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Abstract: Based on the mining of micro- and macro-relationships of genetic variation and brain
imaging data, imaging genetics has been widely applied in the early diagnosis of Alzheimer’s disease
(AD). However, effective integration of prior knowledge remains a barrier to determining the biological
mechanism of AD. This paper proposes a new connectivity-based orthogonal sparse joint non-negative
matrix factorization (OSJNMF-C) method based on integrating the structural magnetic resonance
image, single nucleotide polymorphism and gene expression data of AD patients; the correlation
information, sparseness, orthogonal constraint and brain connectivity information between the brain
image data and genetic data are designed as constraints in the proposed algorithm, which efficiently
improved the accuracy and convergence through multiple iterative experiments. Compared with the
competitive algorithm, OSJNMF-C has significantly smaller related errors and objective function
values than the competitive algorithm, showing its good anti-noise performance. From the biological
point of view, we have identified some biomarkers and statistically significant relationship pairs of
AD/mild cognitive impairment (MCI), such as rs75277622 and BCL7A, which may affect the function
and structure of multiple brain regions. These findings will promote the prediction of AD/MCI.
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1. Introduction

Alzheimer’s disease (AD) is an irreversible neurodegenerative disease caused by complex nerve
cell loss. In recent years, imaging genetics has been an emerging discipline applied to mental diseases,
and it is used to analyze the effects of imaging features and genetic features on diseases and to further
study the new relationship between genetic factors and human brain diseases.

To explore the relationship between genetic variation and brain function and structure, scholars are
committed to using different algorithm models to dig deeper between macro and micro information.
canonical correlation analysis (CCA) is a commonly used algorithm for mining data association
relationships [1]. CCA can use the correlation between multiple data to reflect the overall correlation
between indicators. However, with the CCA algorithm, only one pair of typical correlation variables
can be found at a time [2], and simple correlation analysis may not consider the potential correlation
between the original data. The result may have a false positive, weakening the biological meaning.
We have introduced the non-negative matrix factorization (NMF) algorithm to solve this problem.

As we all know, NMF is a simple low-dimensional dimensionality reduction model that can use
data from multiple modalities to extract important features, and to analyze the interactions between
different regions of interest (ROIs) and single nucleotide polymorphisms (SNPs) or genes so that the
analysis is no longer limited to a pair of correlations. Variables and the potential relationship of the
original data can be defined as prior information, further revealing the biological significance
generated. In the early days, traditional NMF was often used to process data of different modalities to
discover the complex biological mechanisms hidden in multi-modal data. Zhang et al. proposed the
joint non-Negative matrix factorization (JNMF) algorithm to fuse multi-dimensional genomic data of
cancer [3]. However, the results are subject to certain restrictions due to the lack of prior knowledge
of the original data. Zhang et al. proposed the joint sparse network regularization constraint NMF
(JSNMNMF) [4], combining the correlation information between data of different modalities. We can
discover the potential associations between different data by constructing the adjacency matrix as
prior knowledge and fusing it into the NMF algorithm.

Since previous studies have used bimodal datasets to mine the biological mechanism, Deng et al.
combined the prior knowledge to construct a ceRNA network with three types of RNA data from lung
cancer to make its biological explanation more convincing [5]. Since the group-level information
among multi-modal imaging genetics data is easily overlooked, which may include important
information related to diseases, Wang et al. by integrating the available group-level structural
information of FMRI data, SNP genetic data and DNA methylation data, propose a group sparse joint
non-negative matrix factorization model [6], which identifies important biomarkers related to the
relationship with schizophrenia. In addition, Peng et al. introduced orthogonal constraints based on a
matrix W and proposed a group sparse algorithm for JNMF on orthogonal subspaces [2], which
makes the extracted features more accurate. In order to control the sparseness of the base matrix W
and the coefficient matrix H to approximate the high-dimensional data in the low-dimensional space,
Kim and Park proposed an alternating non-negative constrained least-squares method that led to a
convergent sparse NMF algorithm; it showed a good result [7]. However, they did not consider the
prior connection information of the brain. Later, Deng et al. proposed a multi-constrained JNMF
(MCJNMF) algorithm, which used FDG-PET and DNA methylation to identify important modules
related to lung metastasis [8]; they found important modules related to lung metastasis. Recently, in
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order to further explore the strong correlation between image and genetic variation, Deng et al.
introduced orthogonal constraints on the coefficient matrix H and proposed a multi-dimensional
constraint combined non-negative matrix factorization algorithm model [9] . Progress has been made
in research related to sarcoma or lung metastasis. In imaging genetics research, the brain’s
connectivity information may contain important data mining information. Kim et al. proposed a
penalty based on brain connectivity to integrate different data as prior knowledge into sparse CCA
(SCCA), namely JCB-SCCA [10], which revealed the most significant features between SNPs and
brain regions associated with Parkinson’s disease. Recently, Wei et al. added the connectivity
information of the brain to JSNMNMF and proposed the joint connection sparse NMF
(JCB-SNMF) [11], which significantly improved the performance and bio-interpretability of the
algorithm. However, it ignored the importance of obtaining the coefficient matrix H through the NMF
algorithm. Improving the coefficient matrix H can make the experimental results more accurate and
credible.

