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Abstract: Dengue is one of the most infectious diseases in the world. In Bangladesh, dengue occurs
nationally and has been endemic for more than a decade. Therefore, it is crucial that we model dengue
transmission in order to better understand how the illness behaves. This paper presents and analyzes a
novel fractional model for the dengue transmission utilizing the non-integer Caputo derivative (CD) and
are analysed using q-homotopy analysis transform method (q-HATM). By using the next generation
method, we derive the fundamental reproduction number R0 and show the findings based on it. The
global stability of the endemic equilibrium (EE) and the disease-free equilibrium (DFE) is calculated
using the Lyapunov function. For the proposed fractional model, numerical simulations and dynamical
attitude are seen. Moreover, A sensitivity analysis of the model is performed to determine the relative
importance of the model parameters to the transmission.

Keywords: fractional model; q-Homotopy analysis method; stability analysis; basic reproduction
number; sensitivity analysis; numerical simulations

1. Introduction

Dengue is a debilitating viral infection spread by the bite of Aedes mosquitoes carrying any one of
the four dengue viral serotypes. It is common in urban and semi-urban areas of tropical and
subtropical climates around the world. These serotypes of the virus that can cause dengue are closely
related but antigenically distinct (DEN-1, DEN-2, DEN-3, DEN-4). While recovery from one virus
confers lifetime immunity against that virus, [1] notes that recovery from the other three viruses offers
no protection against infection. The majority of the world’s population, particularly those who live in
tropical and subtropical regions like Bangladesh, are at risk. About 390 million dengue infections are
estimated to occur annually, of which a quarter of the cases (67–136 million) will manifest
clinically [2], with the overall incidence of dengue having increased 30-fold over the past 50
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years [3]. In Asia, a severe dengue outbreak was reported in 1950 in the Philippines and Thailand [3],
and in 1964 Bangladesh experienced a dengue outbreak for the first time. Between 1964 and 1999,
sporadic cases and small outbreaks clinically suggestive of dengue occurred across the country but
were not officially reported, even though 5551 people were affected with 93 accounted fatalities [4].

Dengue Fever (DF) is marked by an onset of sudden high fever, severe headache, pain behind the
eyes, and pain in muscles and joints. Some may also have a rash and varying degrees of bleeding
from various parts of the body. Dengue has a wide spectrum of infection outcomes (asymptomatic to
symptomatic). Symptomatic illness can vary from DF to more serious dengue hemorrhagic
fever (DHF) [5, 6]. DHF is a more severe form, seen only in a small proportion of those infected.
DHF is a stereotypic illness characterized by 3 phases; the febrile phase with high continuous fever
usually lasting for less than 7 days; the critical phase lasting 1–2 days usually apparent when the fever
comes down, leading to shock if not detected and treated early; convalescence phase lasting 2–5 days
with an improvement of appetite. Dengue Shock Syndrome (DSS) is a dangerous complication of
dengue infection and is associated with high mortality. Severe dengue occurs as a result of secondary
infection with a different virus serotype. Statistics show that Bangladesh reported its first case of
mosquito-borne virus infection in 2000, and about 100 people died of the disease from 2000 to 2003.

The first official outbreak of DF in Bangladesh was in 2000, and since then the number of
hospitalized patients have exceeded 3000 patients six times: 6232 in 2002, 3934 in 2004, 3162
in 2015, 6060 in 2016, 10,148 in 2018, and 1,00107 as of Nov 30, 2019, with estimated projections of
more than 1,12,000 cases by the end of 2019 (appendix) [4, 7, 8]. In parallel with the major epidemics
in 2018 and 2019’s outbreak, 26 deaths and 129 deaths, respectively, have been officially documented
by the government surveillance systems with a clear predominance of cases and fatalities during the
summer months (July to November), even if the death tally is likely to be much higher because of
actual under-reporting (appendix) [8, 9].

In reality, Bangladesh is suffering from the pain of mosquitoes. On Saturday 15 October 2022,
A total of 1,916 people are admitted to different government and private hospitals in Dhaka and 799
outside Dhaka. A total of 23,592 patients were admitted to the hospital from January 1 to October 14
this year. Of them, 20,794 people left the hospital after recovering. The number of dengue patients
is increasing every day. The list of deaths is getting longer. So far this year, 83 people have died of
dengue. Of these, 28 this month. In two weeks of this month, 7,500 patients were admitted to the
hospital with the infection. Experts said pre-monsoon, post-monsoon, and monsoon surveillance are
being done every year to see the mosquito situation.

