number of 
cable lines and Weilian mixed lines is also increasing, when a single-phase fault occurs, the grounding 
capacitance current also increases, a long time with fault operation, so that the arc grounding caused 
by the system overvoltage is too high. The arc is difficult to self-extinguish if the fault cannot be 
removed in time, will damage equipment, heavy power plant unit shutdown, process interruption, and 
other malignant accidents, and damage the safe operation of the system. 

As the feature size of transistors continues to shrink, the development of integrated circuits is 
becoming a bottleneck. In the face of the demand for IC development and innovation, Three-
dimensional Integrated Circuit (3D IC) based on Through-Silicon Via (TSV) interconnects multilayer 
wafers vertically through the TSV structure to achieve higher integration, smaller size, lower latency, 
and power consumption [3]. It is the trend of next-generation ICs with higher integration, smaller size, 
lower latency, and power consumption. In 3D ICs, TSV is a new type of interconnect structure with an 
immature process, which is prone to multiple failures during production and wafer binding. Testing 
and troubleshooting TSVs during the Wafer Probe stage can ensure the validity and reliability of TSVs, 
improve the yield of 3D ICs, and reduce manufacturing costs. Due to the technical difficulty of pre-
binding TSV testing, it is difficult to obtain sufficient fault information for troubleshooting at this stage, 
so pre-binding TSV testing is mostly focused on detecting the presence or absence of faults [4]. The 
post-binding TSV test, however, has more test resources at its disposal and more relaxed test access 
restrictions, so the post-binding TSV test can be used not only to detect TSV defects generated during 
the binding process but also to diagnose faults by obtaining more abundant fault information. Failure 
analysis is as comprehensive and accurate as possible, thus providing valuable information for 
weaknesses in design and manufacturing solutions, improving design and process parameters, and 
contributing to higher yield. 

Integrated is through the capacitors, resistors, transistors, and other electronic devices composed 
of the existence of a specific function, independent of the overall circuit. The causes of failure of ICs 
in different life periods are different, ICs can be divided into three stages: early death, normal cycle, 
and aging period [5]. The cause of IC failure in the normal cycle is uncertain, most of them are caused 
by indirect failure, IC failure in the normal cycle is not permanent, and usually can be repaired, and IC 
failure rate in the normal cycle has stability. Increasing service life is the main cause of IC failure 
during the aging period, as the IC is affected by the workload, stress time, and other factors, resulting 
in the degradation of the IC performance and aging phenomenon. With the rapid progress of integrated 
circuit design and manufacturing technology, the number of transistors integrated on a single chip has 
tens of billions, and the complexity and scale of integrated circuits are greatly increased [6]. These 
problems directly lead to an increase in test cost, so this paper proposes a digital IC fault detection 
method based on K-means clustering and graph neural network, which has important theoretical and 
practical value for the research of IC test methods. 
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2. Related work 

Fault diagnosis is a key technology to ensure the reliable and efficient continuous operation of 
industrial systems. With the in-depth development of industrial informatization and intelligence, fault 
diagnosis methods gradually move from signal processing-based methods to deep learning-based 
methods [7]. In recent years, scholars have applied wavelet analysis, the Prony method, artificial neural 
network, information fusion, fuzzy method, etc. to small current grounding protection. Although the 
problem of difficult extraction of fault features has been solved to some extent, the analysis of the fault 
features themselves has been neglected. The graph neural network (GNN) is a class of methods 
developed based on deep learning to process graph data, which has better performance and 
interpretability. GNN can establish the correlation between nodes in the graph and is increasingly used 
in the fields of knowledge graphs, social networks, etc. GNN represents all the deep learning methods 
used to study the characteristics of graph data, breaking through the traditional deep learning methods 
are difficult to GNN has better performance and interpretability, and is mainly applied to data with 
non-Euclidean domains, using the powerful ability of graph to represent data to solve the problems 
that are difficult to solve in regular space [8]. To address the problem of low fault resolution of 
traditional testability models in analog circuit diagnosis, Balouchestani M et al. proposed a fault pair 
Boolean table-based testability analysis and fault diagnosis method for analog circuits [9]. Deng A et 
al. proposed Cluster-GCN by sampling subgraphs using a graph clustering algorithm and performing 
neighborhood search and graph convolution operations in the sampled subgraphs, thus making Cluster-
GCN not only able to explore larger graphs but also use deeper graph structures with less time and 
memory [10]. 