In this paper, we propose an orthogonal sparse JNMF (OSJNMF-C) method based on connectivity;
it has been applied to the structural magnetic resonance imaging (sMRI), SNP and gene expression data
of AD patients to explore the efficient biomarkers for AD’s early diagnosis. First of all, in order to find
the basic potential associations between different data, we define the Pearson correlation coefficient
matrix between different data as prior knowledge, using priori knowledge as a regularization constraint
for NMF , so that we can get the features and that the data analysis is more convincing. Then, in order
to enable NMF to discover some important basis vectors and screen out important features, we use the
method in the sparse NMF algorithm of the alternating non-negative constraint least-squares method
to control the sparseness of the basis matrix W and add the l1−norm The number of constraints is used
to control the sparsity of the coefficient matrix H. In addition, we added brain connection information
about brain regions and genetic attributes; we also used GraphNet regularizers to enhance the accuracy
and noise resistance of the model. Finally, the orthogonal constraint has the advantage of high time
complexity when solving the optimal value, the orthogonal constraint can minimize the redundancy
between different bases to obtain better local features. An orthogonal constraint adds the sparsity of
the matrix obtained by decomposing the original data, and it can integrate biological information more
efficiently. Therefore, we impose orthogonal constraints on H.

The results show that the co-expression module found by our algorithm contains AD and other
diseases. Through a variety of biological analyses (such as GO enrichment analysis, PPI network, etc.)
of the genes selected in the co-expression module, the influence or changes of these genes that are
found in certain analysis functions have direct or indirect effects on AD. In addition, this study also
found risk brain regions and SNP sites related to AD (such as the parahippocampal gyrus, rs449647)
and identified risk genes such as APOE. Some unproven genes or brain regions may be the potential
for AD and mild cognitive impairment (MCI) biomarkers.

2. Materials and methods

A brief description of the proposed algorithm in this study is given in Figure 1. In the framework,
we can see that three different types of datasets, including sMRI, SNP and gene expression data, were
integrated to identify their co-expression modules with various biological analyses. In order to reduce
the dimensionality of multi-modal data simultaneously, the core of the method used in this paper is
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the JNMF algorithm which is used to find the co-expression module of different data. The algorithm
model we propose is to add a variety of regularization constraints based on JNMF. The addition of the
constructed adjacency matrix, l1−norm, brain connectivity information and orthogonal constraints on
H makes the features we extract more accurate and sparse, and the brain connectivity information
improves the noise resistance of the algorithm. In addition, we briefly introduce the ROI-SNP-GENE
co-expression module. The characteristic matrices of ROI, SNP and GENE are projected to a
common characteristic space, and heterogeneous variables with more significant coefficients in the
same projection direction constitute a standard module.

Figure 1. The Flow chart for applying our proposed algorithm to AD research.

In order to decompose the matrix more vividly, we use the following description. JNMF
decomposes multi-modal imaging genetics data into a new common orthogonal space, where w1, w2

and w3 represent base vectors. Triangles, squares and circles represent different forms of data. In
Figure 2(a), the original data X1, X2, X3, ..., XK , are projected into their respective base vectors. In
Figure 2(b), the multi-modal data XK is projected into the same set of base vectors. Therefore, our
method can use more datasets for matrix decomposition to study the corresponding topics.
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Figure 2. Schematic diagram of matrix decomposition.

2.1. JNMF

Assume that X1, X2 and X3 are three different types of data from the same sample, namely sMRI,
SNP, and gene expression data. The JNMF model is

min
W,HI

(∑3

I=1
∥XI −WHI∥

2
F

)
=

∑3

I=1

[
Tr(XIXI)T

− 2Tr

(
XIHT

I WT
)
+ Tr

(
WHIHT

I WT
)]

s.t.W,HI ≥ 0, I = 1, 2, 3
(2.1)

The data feature matrix XI ∈ RmnI(I = 1, 2, 3) is decomposed into a common base matrix W ∈ Rmk

and a coefficient matrix HI ∈ RknI . Among them, m and n are the number of samples and the number
of features, respectively.