A month-wise patient admission analysis showed that 126 patients were admitted to the hospital in
January 2022, 20 in February, 20 in March, 23 in April, 163 in May, 737 in June, 1,571 in July,
and 3,521 in August. The highest number of dengue patients were admitted in September and 9,911
people were admitted, 34 people died. In 2019, 1,01,354 people were admitted to the hospital with
dengue. This is the highest number of patients admitted in a year in the country so far. That year, 164
people died. In 2018, 10,148 people were admitted to hospitals with dengue and 26 died. Although
dengue infection was not seen much during the corona epidemic in 2020, 28,429 people were infected
and 105 people died of dengue across the country in 2021 [10]. DF is the fastest-growing infectious
disease in the world, causing an average of more than 500,000 potentially fatal infections and
about 20,000 deaths each year. As of 17 November, 26,000 dengue cases were reported with 98
deaths [11]. So far, the case fatality rate seems higher in this outbreak (98/26,000) as compared
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to 2019 massive outbreak (179/101,354) (Table 1).

Table 1. Number of reported dengue cases by months and yearly data between 2012 and
2022.

Months 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
January 0 0 15 0 13 92 26 38 199 32 126
February 0 0 7 0 3 58 7 18 45 9 20
March 0 0 2 2 17 36 19 17 27 13 20
April 0 0 0 6 38 73 29 58 25 3 23
May 0 4 8 10 70 134 52 193 10 43 163
June 16 44 9 28 254 267 295 1884 20 272 737
July 108 220 82 171 926 286 946 16253 23 2286 1571
August 138 353 80 765 1451 346 1796 53636 68 7698 3521
September 262 495 76 965 1544 430 3087 16856 47 7841 9911
October 90 363 63 869 1077 512 2406 8143 164 5458 21932
November 57 212 22 271 522 409 1192 4011 546 3567 3457
December 0 58 11 75 145 126 293 1247 231 1207 –
Total cases 671 1749 375 3162 6060 2769 10148 101354 1405 28429 41481

Recently, fractional calculus has gained much interest from researchers. Because it has been
widely used in different fields of science, and engineering, and also in different real-world problems.
Several scholars have used different types of operator approaches and applied them to many linear and
non-linear diseases and complex models [12–16]. In this paper, the proposed dengue epidemic model
is derived using the Caputo fractional derivatives. In recent years, fractional-order calculus is found to
be more appealing in modeling for a real-world problem in comparison to a classical integer order as
it provides a tool for the description of memory effects and genetic properties of various materials.
Recent entomological studies revealed that mosquitoes did not feed randomly on human blood, but
they use their prior experience with human location and human defensiveness to select the host to
feed on [17]. Thus, in dengue transmission, a future state does depend on the history of the
transmission. Hence, the fractional-order differential equation is found to be the best approach to
model the transmission. The purpose of this study is to propose and study a more accurate
mathematical model of dengue transmission using the fractional-order derivative than those
previously presented in the literature [18–20].

This paper is organized as follows: In Section 2, preliminaries and notations; Section 3 describes
the model formulation for the fractional-order derivative; Section 4 explains the existence and
uniqueness of a non-negative solution; Section 5, presents model equilibria and basic reproduction
number; Section 6, stability analysis of equilibrium (DFE and EE state) presents, where the Jacobian
matrix uses for disease-free and Lyapunov function uses for endemic equilibria; Section 7 basic
reproduction number is presented through sensitivity analysis by calculating relevant parameters;
Section 8, the numerical simulations; Section 9, the discussion and conclusion.
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2. Preliminary definitions

The study of derivatives and integrals of any real number, even those of complex order, can be done
very well using fractional calculus. Even though we use the CD in our proposed fractional dengue
model, there are some fundamental concepts concerning the CD that we must understand first. Other
relevant properties are listed below [21–25].

Definition 1( [25]) Suppose α > 0 and f ∈ L1([0, b],R) where [0, b] ⊂ R+. The fractional integral
of order α of function f in the sense of Riemann-Liouville is defined as follows:

Iα0+ f (x) =
1
Γ(α)

∫ t

0
(x − t)α−1 f (t)dt,

where Γ(·) is the classical gamma function defined by

Γ(α) =
∫ ∞

0
xα−1e−xdx.