The k-means clustering algorithm is an unsupervised learning algorithm based on division, which 
is a representative algorithm of cluster analysis. In the current era of big data, the use of the K-means 
algorithm to process data is also becoming more frequent, and the drawbacks of the K-means clustering 
algorithm are gradually highlighted: the need to determine k clusters before the algorithm runs, 
sensitivity to the initial centroid selection, and high influence by outliers, etc. 

Being in the era of big data, we are always accompanied by challenges, but while the times bring 
us many challenges, they also create more opportunities for us, and it is in this complex environment 
that data mining technology is continuously developed and improved [11]. The K-means algorithm, 
which is one of the most classic algorithms for classifying clusters, has become one of the most popular 
algorithms in reality because of its simplicity and effectiveness. Today, the K-means algorithm is still 
widely used due to its excellent performance, especially when dealing with data with numerical 
attributes, due to the simplicity and fast convergence of the algorithm, which is more geometrically 
and statistically advantageous [12–15]. From the perspective of GNN, the relationship between feature 
data points is explored, signal features are extracted, and the problem of missing and mixed composite 
fault signals is solved by analyzing composite faults that have not yet appeared and may appear from 
known fault signals. The K-means clustering analysis is combined with the validity index analysis, and 
the clustering center is selected as the pattern layer neuron to train the probabilistic neural network 
model, thus reducing the complexity of the model and greatly reducing the fault diagnosis time [16]. 
Meanwhile, to address the problem that real digital IC faults are difficult to obtain and real fault data 
are scarce, features are learned from artificially simulated damaged fault data and migrated to real in-
service faults to construct a comprehensive digital IC fault diagnosis model for diagnosing single faults 
and compound faults, and to realize migration diagnosis from artificially simulated damaged faults to 
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in-service faults. 

3. Detection method based on K-means clustering and graph neural network 

3.1. Fault routing method based on k-means clustering analysis 

The K-means algorithm is a relatively simple unsupervised learning method, first proposed by 
Macqueen in 1867, which requires a given number of samples to be classified, K, and then divides the 
realized input N data into K clusters according to certain rules, so that the objects in the obtained 
clusters are highly similar and the objects in different clusters are less similar [17]. The core idea of 
this algorithm is to cluster the K points in the space as the center, group the objects closest to them into 
one class, and gradually update the respective cluster centers through continuous iterative computation. 

First, Num initial cluster centers are randomly selected from the data set; then the remaining data 
points are assigned to the clusters of these Num points according to the minimum distance criterion; 
next, the centers of each cluster are recalculated and the clusters are updated until the criterion 
function converges. 
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where J is the error sum of squares of all data objects in a given data set; p is the data points contained 
in the cluster ci and mi is the center of mass of the cluster ci. The criterion tries to make the Num 
clusters as compact as possible between the intra-cluster elements and as far away as possible between 
the inter-cluster elements. 
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Figure 1. Determination of the number of clusters. 

When finding the clustering centers, since the initial clustering centers of the traditional K-means 
algorithm are chosen randomly, the resulting clustering results will have great volatility when the 
clustering centers chosen by the K-means algorithm are different, i.e., it is not appropriate to choose 
the initial clustering centers randomly [18]. Therefore, this chapter gives a new initial clustering center 
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selection algorithm based on the principle that the clusters formed by the clustering centers should 
make the clusters have a high density within a small threshold radius, and the clustering centers are far 
from each other, as shown in Figure 1.  

The db10 wavelet is used to decompose the transient zero-sequence current obtained from the 
Matlab electromagnetic transient simulation within 5ms after the fault to obtain the wavelet 
coefficients, and the energy is calculated from the square of the wavelet coefficients after the single 
branch reconstruction, and then the total energy of the transient zero-sequence current in the full 
frequency band is calculated [19]. At the same time, the integrated wavelet energy relative fullness is 
calculated, and the two dimensions of transient zero-sequence current energy and integrated wavelet 
energy relative fullness are used as measures to characterize the fault characteristics and are mapped 
to the two-dimensional plane [20]. The k-means cluster analysis algorithm is used to calculate the 
clustering centers of the data. One class is the faulty line and the other class is the sound line, and the 
clustering centers of the two classes are noted separately. The faulty lines are determined based on the 
distance between the test data and the clustering centers of the two classes. 