2.2. OSJNMF-C

Existing research shows that the correlation between data can be used as prior information to
improve the model’s accuracy. By calculating the absolute value of the Pearson correlation coefficient
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between the two sets of data, the adjacency matrix constructed by the correlation coefficient is defined
by the prior information matrices A1, A2 and A3, and the results are as follows:

∑
i j

ai j

(
hi

1
)T

h j
2 = Tr

(
H1A1HT

2

)
∑

i j
bi j

(
hi

1
)T

h j
3 = Tr

(
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3

)
∑

i j
ci j

(
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1
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h j
3 = Tr

(
H2A3HT

3

) (2.2)

Among them, a, b and c are the elements of the adjacency matrix. 1 indicates that there is a
correlation. The correlation may include various regulatory functions or interactions between
proteins; 0 indicates irrelevance; hi indicates the i-th row of H, and h j indicates the j-th column of H.
A1 is the prior matrix constructed by using MRI and SNP data, A2 is the prior matrix of MRI and
genetics data and A3 is the adjacency matrix of SNP and genetics data. Therefore, even if there are
various unknown correlations between the two kinds of data, they may be placed in our expected
co-expression module, reducing the space for our algorithm to search for features and improving our
computational efficiency.

Connectivity-based methods can quantify meaningful neurobiological measurements and are a good
source of information for regularization. If a certain node between the brain area and the SNP site is
highly connected, the GraphNet regularization program will force the corresponding elements of the
canonical vector to be similar [12]. Therefore, we chose to introduce a connectivity penalty method
based on GraphNet regularization as follows:

P (H1) =
∑
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(
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)
= Tr
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H1

T B1H1

)
P (H2) =
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= Tr
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)
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∑
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(
H3p − H3q

)
= Tr

(
H3

T B3H3

) (2.3)

Among them, B1, B2 and B3 represent the Laplacian matrices of X1, X2 and X3, respectively.

To filter out the important features that we need, we should control the sparseness of the base
matrix W. It has another advantage that it improves the efficiency of our algorithm. Therefore, this
study uses the alternating non negative constraint least square method to control the sparsity of W and
impose l1−norm constraints on H. In addition, to effectively integrate biological information, we
chose to impose orthogonal constraints on H Orthogonal constraints can not only reduce the
redundancy between different bases, but they can also ensure that the matrix obtained by the feature
matrix decomposition has sparseness, thus finding more biologically significant features. In the end,
the objective function we get is as follows:
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Based on Eq (2.1), we can get the final objective function as follows:
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Among them, the parameters λ1, λ2 and λ3 are the regular constraints of the adjacency matrix, β1, β2

and β3 are the constraint coefficients of the Laplacian matrix, γ1 is used to limit the growth of W, γ2 is
used to constrain H and α is the orthogonal constraint hyperparameters.

2.3. Efficient optimization algorithm

Effectively solve the objective function according to the update rule used by the MCJNMF
algorithm. Let φi j and ϕI

i j be [Wi j ≥ 0 and (HI)i j ≥ 0]; the Lagrangian multiplier L can be expressed as
follows:

L(W,H1,H2,H3) = Γ(W,H1,H2,H3) + Tr(ΨWT ) +
3∑

I=1

Tr(ΦHT
I ) Ψ = [φi j],ΦI = [ϕI

i j] (2.6)

The partial derivatives of L with respect to W and HI can be obtained:

∂L
∂W
=

∑3

I=1

[
−2XIHT

I + 2WHIHT
I

]
+ 2γ1W + Ψ

∂L
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= −2WT X1 + 2WT WH1 + λ1H2AT
1 + λ2H3AT

2 + 2γ2ek×kH1 + 2β1H1C1 + 4αH1HT
1 H1 − 4αH1 + Φ1

∂L
∂H2

= −2WT X2 + 2WT WH2 + λ1H1A1 + λ3H3AT
3 + 2γ2ek×kH2 + 2β2H2C2 + 4αH2HT
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∂L
∂H3

= −2WT X3 + 2WT WH3 + λ2H1A2 + λ3H2A3 + 2γ2ek×kH3 + 2β3H3C3 + 4αH3HT
3 H3 − 4αH3 + Φ3

(2.7)

Based on the KKT condition, Ψi jWi j = 0 and ΦI
i j(HI)i j = 0. We can get the equations of Wi j and

(HI)i j as follows:
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Algorithm 1: Algorithm for OSJNMF-C.
Input: Input normalized data X1, X2, X3, βi, λi(i = 1, 2, 3), α, γ1, γ2, τ.
Output: Base matrix W and coefficient matrix HI(I = 1, 2, 3).
Randomly initialize a set of non-negative W and HI(I = 1, 2, 3), t = 1.;
while 1 do