The initial value problem for Caputo fractional differential equation is

C
a Dαu(t) = f (t, u(t)), u(t0) = u0, t0 ≤ t ≤ T.

and the corresponding fractional Volterra integral Eq [26] is

u(t) = u0 +
1
Γ(q)

∫ t

t0
(t − s)q−1 f (s, u(s))ds. (2.1)

Definition 2 [22] The Caputo fractional derivative of order α ∈ (n − 1, n] of f (x) is defined as

C
a Dαx f (x) =

1
Γ(n − α)

∫ t

0
(x − t)n−α−1 f (n)(t)dt,

where n = [α] + 1 and [α] represent the largest integer that is less or equal to α.
Definition 3 [27] The Laplace transform of an n-th derivative operator is obtained as

L{ f n(t)} = S nL{ f (t)} −
n−1∑
k=0

S n−k−1 f (k)(t0),

Similarly for α ∈ (n − 1, n] we obtain the Laplace transform of the Caputo fractional operator as

L{Ct0 Dαt } = S αL{N(t)} −
n−1∑
k=0

S α−k−1N(k)(t0).

Definition 4 [23]. An entire function called Mittag-Leffler is defined in the form of power series as

Eα,β(Z) =
∞∑

n=0

Zk

Γ(αk + β)
, α > 0, β > 0,

and

Eα,1(Z) = Eα(Z) =
∞∑

n=0

Zk

Γ(αk + 1)
, β = 1.
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The notion of convergence of mittag-Leffler function is fully discussed in [21].
Theorem 1 [28, 29]. Let us consider a fractional non-autonomous system like (4) with x∗ say an

equilibrium point and X ∈ Rn a domain containing x∗ and let H : [0,∞) × X → R be a continuous and
differentiable function, such that

V1(x) ≤ H(t, x(t)) ≤ V2(x) (2.2)

and
CDα0 (H(t, x(t)) ≤ −V3(x), (2.3)

∀α ∈ (0, 1) and all x ∈ X, where V1(x), V2(x) and V3(x) are positive definite continuous functions of X,
then the equilibrium point of system (4) is uniformly asymtotically stable [30].

The Lyapunov function described above will be used to investigate the global stability of the
proposed fractional dengue model.

Lemma 1 [31]. For a continuous and differentiable function H(t) ∈ R+ and α ∈ (0, 1), then for any
time t ≥ t0 we have

CDαt

[
H(t) − H∗ − H∗ ln

H(t)
H∗

]
≤

[
1 −

H∗

H(t)

]
CDαt H(t),H∗ ∈ R+.

3. The model formulation

In this paper, we investigate the S hIhHhRhS mIm human-mosquito fractional model, which
comprises of two distinct populations, including human populations and mosquito populations. Three
epidemiological states of humans are included in the proposed fractional-order dengue model: S h(t)
susceptible (individuals who can contract the virus), Ih(t) infected (individuals who can transmit the
virus to others), Hh(t) hospitalized human (the compartment of people who are hospitalized after
infection), and Rh(t) recovered (individuals who have required immunity). Since Nh is assumed to be
constant, Nh(t) = S h(t) + Ih(t) + Hh(t) + Rh(t). For the mosquito model, we only consider the
susceptible and infected mosquitoes, since the mosquito does not enter the recovery phase after being
infected due to its shortened lifespan. On the other hand, the mosquito population is divided into two
compartments, susceptible (S m), and infectious (Im) with Nm(t) = S m(t) + Im(t), where α ∈ (0, 1] is the
order of the fractional derivative. All model parameters are assumed to be non-negative. The
following Table 1 lists the parameters that are used in our model. The fractional derivatives use in
model (3.1) are all in the Caputo sense. So the model diagram of human-mosquito transmission
dynamics of the disease is given below in Figure 1:
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Figure 1. The flow chart of the considered dengue model.
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Now we present a fractional model with CD given by,

CDαt S h(t) = Λαh − ϕ
α
mβ
α
mIm

S h
Nh
− γαh S h,

CDαt Ih(t) = ϕαmβ
α
mIm

S h
Nh
− (µαh + τ

α
h + γ

α
h )Ih,

CDαt Hh(t) = µαh Ih − (ϵαh + υ
α
h + γ

α
h )Hh,

CDαt Rh(t) = ταh Ih + υ
α
h Hh − γ

α
h Rh,

CDαt S m(t) = Λαm − ϕ
α
hβ
α
h Ih

S m
Nm
− γαmS m,

CDαt Im(t) = ϕαhβ
α
h Ih

S m
Nm
− γαmIm.