From the theoretical analysis and simulation, analysis can be seen, when the line fault occurs, due 
to the existence of a large current flow channel of the fault line, the fault line measurement end of the 
fault current detected in a period window of the general trend for the rising, while the non-fault line 
measurement end of the fault current component detected in a period of the time window, its blocked 
current component is generally down. There are significant differences in waveforms between faulty 
and non-faulty lines. The k-means clustering analysis is used to describe and characterize the current 
waveforms observed at the measurement end of the faulty and sound lines, and the K-means clustering 
analysis-based fault line selection criteria for the distribution network are constructed. 

In analog circuits, when different faults occur, the faults behave differently, thus causing different 
test signal fault information to be collected at different test nodes. For different fault classes, if the 
intra-class distance of the same fault class is small, and the inter-class distance of different fault classes 
is large, then the fault is more distinguishable at that time [21]. And under different fault conditions, if 
the inter-class distance of the smallest different fault class is larger and the intra-class distance of the 
largest same fault class is smaller, then the information collected at this test point is more 
distinguishable, so this test point is treated as a sensitive test node. 

The average intra-class distance of the collected class j fault samples at the i-th test node is defined as 

 ,
, 1
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The average of the intra-class distances for Y fault classes at the i-th test node Di is defined as 
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The sensitivity factor of the test node iλ  indicates the ability of the ith test node to classify 

different fault categories. The larger the value iλ  , the more sensitive the ith test node is to the 

characteristics of Y faults, and therefore the stronger the ability to classify different faults, which is 
beneficial to the subsequent diagnosis. The fault sensitivity factor of different test nodes is analyzed, 
and multiple test nodes of the circuit under test are sorted according to the value of the fault sensitivity 
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factor from the largest to the smallest, to ensure that the test nodes with stronger fault classification 
recognition ability can enter the selection range of the optimal test nodes in priority and avoid the 
blindness of test node selection. 

3.2. Fault detection model design for digital integrated circuits based on K-means clustering and 
graph neural networks 

Convolutional Neural Networks (CNNs) are good at processing canonical matrices, but not all 
data can be integrated into a standard matrix form, and CNNs cannot extract and learn features when 
the data in cases such as social networks are integrated into unordered graph structures. To solve this 
problem, the Graph Convolutional Network (GCN) was developed to extend the processing capability 
of non-Euclidean distance data by introducing graph structure, and providing a method to extract 
features from irregular data, so it is widely used in business recommendation systems, road forecasting, 
financial risk control, etc. Since graph structure can represent the connection between data and data 
through nodes and edges, GCN can also be used in the field of fault diagnosis to solve the problem of 
insufficient training due to too few labeled samples [22]. In addition to the graph structure, GCN can 
obtain excellent output results even with the initial parameters of Wl without optimization training, so 
GCN can achieve excellent output results with only 2–3 layers without multi-layer superposition. 

Spectral-domain convolution mainly relies on graph theory to realize convolution operations on 
irregular graphs and explore the properties of graphs. The pooling operation aims to reduce the size of 
parameters by generating smaller feature representations by down-sampling feature points, thus 
avoiding overfitting, solving the problems of substitution invariance and computational complexity, 
and is an essential operation to reduce the size of graphs [23]. Mean pooling and average pooling are 
the most common and effective methods to implement downsampling, because it is fast to calculate 
the mean or maximum value in the merge window, and it is necessary to perform simple pooling 
operations during network training to reduce the dimensionality of the graph data and mitigate the cost 
of graph transformation operations [24]. 

To reduce the computational effort without affecting the convolution effect, a local first-order 
approximation is used to limit the convolution operation, i.e., let, the concise equation be as follows. 
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To prevent gradient extinction or gradient explosion, renormalization is required. The propagation 
rule for the convolution layer in GCN is expressed as 
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where (.)δ  is the activation function, lH  represents the output of the l  layer, and W  is the weight 

matrix. 
The flow of the diagnosis method based on K-means and a graphical neural network is shown in 

Figure 2. It mainly includes two processes: model training and fault diagnosis. First of all, we need to 
collect and obtain the data of each state of the circuit, divide it into training sample data and validation 
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sample data proportionally, and then use the K-means clustering-based pattern layer neuron selection 
algorithm to filter the training sample data and obtain the final pattern layer neuron sample, and build 
the graph neural network diagnosis model based on the selected training sample to achieve fault 
diagnosis. The input of the model is the time-frequency diagram generated from the original vibration 
signal by wavelet transform and compressed, the size of the diagram is 50 × 50, and the time-frequency 
diagram contains both time and frequency information, which can help the model to extract the 
characteristics of the fault signal more effectively. The adjacency matrix, which represents the 
relationship of the graph data, uses the distance between nodes to capture the relevant dependencies. 
By inferring the distance between two feature nodes, the nearest k points other than itself are selected 
to construct the adjacency matrix, which is input into the network to help the GCN layer to extract 
feature information that depends only on the neighborhood of the data itself. 