Calculate the current objective function value Lt by using Eq( 2.6).;
Update W and HI(I = 1, 2, 3) by using Eq( 2.8).;
Calculate the current objective function value Lt+1 by using Eq( 2.6).;
if | (Lt − Lt+1)/Lt+1 |< τ then

break
else

t = t + 1;
end

end

2.4. Choice of module elements and the importance of co-expressing modules

After solving the above OSJNMF-C algorithm, we decompose the characteristic matrices X1, X2

and X3 of the MRI, SNP and GENE data by applying non-negative matrix decomposition to obtain the
base matrix W and the coefficient matrix H. The base matrix W is a common matrix shared by the three
data types of X1, X2 and X3, and H1,H2 and H3 represent their respective coefficient matrices. In order
to find the weights corresponding to the salient features of each row of W, we use Z-score to calculate
the Z-score of each element in each row of H1,H2 and H3. The calculation formula for Z-score is as
follows:

Zi j = (hi j − ui)/σi (2.9)

In Eq (2.9), hi j , µi and σi respectively represent the element in HI , the average value of feature j
in HI and the standard deviation. Then, to determine which elements are eligible to be assigned to the
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module, a standard value T that can be assigned is set. If its Z-score is greater than the set standard
value T , it can be assigned to the module.

Next, the proposed method is used by us to evaluate the importance of the co-expression module;
we also use permutation tests to estimate the P-value of the identified modules. We assume that PS =

[p1, p2, ..., pl1], QS = [q1, q2, ..., ql2] and RS = [r1, r2, ..., rl3], where pg, qt and re are the column vectors
from X1, X2 and X3, respectively. To sum up, the average correlation between the three types of datasets
in a module ρ∗ can be expressed as follows:

ρ∗ =
1
3

(
1

l1l2

∑l1

s=1

∑l2

t=1
(ρ (ps, qt))2 +

1
l1l3

∑l1

s=1

∑l2

e=1
(ρ (ps, re))2 +

1
l2l3

∑l2

t=1

∑l3

e=1
(ρ (qt, re))2

)
(2.10)

We randomly change the order of the row vectors of the matrices PS and QS in the S -th module, and
this process is repeated ∆ times. For each permutation, ρ∗θ is the new average correlation coefficient
calculated by Eq (2.10) after arranging the rows of the matrices PS and QS . The importance of test
statistics can be evaluated by using the following P-value:

P − value =

∣∣∣∣{θ ∣∣∣ρ∗θ ⩾ ρ∗, θ = 1, 2, · · · ,∆
}∣∣∣∣

∆
(2.11)

where | · | represents the number of times ρ∗θ ≥ ρ
∗; modules with a P-value less than 0.05 are

considered significant.

3. Results

3.1. Data preparation and preprocessing

The data we use were downloaded from the ADNI database (http://ADNI.loni.usc.edu/).
We used the following three types of data: sMRI, SNP and gene expression data to verify our
proposal. These three types of data come from a common 386 samples. We downloaded the imaging
and genotyping data of 386 participants, including 113 healthy controls (HCs), 248 MCIs and 25
ADs. The detailed information is shown in Table 1.

Table 1. Characteristics of the subjects.

Groups AD MCI HC
Number 25 248 113
Gender (M/F) 10/15 133/115 58/55
Age (mean ± std) 75.99 ± 10.22 71.9 ± 7.34 75.06 ± 5.68
MMSE (mean) 20.48 27.90 29.00

Note: HC = healthy control group, MCI = mild cognitive impairment, AD = Alzheimer’s disease.

As with our previous preprocessing method, we first, performed head movement correction on the
MRI data downloaded from ADNI1, using the CAT in the SPM software package to perform image
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segmentation to obtain 140 ROI phenotypes. Then, we preprocessed 386 samples through PLINK [13],
screened the genotype data and generated 5947 SNP data. Finally, we used the LIMMA software
package to screen for genes with significant differential expression [14], and 1477 genes were obtained
(P < 0.01).

After the preprocessing, three kinds of raw data with 386 samples were obtained. In the experiment,
we normalized the obtained data and added the feature matrices of the three sets of data for two types
of samples from people suffering from AD and MCI to our algorithm for verification. The HC group
was used as the control group for preprocessing SNP and gene expression data. We integrated the AD
and MCI sets of data, and we obtained the feature matrices X1, X2 and X3 of the sMRI, SNP and gene
expression data for the three modalities of our input data. Their sizes are 273 × 140, 273 × 2956 and
273 × 4026.