(3.1)

With the following non-negative initial conditions

S h(0) ≥ 0, Ih(0) ≥ 0,Hh(0) ≥ 0,Rh(0) ≥ 0, S m(0) ≥ 0, Im(0) ≥ 0,∀t ∈ R, (3.2)

where 0 < α ≤ 1 and CDαt is the Caputo fractional derivative of order α. The size of the entire human
population and mosquito population is represented by the Nh and Nm so that, Nh(t) = S h(t) + Ih(t) +
Hh(t) + Rh(t) and Nm(t) = S m(t) + Im(t). The birth rate of human and mosquito populations are denoted
as Λh and Λm respectively. The natural death rate for humans and mosquitoes is described by the
parameters γh and γm and disease related death rate of human is denoted by ϵh. We assume that biting
rate for humans and mosquitoes are ϕh and ϕm, respectively. βh is the transmission probability from
infected human to susceptible mosquito, βm is the transmission probability from infected mosquito to
susceptible human, τh represents natural recovery rate of infected human, µh is the rate of hospitalized
infected humans and υh is the recovery rate of hospitalized infected human.

The different parameters used in this fractional model with their values and references are given
below in Table 2:

Table 2. Description of parametric values for the dengue model of Bangladesh.
Parameter Interpretation Values Reference
Λh birth rate of human 2278130.05 Fitted
Λm birth rate of mosquito 11874069.5 Fitted
ϕh infected humans for the biting rate 0.68 Estimated
ϕm infected mosquitoes for the biting rate 0.50 Estimated
γh natural death rate of human 0.0137 Fitted
γm natural death rate of mosquito 0.0238 [32, 33]
βh transmission probability from infected human to susceptible mosquito 0.0824 Fitted
βm transmission probability from infected mosquito to susceptible human 0.1648 Assumed
τh natural recovery rate of infected human 0.01 Fitted
δh incubation period of human 0.2599 Estimated
δm incubation period of mosquito 0.1 Fitted
ϵh disease related death rate of human 0.0001452 Fitted
µh rate of hospitalized infected human 0.1 Fitted
υh recovery rate of hospitalized infected human 0.440 [34]

4. Fundamental solution procedure of q-HATM

In this section, we present the solution procedure of q-HATM [35] by using LT with q-HAM. Soon
after, it is employed by number of authors to evaluate the solution for numerous families of differential
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equations exemplifying diverse phenomena including economic growth, biological models, human
disease, chaotic behaviour, chemical reaction, optics, fluid mechanics and others [35–37] and further
derived some fascinating consequences in comparison of other modified and classical algorithms.

Here, to present the procedure of q-HATM we hire the following differential equation of fractional
order

CDαt v(x, t) + Rv(x, t) + Nv(x, t) = f (x, t), (4.1)

with the initial condition

v(x, 0) = g(x), (4.2)

where CDαt v(x, t) denotes the CD of v(x,t). On employing LT on Eq (4.1), we obtain

L[v(x, t)] −
g(x)

s
+

1
sα

L[Rv(x, t)] + L[Nv(x, t)] − L[ f (x, t)] = 0. (4.3)

For ϕ(x, t; q), N is contracted as follows

N[ϕ(x, t; q)] = L[ϕ(x, t; q)] − g(x)s +
1
sα

L[Rϕ(x, t; q)] + L[Nϕ(x, t; q)] − L[ f (x, t)]. (4.4)

where q ∈ [0, 1
n ]. Then, we present homotopy with the embedding parameter q and non-zero

auxiliary parameter by HAM as

(1 − nq)L[ϕ(x, t; q) − v0(x, t)] = ℏqN[ϕ(x, t; q)], (4.5)

where L is signifying LT. For q = 0 and q = 1
n , the following conditions satisfies

ϕ(x, t; 0) = v0(x, t), ϕ(x, t;
1
n

) = v(x, t). (4.6)

With the help of Taylor theorem, we have

ϕ(x, t; q) = v0(x, t) +
∞∑

m=1

vm(x, t)qm, (4.7)

where

vm(x, t) =
1

m!