Raw fault 
data

Test dataTraining 
data

...

Diagnostic 
results

Data pre-processing Data pre-processing

Intelligent fault diagnosis model based on 
K-means-GCN

Original 
signal

Wavelet

 transform

Time-series 
diagram GNN1 GNN2 GNN3

FC1 FC2
 

Figure 2. Model of diagnosis method based on K-means clustering and graph neural network. 

Dropout is an effective method to prevent overfitting of the network by dropping some random 
neurons from the network during training to reduce the interdependence between nodes and the co-
adaptation relationship between neurons. The model uses Dropout in the fully connected layer and sets 
Dropout to a common value of 0.5 to randomly discard 50% of neurons, which can reduce the 
computational overhead of the network and prevent the network from overfitting. The momentum 
method aims to accelerate learning and solve the problem that the learning parameters in gradient 
descent are too small or too large, which makes it difficult for the model to converge to the optimal 
point or the parameters are likely to diverge. The momentum method requires the update of parameters 
during each state transfer to consider both the current gradient and the historical gradient, making the 
variable updates in adjacent time steps more consistent in direction and guiding the parameters to 
converge faster toward the optimal value. 
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The K-means-based pattern layer neuron preference algorithm mainly performs K-means 
clustering analysis on the data in the same state, determines the number of clusters K according to the 
cluster validity index, and finds the cluster centers as the pattern layer neuron samples. 

When a fault occurs in the resonant grounding system, the fault current detected at the 
measurement end of the faulty line has a general tendency to rise within a time window, while the fault 
current component detected at the measurement end of the non-faulty line has a general tendency to 
fall within a time window. As shown in Figure 3, it can be seen that there is a greater similarity between 
the waveforms of the fault line, while there is a greater difference with the sound line. 
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Figure 3. Faulty and non-faulty circuit current curves. 
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Figure 4. Amplified circuit simulation signal. 

In the video amplifier circuit, R6, C1, L2, and the triode were selected as the objects of study, and 
the voltage signals of the normal circuit; R6, C1, L2, and the triode base intermittent fault; and the 
triode base permanent fault were collected. In the simulation process, the simulation duration is 4s, the 
sampling interval is 0.4ms, the number of sampling points is 10000, and 300 Monte Carlo analyses are 
performed for each fault category, of which 250 groups are training data and 50 groups are test data. 
The signal acquired at the optimal measurement point of the video amplifier circuit is shown in Fig. 4. 

The test samples of the video amplifier circuit are detected according to the detection threshold, 
and the fault detection curve graph is obtained. From the detection curves, it can be seen that the test 
samples of each fault category can be classified into the corresponding fault category without false 
detection. The test data for fault categories 2, 3, 4, and 5 are all intermittent fault states. The 
effectiveness of the proposed method was verified by conducting experiments on two circuits, which 
can successfully achieve the determination of intermittent fault signals from the fault signals of analog 
circuits and can further detect the singularities of intermittent fault signals. The occurrence and 
recovery of intermittent faults can be determined, thus achieving the accurate analysis of intermittent 
fault signals of analog circuits. 

4. Experimental results and analysis 

4.1. Model performance test results 

GCNs have become a hot research topic in recent years by their ability to efficiently extract spatial 
features for learning graph data. Image is a special kind of graph data that can also use GCN to add 
information from neighboring nodes to the current node to get more complete feature information and 
exhibit the structure of local connectivity. The biggest difference between image data and other 
unstructured graph data is that the adjacency matrix can be expressed explicitly in the convolution 
process. The parameters of the GCN convolution kernel are shared everywhere, which can greatly 
reduce the number of parameters in each layer of the network and can effectively avoid the 
phenomenon of overfitting. 