3.2. Parameter setting

Parameter selection is very important for our research. In order to select more qualified parameters,
we conducted experiments on real datasets in this section. First, the selection of iteration times in the
experiment is very important. We think that the convergence is that the error gradually decreases and
tends to be stable with the increase in convergence times, which is independent of the number of times,
so it was set to 350 times a set of non-negative W and HI (I = 1, 2, 3) was initialized randomly by
us, and we randomly selected a set of parameters for 350 iterations; the objective function obtained is
shown in Figure 3A. It can be seen in Figure 3A that our algorithm has convergence. As the number
of iterations increases, the value of the objective function gradually decreases until it becomes stable.
Since K ≪ m, the upper limit of K was set to 80 by us and iterated 350 times with different K
values. The results in Figure 3B show that as the value of K increases, the error gradually decreases;
thus, increasing the K value can indeed result in better relative error convergence. However, there
has always been no clear standard for choosing the K value. Experiments have shown that if the K
value we choose is too small, it will lead to relatively large correlation errors and make the features
extracted by our algorithm inaccurate. We should choose a suitable K value. If the K value is too large,
the matrix will be over-decomposed, the final result will deviate from the purpose of our initial matrix
low-rank decomposition and the effect of dimensionality reduction is greatly reduced, which will affect
the extraction of hidden structures in the data . Therefore, we set K ≈ 0.3 ∗ min(m, n1, n2, n3), that is,
K = 40.

The choice of hyperparameters has always been a problem that machine learning needs to overcome.
For our research, the optimal parameters βi, λi(i = 1, 2, 3), α, γ1 and γ2 in our proposed algorithm need
to be selected by us. We set K = 40 and adjusted βi, λi, α, γ1 and γ2 from the set [0.0001, 0.0005,
0.001, 0.005, 0.01]; each set of parameters was iterated 350 times. Figure 3C shows the relative
errors obtained by substituting 3125 sets of hyperparameters into our algorithm. Through screening,
we found that when the parameter is the 423rd group of 3125 groups, the correlation error reaches
the minimum value of 0.3855; the set of regularization parameters with the smallest reconstruction
error was selected by us and the subsequent analysis and research were carried out. That is, λi =

0.001, βi = 0.0005, α = 0.01, γ1 = 0.005 and γ2 = 0.0001. Finally, to prevent the randomness of the
initial value from causing the objective function to fall into a local minimum, we selected 100 sets of
different initialization values W and HI (I = 1, 2, 3) to iterate our algorithm 350 times. As shown in
Figure 3D, among these 100 groups of initialization values, the minimum value was 0.3871 for the
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39th group. Therefore, the initial values of W and HI (I = 1, 2, 3) in the 39th group were selected by
us for subsequent analysis and research.

 

A B 

C D 

Figure 3. Select hyperparameters A: The relative error obtained by iterating 350 times for a
random set of parameters. B: The relative error obtained by iterating 350 times with different
K values. C: The relative error obtained by iterating 350 times with different parameter
combinations. D: 100 sets of different initial values obtained by iterating 350 times to get the
objective function value.

3.3. Results on real data

After selecting all of the required hyperparameters, we applied the W and HI values obtained to
the ADNI database for real data experiments; we ran our code on an AMD Ryzen5 4600H CPU with
the Windows 10 platform 350 times; the calculation time was 111.2013 seconds. We got K (K = 40)
co-expression modules, but we found that one module did not include any SNPs, so we kept the final
39 modules. Among them, the average numbers of features of ROI, SNP and gene data were 27, 228
and 424 respectively.
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Figure 4. Pearson correlation coefficients of three original data matrices and their
reconstruction matrices A: the correlation histogram of the original data matrix and the
reconstruction matrix, which are the characteristic matrix of brain area, the characteristic
matrix of single nucleotide polymorphism, and the characteristic matrix of gene expression
data; BCD: scatter plot of the correlation between the original matrix and the reconstructed
matrix of ROI, SNP and genes respectively.

As shown in Figure 4, we have verified the reliability of the OSJNMF-C algorithm by calculating
the Pearson correlation coefficient between the original matrix and the reconstructed matrix of the
three kinds of data. It can be seen in the histogram in Figure 4A that the reconstruction of the three
types of data and the original matrix are almost the same; especially the correlations between the
reconstructions of ROIs and genetics data and the original matrix were as high as 0.9953 and 0.9472.
In addition, Figure 4(B–D) shows three data-related distributions. It can be seen in the figure that the
difference between the reconstructed matrix and the original matrix after our algorithm is decomposed
is very small, which further proves the robustness of our algorithm.

The modules with P < 0.05 were obtained by using Eq (2.11), as shown in Table 2. Then we
drew the Venn diagrams for these three types of data and compared the escape rates of these three
data features in different modules (escape rate: the ratio of the number of modules that do not overlap
with the other four modules to the total number of modules). Figure 5 shows that the first module has
the lowest comprehensive escape rate among the three data types, so the first module was selected for
in-depth analysis.
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Table 2. Selected modules with P < 0.05.

Module ROI SNP GENE P-value
1 34 88 388 2.73E-108
3 22 175 344 0.0021
19 26 313 400 0.0018
25 33 227 497 2.30E-42
38 29 365 574 1.98E-11

Figure 5. Venn diagram of three kinds of data overlap. A: the Venn diagram between the
ROIs selected by each module. B: the Venn diagram between the SNPs selected by each
module. C: the Venn diagram between the genes selected by each module.