[
δmϕ(x, t; q)
δqm

]
q=0
. (4.8)

After differentiating Eq (4.7) m-times with q and multiplying by 1
m! and substituting q = 0, one can

get

L[vm(x, t) − kmvm−1(x, t)] = ℏRm(v̄m−1), (4.9)

where the vectors are defined as

v̄m = v0(x, t), v1(x, t), ..., vm(x, t). (4.10)
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Eq (4.9) reduces after employing inverse LT to

vm(x, t) = kmvm−1(x, t) + ℏL−1[Rm(v̄m−1)], (4.11)

where

Rm(v̄m−1) = L[vm−1(x, t)] +
1
sα

L[Rvm−1 + Hm−1] −
(
1 −

km

n

) (
g(x)

s
+

1
sα

L[ f (x, t)]
)
, (4.12)

and

km =

0, m ≤ 1
n, m > 1

(4.13)

Here, Hm is homotopy polynomial and presented as

Hm =
1

m!

[
δmϕ(x, t; q)
δqm

]
q=0
, ϕ(x, t; q) = ϕ0 + qϕ1 + q2ϕ2 + .... (4.14)

By using Eqs (4.11) and (4.12), we get

vm(x, t) = (km + ℏ)vm−1(x, t) − (1 −
km

n
)L−1

[
g(x)

s
+

1
sα

L[ f (x, t)]
]
+ ℏL−1

[
1
sα

L[Rvm−1 + Hm−1]
]
. (4.15)

The series solution by projected algorithm is defined as

v(x, t) = v0(x, t) +
∞∑

m=1

vm(x, t). (4.16)

5. q-HATM solution for considered model

Here, we evaluate the solutions for model (3.1) with different parameters. Consider the system of
the equation describing the fractional-order S hIhHhRhS mIm epidemic model of dengue disease

CDαt S h(t) = Λαh − ϕ
α
mβ
α
mIm

S h
Nh
− γαh S h,

CDαt Ih(t) = ϕαmβ
α
mIm

S h
Nh
− (µαh + τ

α
h + γ

α
h )Ih,

CDαt Hh(t) = µαh Ih − (ϵαh + υ
α
h + γ

α
h )Hh,

CDαt Rh(t) = ταh Ih + υ
α
h Hh − γ

α
h Rh,

CDαt S m(t) = Λαm − ϕ
α
hβ
α
h Ih

S m
Nm
− γαmS m,

CDαt Im(t) = ϕαhβ
α
h Ih

S m
Nm
− γαmIm.

(5.1)

With the following initial conditions

S h(0) ≥ 0, Ih(0) ≥ 0,Hh(0) ≥ 0,Rh(0) ≥ 0, S m(0) ≥ 0, Im(0) ≥ 0,

Taking LT on Eq (5.1) and then using the initial conditions, we get
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L
[
S h(t)

]
−

1
s
(
S h0

)
−

1
sα

L
[
Λαh − ϕ

α
mβ
α
mIm

S h

Nh
− γαh S h

]
= 0,

L
[
Ih(t)

]
−

1
s
(
Ih0

)
−

1
sα

L
[
ϕαmβ

α
mIm

S h

Nh
− (µαh + τ

α
h + γ

α
h )Ih

]
= 0,

L
[
Hh(t)

]
−

1
s
(
Hh0

)
−

1
sα

L
[
µαh Ih − (ϵαh + υ

α
h + γ

α
h )Hh

]
= 0,

L
[
Rh(t)

]
−

1
s
(
Rh0

)
−

1
sα

L
[
ταh Ih + υ

α
h Hh − γ

α
h Rh

]
= 0,

L
[
S m(t)

]
−

1
s
(
S m0

)
−

1
sα

L
[
Λαm − ϕ

α
hβ
α
h Ih

S m

Nm
− γαmS m

]
= 0,

L
[
Im(t)

]
−

1
s
(
Im0

)
−

1
sα

L
[
ϕαhβ

α
h Ih

S m

Nm
− γαmIm

]
= 0.