In this chapter, the accuracy of fault diagnosis is used to evaluate the proposed GCN semi-
supervised learning IC fault diagnosis model, which is trained with the following set of 
hyperparameters: the number of neighbors K of KNN is 1, the learning rate is 0.001, and the number 
of iterations is 1000. The model is compared with classical classification algorithms such as the label 
propagation algorithm (LP, whose kernel function is KNN) and support vector machine (SVM, whose 
kernel function is RBF). Its kernel function RBF is compared. All methods divide the signal samples 
into three classes, where the training set trains the signal samples, the validation set selects the 
parameters for the classification experiments, and the test set tests the classification experiments. 
As shown in Figure 5, the accuracy of fault diagnosis with different training set ratios is shown in 
Figure 5. 

Compared with LP and SVM, the GCN method proposed in this chapter is the algorithm with the 
highest accuracy, especially when the size of the labeled samples decreases, the accuracy of the LP 
algorithm decreases to a larger extent, and the accuracy of the SVM algorithm remains at a lower level. 
In the case of 10% labeled samples, the proposed method can achieve an accuracy of 95.02%. 
Therefore, we can conclude that the GCN algorithm can achieve a high recognition accuracy with a 
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small labeled data size. 
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Figure 5. Learning accuracy comparison results. 

Using the K-means algorithm, the number of categories of the sample data is determined by 
continuously traversing the squared error of the distance from the sample points in the classification 
result to the respective cluster centres for different values of the number of categories in the specified 
classification range, K-means. When the number of categories is equal to the total number of samples, 
the squared error is equal to 0. Therefore, it can be concluded that the value of the squared error 
decreases monotonically with the increase of the K value and approaches 0. When the K value is close 
to the optimal number of categories, an inflection point of the squared error SSE occurs and the change 
of the squared error tends to slow down, at which time the K value is the optimal number of categories. 

For distribution network fault routing, the sample data should reflect the characteristics of 
different feeder faults as much as possible. Different fault conditions are set up and the fault locations 
are traversed every m along the overhead line and every 1 km along the cable line. The sampling rate 
is 1 Hz. 6-layer wavelet decomposition is performed on the sample data using 10 wavelets to account 
for the transient zero-sequence current energy at each scale of the wavelet transform within 5 ms after 
the fault. And calculate the transient zero-sequence current energy under the full frequency band, the 
energy of line i under the coincident scale j, and as: 

 22

1
( )ij i

k
E D k

=

=∑ .                                         (6) 

Whether overhead line fault or electric chicken line fault or cable hybrid line fault, the fault line 
transient zero sequences current energy and integrated wavelet energy relative bribe are the largest, 
according to which k-means clustering analysis can be used to transient zero sequences current energy 
and wavelet relative energy bribe these two dimensions combined to characterize the difference 
between the fault and not. 

The equivariant series scheme, with the number of iterations T determined, uses mε  as the first 
term of the series to derive an equivariant series with d as the tolerance and reverses the series as the 
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privacy budget allocation scheme with mε  as the privacy budget for the last iteration round, which 
ensures that the center of mass will not be deformed by the added noise and also allows the earlier 
iterations or a larger privacy budget. 

Assuming that dataset D has 50,000 data and the dimension of the data is 5, the dataset is clustered 
by DPK-means, the number of k is selected to be 5, the number of iterations T is equal to 10, and the 
privacy budget is equal to 10. The privacy budget is assigned by the mean and dichotomous methods 
and the equivariant method, where the minimum privacy budget of the equivariant method is calculated, 
and the value of p is taken as 0.3 to obtain. The minimum privacy budget value is 0.077, and the three 
methods are compared as shown in Figure 6. 
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Figure 6. Different privacy budget allocation schemes. 

As can be seen from the figure, the mean division method does not consider the influence of the 
iterative process of DPK-means in different periods on the clustering results. The dichotomous method 
can allocate more privacy budget in the early stage, but the privacy budget allocated in the later stage 
is already much smaller than the minimum privacy budget value mε  , which will have an impact on 
the clustering effect, and the dichotomous method consumes too much privacy budget in the early 
stage and cannot exhaust the privacy budget. The dichotomous method consumes too much privacy 
budget in the early stage and cannot exhaust the privacy budget, which causes a certain degree of waste; 
the method of equal difference series ensures that the privacy budget assigned each time will not cause 
the distortion of the centre of mass, but the privacy budget assigned in the early stage is not as good as 
the dichotomous method. The dimensionality of the data set becomes larger, the upper limit of the 
number of iterations to be set for K-means clustering will make the tolerance of the difference series 
smaller and smaller, and the curve of the difference series tends to be flat. 