4. Discussion

4.1. Biological significance

The results of OSJNMF-C showed that many brain regions and genes with significant biological
processes of neurodegenerative diseases were found. Table 3 shows the relevant brain regions
identified from the SNPs in Module 1, including the inferior temporal gyrus, lingual gyrus, superior
frontal gyrus, middle temporal gyrus, supra marginal gyrus, parahippocampus gyrus, superior
temporal gyrus, temporal pole, posterior central gyrus, anterior central gyrus, angular gyrus, occipital
poles and other brain regions, many of which are closely related to AD, such as the parahippocampal
gyrus, superior temporal gyrus, inferior temporal gyrus and superior frontal gyrus [15]. Studies have
shown that the severity of neurodegenerative diseases is related to changes in the parahippocampal
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gyrus connectivity, which helps to understand the cognitive decline and impaired brain activity in
AD/MCI [16]. The inferior temporal gyrus plays an important role in speech fluency, which is a
cognitive function affected in the early stage of AD. The inferior temporal gyrus is affected in the
prodromal stage of the disease and may be the basis of some early clinical dysfunctions associated
with AD [17]. APOE gene methylation may not be affected by genotype, and it is related to AD
pathology or the level of APOE protein in the superior frontal gyrus [18]. Using BrainNet Viewer
(http://www.nitrc.org/projects/bnv/) , the brain network visualization of the four abnormal
brain regions listed above was drawn. As shown in Figure 6, the four brain areas are closely related to
AD or neurodegenerative diseases in general [19].

Figure 6. Visualization of the extracted significant brain regions (parahippocampal gyrus,
superior temporal gyrus, inferior temporal gyrus and superior frontal gyrus) by OSJNMF-
C. In the figure, red represents the right regions of the brain and yellow represents the left
regions of the brain.

For the SNPs in Module 1, some risk genes were identified from SNPs: TF, BFSP2, CELF1,
LOC105369536, SORL1, CD33, LINC02287 CHGA, SLC24A4, ITPK1, RIN3, CNN2, ABCA7,
APOC1, CASS4, APOE, ERCC1 and POLR1G. By consulting the published literature, it was found
that most of these genes are direct or indirect pathogenic factors of AD. The expression of multiple
genes of CELF1 is related to each other, and the gene expression of CELF1 is closely related to the
physiological state of AD [20]. The dominant AD genes of familial autosomes are ABCA7 and
SORL1. At present, risk genes such as ABCA7, CASS4, CD33, CELF1, SLC24A4, SORL1 and
ZCWPW1 have been discovered by genome-wide association studies. In the next-generation
sequencing studies, it has been proved that ABCA7, SORL1 and APOE have a higher odds ratio (>2)
in AD risk [21]. It has been demonstrated in studies of hereditary prostate dementia that symptomatic
carriers of the GRN mutation have significantly reduced CHGA [22]. The gene expression of CASS4
is consistent with that in the hippocampus of AD mice, proving that the blood transcriptome may be a
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biomarker of AD [23]. SNPs in CASS4 and AD-related genes may contribute to the susceptibility of
cognitive aging [24]. The risk factors for AD are believed to be caused by genes such as APOC1,
CD33 and CNN2 [25, 26]. The methylation of several CPG sites in ABCA7 is closely related to
AD [27]. The changes in the microstructure of the brain explain the relationship between ITPK1 and
cognition in later life. The higher the abundance of ITPK1, the slower the cognitive decline [28].
RIN3 is related to in vivo dysfunction, which can cause endocrine dysfunction in AD patients [29].

Table 3. Selected ROIs (from SNP data) in Module 1.

Left/Right Exterior Cerebellum Left/Right Superior Temporal Gyrus
Left/Right Temporal Pole Left/Right Cerebrum and Motor
Left/Right Inferior Temporal Gyrus Left/Right Middle Temporal Gyrus
Left Calcarine and Cerebrum Left Gyrus Rectus
Left Inferior Frontal Angular Gyrus Left Lingual Gyrus
Left Medial Frontal Cerebrum Left Middle Occipital Gyrus
Left Occipital Pole Left Parahippocampus Gyrus
Left Posterior Orbital Gyrus Left Superior Occipital Gyrus
Right Angular Gyrus Right Central Operculum
Right Middle Cingulate Gyrus Right Middle Frontal Gyrus
Right Postcentral Gyrus Right Precentral Gyrus
Right Superior Frontal Gyrus Right Superior Medial Frontal Gyrus
Right Superior Parietal Lobule Right Supramarginal Gyrus
Right Thalamus Proper

Studies have confirmed that the APOE allele is the strongest genetic risk factor for sporadic AD. It
is also a genetic risk gene for cardiovascular disease, stroke and other neurodegenerative diseases [30,
31]. We also found some SNP sites with significant pathological effects. These interesting findings
also support the application of genetics in neurological diseases. [32] The results of the survey showed
that rs449647 is an SNP site that is resistant to AD. The rs1133174-G allele (T/G/G) is associated
with the atrophy of the entire brain in men and women, and the SNP locus rs1133174 is independently
associated with hippocampal atrophy in men and women [33]. rs1131497 is the SNP locus of the
SORL1 gene, which is a powerful evidence for testing the genetic correlation between MRI and brain
aging. [34].