(5.2)

Now, the non-linear operator N presented as:

N1[π1(t; p), π2(t; p), π3(t; p), π4(t; p), π5(t; p), π6(t; p)] = L[π1(t; p)] −
1
s
(
S h0

)
−

1
sα

L
[
Λαh − ϕ

α
mβ
α
mπ5(t; p)

π1(t; p)
Nh

− γαhπ1(t; p)
]
= 0,

N2[π1(t; p), π2(t; p), π3(t; p), π4(t; p), π5(t; p), π6(t; p)] = L[π2(t; p)] −
1
s
(
Ih0

)
−

1
sα

L
[
ϕαmβ

α
mπ6(t; p)

π1(t; p)
Nh

− (µαh + τ
α
h + γ

α
h )π2(t; p)

]
,

N3[π1(t; p), π2(t; p), π3(t; p), π4(t; p), π5(t; p), π6(t; p)] = L[π3(t; p)] −
1
s
(
Hh0

)
−

1
sα

L
[
µαhπ2(t; p) − (ϵαh + υ

α
h + γ

α
h )π3(t; p)

]
,

N4[π1(t; p), π2(t; p), π3(t; p), π4(t; p), π5(t; p), π6(t; p)
]
= L[π4(t; p)] −

1
s
(
Rh0

)
−

1
sα

L
[
ταhπ2(t; p) + υαhπ3(t; p) − γαhπ4(t; p)

]
= 0,

N5[π1(t; p), π2(t; p), π3(t; p), π4(t; p), π5(t; p), π6(t; p)
]
= L[π5(t; p)] −

1
s
(
S m0

)
−

1
sα

L
[
Λαm − ϕ

α
hβ
α
hπ2(t; p)

π5(t; p)
Nm

− γαmπ5(t; p)
]
,

N6[π6(t; p), π2(t; p), π3(t; p), π4(t; p), π5(t; p), π6(t; p)
]
= L[π1(t; p)] −

1
s
(
Im0

)
−

1
sα

L
[
ϕαhβ

α
hπ2(t; p)

π5(t; p)
Nm

− γαmπ6(t; p)
]
.

(5.3)

By applying the considered method and for H(t) = 1, the n-th order deformation equation is
presented as

Mathematical Biosciences and Engineering Volume 20, Issue 6, 9891–9922.



9900

L[S hn(t) − knS hn−1(t)] = ℏ
(
B1,n

[
S̄ hn−1 , Īhn−1 , H̄hn−1 , R̄hn−1 , S̄ mn−1 , Īmn−1

])
,

L[Ihn(t) − knIhn−1(t)] = ℏ
(
B2,n

[
S̄ hn−1 , Īhn−1 , H̄hn−1 , R̄hn−1 , S̄ mn−1 , Īmn−1

])
,

L[Hhn(t) − knHhn−1(t)] = ℏ
(
B3,n

[
S̄ hn−1 , Īhn−1 , H̄hn−1 , R̄hn−1 , S̄ mn−1 , Īmn−1

])
,

L[Rhn(t) − knRhn−1(t)] = ℏ
(
B4,n

[
S̄ hn−1 , Īhn−1 , H̄hn−1 , R̄hn−1 , S̄ mn−1 , Īmn−1

])
,

L[S mn(t) − knS mn−1(t)] = ℏ
(
B5,n

[
S̄ hn−1 , Īhn−1 , H̄hn−1 , R̄hn−1 , S̄ mn−1 , Īmn−1

])
,

L[Imn(t) − knImn−1(t)] = ℏ
(
B6,n

[
S̄ hn−1 , Īhn−1 , H̄hn−1 , R̄hn−1 , S̄ mn−1 , Īmn−1

])
.

(5.4)

where

B1,n
[
S̄ hn−1 , Īhn−1 , H̄hn−1 , R̄hn−1 , S̄ mn−1 , Īmn−1

]
= L[S hn−1(t)] − (1 −

kn

n
)
1
s

(S h0) −
1
sα

L[Λαh − ϕ
α
mβ
α
m

n−1∑
i=0

Imn−1−i

S hi

Nh
− γαh S hn−1]

B2,n
[
S̄ hn−1 , Īhn−1 , H̄hn−1 , R̄hn−1 , S̄ mn−1 , Īmn−1

]
= L[Ihn−1(t)] − (1 −

kn

n
)
1
s

(Ih0) −
1
sα

L[ϕαmβ
α
m

n−1∑
i=0

Imn−1−i

S hi

Nh
− (µαh + τ

α
h + γ

α
h )Ihn−1]