4.2. Digital integrated circuit fault detection simulation experiments 

Permanent fault states are obvious and therefore relatively easy to diagnose. Compared with the 
normal condition, the fault characteristics of intermittent faults are relatively less obvious due to their 
shorter occurrence time.  

It is assumed that the leakage defect test is performed on TSV A and TSV B, where TSV A is 



10003 

Mathematical Biosciences and Engineering  Volume 20, Issue 6, 9992–10006. 

defect-free and TSV B has a leakage defect with a leakage conductance of 20 µSiemens. According to 
the leakage defect mechanism, the leakage channel causes the voltage on CS to drop faster, resulting 
in a reduced test response time. Since the test response time required for TSV B is 55 pulses, which is 
less than the 130 pulses required for a normal TSV A, it can be determined that TSV B has a leakage 
defect. In practice, the pulse count values for both defective TSVs and defect-free TSVs are randomly 
shifted due to CMOS process deviations. To verify the test performance of this testable design structure 
under the process deviation, the following simulation is performed using the Monte Carlo (MC) 
simulation function of the HSPICE software for the leakage defect test. In the MC simulation, the 
CMOS threshold voltage and CMOS channel length are made to satisfy the Gaussian distribution of 

3 35%THδ =  and 3 12%Leffδ =  . The simulation results are shown in Figure 7, where the horizontal 

coordinate is 50 Monte Carlo simulations out of 200, and the vertical coordinate is the pulse count 
result of 20 TSVs during each simulation.   
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Figure 7. TSV leakage defect test simulation results. 

The pulse counts of both the defect-free TSV and the defective TSV with leakage fluctuate to 
varying degrees in the process deviation case. For each MC simulation, the fluctuations are isotropic 
and do not confuse the pulse count values of defective and defect-free TSVs. This result is due to the 
common TSV test cell structure of this measurability design, which allows the process deviation of the 
test cell to have an isotropic effect on all TSV test results within the group. Therefore, the results of 
leakage defect detection by the comparative judgment will not be affected by process deviations. The 
above simulation results show that the method has strong robustness in TSV leakage defect testing. 

To verify the overall effectiveness of the digital IC aging fault prediction method with high 
accuracy, it is necessary to test the digital IC aging fault prediction method with high accuracy. The 
experimental platform for this test is Matlab, and the digital IC aging fault prediction method with high 
accuracy, the digital IC aging fault prediction method based on feature information matrix, and the 
digital IC aging fault prediction method based on matrix perturbation analysis are used respectively. 
Fault prediction method to predict aging faults in digital integrated circuits, comparing the time used 
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for prediction by the three different methods, and the test results are shown in Figure 8. 

 

Figure 8. Number of iterations and prediction time graphs. 

The time taken to predict the digital IC aging fault in multiple iterations is as high as 24s, which 
is close to half a minute when the method based on the feature information matrix is used for testing. 
In the case of the matrix, perturbation analysis-based digital IC aging fault prediction method, the 
prediction time is within 15s. The digital IC aging fault prediction method uses high-pass filters to 
remove the noise signals and redundant signals present in the digital IC, which reduces the time used 
for prediction and verifies the high prediction efficiency of the digital IC aging fault prediction method. 

5. Conclusion 

In this paper, we propose a fault diagnosis method based on the combination of K-means and a 
graphical neural network for analog circuits. Through the comprehensive analysis of K-means 
clustering and clustering validity indexes, we give the pattern layer neuron preference process, screen 
the suitable training sample data as the pattern layer neurons of a graphical neural network to 
participate in training, and achieve high fault accuracy fault diagnosis with fewer training samples. 
This reduces the complexity of the model and saves the fault diagnosis time. In the study of TSV defect 
modeling, the RLGC parameter equivalent circuit models of TSV void defect, open circuit defect, 
leakage defect, micro liner unaligned defect, and micro liner missing defect are established. With this 
equivalent circuit model, the mathematical mapping between the physical parameters of each TSV 
defect and the electrical parameters of the equivalent model is established. By comparing and 
analyzing the active filter circuit with the traditional graph neural network method and the random 
graph neural network method, the superior performance of the method in terms of fault diagnosis 
accuracy and fault diagnosis efficiency is verified. In this paper, certain achievements are made in fault 
monitoring of digital integrated circuits, but the accuracy of model parameter training can be improved. 
The fault diagnosis method can be extended to different application scenarios, and for specific 
application scenarios, other specific algorithms with more specific targeting can be considered, or 
multiple optimization algorithms can be integrated to obtain the optimal training strategy. 
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