We performed KEGG enrichment analysis of the 388 gene expression data selected from Module 1
and screened out the pathways with significant effects to make a bubble chart, as shown in Figure 7.
The KEGG enrichment results show that the genes we selected are involved in signal pathways related
to AD pathology. For example, infections induced by the Epstein-Barr virus and cytomegalovirus
may play a role in the development of MCI and typical immunological changes in the progression of
AD [35]. The prevalence of autoimmune thyroid disease in familial AD families is very high, and
there is evidence that the genetic factors leading to the development of autoimmune thyroid disease
are similar to familial AD genes [36]. In addition, chemokine ligands play a key role in regulating
microglia activation, and dysregulated microglia activation can lead to AD pathology [37].
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Figure 7. Visualization of KEGG enrichment analysis of 388 genes in Module 1. The size
of the circles represent the number of genes enriched. Red to blue indicates the q-value
(adjusted p-value).

A protein-protein interaction network for the 388 genes selected in Module 1 was constructed, and
two modules A and B with significant correlation (higher weight) were selected for show in Figure 8.
The brightness of the color of genes indicates how much the gene is associated with other genes in this
network. There are 10 genes with significant interaction in the A network. IFIH1 has been identified
as a mutation that may affect function in the neurodevelopmental disorder gene [38]. The ubiquitin-
like protein ISG15 is stimulated by the ubiquitin-like protein interferon, and its constitutively elevated
expression is a potential cause of mitochondrial autophagy defects in neurodegenerative diseases [39].
Studies have found that OAS1 is a new AD risk gene, and that Oas1a may directly respond to amyloid
at the transcriptional level [40]. In the B network, the protein network encoded by CD8A and other
genes connects immunity to neurodegenerative processes and highlights the potential role of HLA-A2
in maintaining synaptic AD pathogenesis [41]. The experimental results in [42] showed that deletion of
CCR7 in 5xF AD transgenic mice could cause harmful neurovascular and microglial activation while
increasing Aβ deposition in the brain.

Mathematical Biosciences and Engineering Volume 20, Issue 6, 9923–9947.



9939

Figure 8. Construction of the PPI network of the extracted genes in Module 1. A: presents
the protein interaction network of the extracted 19 genes. B: presents the protein interaction
network of the 10 genes with significant interaction in the network.

For the ROI, SNPs and genes selected from the salient Module 1, we used MATLAB software
to make a paired correlation heat map of ROI-SNP and ROI-GENE, as shown in Figure 9. We can
see in Figure 9 that there is a strong correlation between ROI-SNP/gene pairs. The first 10 pairs of
ROI-SNP and ROI-GENE with P < 0.01 were found from Module 1, as shown in Table 4. Although
there is no related literature report on SNPs in the ROI-SNP pair, since most ROIs have been proven
to be dangerous brain areas for AD/MCI, the obtained SNP-ROI pair still has a specific reference
value. The SNP site rs75277622 is associated with multiple brain regions at the same time. Among
them, the precuneus has been confirmed to be related to Parkinson’s disease [43], the right postcentral
gyrus is the damaged hub node in AD/MCI [44] and the cognitive decline of patients. The functional
connection density of the left superior occipital gyrus at rest changed significantly [45]. Additionally,
rs75277622 may directly or indirectly affect the structure and function of multiple brain regions. This
research has yet to be confirmed. In addition, the area where the functional connectivity of AD patients
changes in the left lingual gyrus [46]. It is no coincidence that the brain regions found in the first 10
pairs of ROI-GENE and the brain regions we found directly from Module 1 contain the lingual gyrus
and inferior temporal gyrus. In addition, the loss of KANK1 on chromosome 9p24.3 has a potential
impact on neurodevelopment [47]. ZFX can regulate the expression of SET, and this gene has multiple
functions in different diseases such as cancer and AD [48]. BCL7A strongly correlates with multiple
brain regions, but the conclusion that many brain regions are affected by it remains to be confirmed.
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A 

B 

Figure 9. Pairwise correlation heat map of Module 1. A and B are the heat maps of ROI-SNP
and ROI-GENE selected in Module 1, respectively.

Table 4. Top 10 pairs of SNP-ROI and ROI-GENE with p < 0.01 in module 1.

ROI-SNP P-Value ROI-GENE P-Value
rPCu-rs75277622 2.39E-16 rExtCbe-BCL7A 3.23E-07
lExtCbe-rs75277622 2.64E-16 lExtCbe-BCL7A 8.91E-07
rPoCGy-rs75277622 1.31E-14 lMedFroCbr-BCL7A 2.73E-06
rExtCbe-rs75277622 1.01E-12 lLinGy-PPAT 2.86E-06
lMidOccGy-rs75277622 1.07E-12 lLinGy-KANK1 3.05E-06
lSupOccGy-rs75277622 1.44E-12 lRecGy-PPAT 3.32E-06
rMidTemGy-rs2868996 2.21E-12 lInfTemGy-HBG1 5.20E-06
rCenOpe-rs55663874 2.03E-11 lMidTemGy-ZNF285 5.79E-06
rSupMedFroGy-rs28529220 7.65E-11 lSupOccGy-BCL7A 6.03E-06
lLinGy-rs11160070 2.26E-10 lInfTemGy-ZFX 7.47E-06
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4.2. Experiment on the synthetic data

To verify the performance of our model, we conducted comparative experiments using our proposed
algorithm and the degraded algorithm on the synthetic data. Due to the large sample size of our real
data (m = 273), we generated a set of simulated data with a small sample size (m = 100). Here, we
use m, n1, n2 and n3 to denote the number of samples, sMRI, SNP and the feature number of genes,
respectively, where m = 100, n1 = 650, n2 = 350, n3 = 600 and K = 10. The following formula
generates our simulation data:

α [n] = {βi |βi = α + lηi (i = 1, 2, · · · , n) } (4.1)

α is a matrix of uniformly distributed random numbers U(0, 1); ηi represents Gaussian noise, and l
represents the noise level.

Figure 10. Comparison results for the performance of different algorithms under different
noise levels. A denotes the reconstruction error of the three algorithms under different noise
levels. B is the objective function values of the three models at six levels of noise.

We compared our proposed algorithm with JNMF and JSNMNMF at different noise levels. It can
be seen in Figure 10 that, after adding different levels of noise, the reconstruction error and objective
function value of OSJNMF-C were significantly smaller than those for JNMF and JSNMNMF, which
fully reflects the superiority of the anti-noise performance of the OSJNMF-C algorithm.

In addition, based on the simulated data experiments, we verified our algorithm performance
through ablation research. As with the above simulated data experimental settings, we performed
experimental reconstruction error and objective function comparison at different noise levels, as
shown in Figure 11. The ablation algorithm is the algorithm without orthogonal constraints. From the
results, our algorithm is superior to the ablation algorithm, and orthogonal constraints play a positive
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role in the algorithm. For the results obtained by the two methods, we can judge which is better by the
ROI and SNP sites extracted by the two methods. The experiment shows that the ROIs not extracted
by the ablation algorithm include the left/right inferior temporary gyrus and left parahoppocampus
gyrus, and the SNP sites not extracted include SORL1, CD33 and POLR1G. Therefore, under
orthogonal constraints, the algorithm extracts information more accurately and completely, while the
ablation method lacks some important biomarkers.

Figure 11. Simulated data experimental results for the ablation algorithm and other
algorithms.

5. Conclusions

In this study, we developed a flexible and efficient improved JNMF algorithm to identify and predict
abnormal brain regions and risk genes related to AD, to further interpret the close relationship between
imaging omics and genomics. To verify our algorithm’s performance and practical significance of our
algorithm, real and simulated datasets of three modes of data, i.e., sMRI, SNP and gene expression
data were applied to explore the early diagnostic biomarkers of AD. The real experimental data results
show that our proposed method (OSJNMF-C) can effectively mine AD- or MCI-related modules. By
scoring and comparing the selected modules, we have found some brain regions closely related to the
pathogenesis of AD (such as parahippocampal gyrus), as well as the risk genes (such as APOE) and
SNP sites directly or indirectly affected by AD (such as rs449647). It was also found that rs75277622
may directly or indirectly affect the structure and function of multiple brain areas, and that BCL7A has
a strong correlation with multiple brain areas. All of the extracted factors can provide new research
ideas for the discovery of more reliable biomarkers of the early diagnosis of AD. Experimental results
on the synthetic data show that our algorithm’s anti-noise performance is better than that of JNMF and
JSNMNMF, and that the correlation error is much smaller than for these two algorithms. In addition to
the performance improvement, we proved the convergence of our algorithm. OSJNMF-C may be well
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applied to the analysis mode of other diseases. In the future, to more accurately identify the hidden
association patterns between imaging data, genetic data and diseases, four or more types of omics data
can be considered to identify and predict AD.
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