B3,n
[
S̄ hn−1 , Īhn−1 , H̄hn−1 , R̄hn−1 , S̄ mn−1 , Īmn−1

]
= L[Hhn−1(t)] − (1 −

kn

n
)
1
s

(Hh0) −
1
sα

L[µαh Ihn−1 − (ϵαh + υ
α
h + γ

α
h )Hhn−1],

B4,n
[
S̄ hn−1 , Īhn−1 , H̄hn−1 , R̄hn−1 , S̄ mn−1 , Īmn−1

]
= L[Rhn−1(t)] − (1 −

kn

n
)
1
s

(Rh0) −
1
sα

L[ταh Ihn−1 + υ
α
h Hhn−1 − γ

α
h Rhn−1],

B5,n
[
S̄ hn−1 , Īhn−1 , H̄hn−1 , R̄hn−1 , S̄ mn−1 , Īmn−1

]
= L[S mn−1(t)] − (1 −

kn

n
)
1
s

(S m0) −
1
sα

L[Λαm − ϕ
α
hβ
α
h

n−1∑
i=0

Ihn−1−i

S mi

Nm
− γαmS mn−1],

B6,n
[
S̄ hn−1 , Īhn−1 , H̄hn−1 , R̄hn−1 , S̄ mn−1 , Īmn−1

]
= L[Imn−1(t)] − (1 −

kn

n
)
1
s

(Im0) −
1
sα

L[ϕαhβ
α
h Ihn−1−i

S mi

Nm
− γαmImn−1].

(5.5)

Now using inverse LT on Eq (5.4), we get

S hn(t) = knS hn−1(t) + ℏL
−1(B1,n

[
S̄ hn−1 , Īhn−1 , H̄hn−1 , R̄hn−1 , S̄ mn−1 , Īmn−1

])
,

Ihn(t) = knIhn−1(t) + ℏL
−1(B2,n

[
S̄ hn−1 , Īhn−1 , H̄hn−1 , R̄hn−1 , S̄ mn−1 , Īmn−1

])
,

Hhn(t) = knHhn−1(t) + ℏL
−1(B3,n

[
S̄ hn−1 , Īhn−1 , H̄hn−1 , R̄hn−1 , S̄ mn−1 , Īmn−1

])
,

Rhn(t) = knRhn−1(t) + ℏL
−1(B4,n

[
S̄ hn−1 , Īhn−1 , H̄hn−1 , R̄hn−1 , S̄ mn−1 , Īmn−1

])
,

S mn(t) = knS mn−1(t) + ℏL
−1(B5,n

[
S̄ hn−1 , Īhn−1 , H̄hn−1 , R̄hn−1 , S̄ mn−1 , Īmn−1

])
,

Imn(t) = knImn−1(t) + ℏL
−1(B6,n

[
S̄ hn−1 , Īhn−1 , H̄hn−1 , R̄hn−1 , S̄ mn−1 , Īmn−1

])
.

(5.6)
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Using the initial conditions and the above system, we have

S h1(t) = [Λαh − ϕ
α
mβ
α
mIm0

S h0

Nh
− γαh S h0]

ℏtα

Γ(α + 1)
,

Ih1(t) = [ϕαmβ
α
mIm0

S h0

Nh
− (µαh + τ

α
h + γ

α
h )Ih0

] ℏtα

Γ(α + 1)
,

Hh1(t) = [µαh Ih0 − (ϵαh + υ
α
h + γ

α
h )Hh0

] ℏtα

Γ(α + 1)
,

Rh1(t) = [ταh Ih0 + υ
α
h Hh0 − γ

α
h Rh0]

ℏtα

Γ(α + 1)
,

S m1(t) = [Λαm − ϕ
α
hβ
α
h Ih0

S m0

Nm
− γαmS m0]

ℏtα

Γ(α + 1)
,

Im1(t) = [ϕαhβ
α
h Ih0

S m0

Nm
− γαmIm0]

ℏtα

Γ(α + 1)
,

S h2(t) =Λh
ℏtα

Γ(α + 1)
+ (γαhΛ

α
h − γ

α
hϕ
α
mβ
α
mIm0

S h0

Nh
− γ2α

h S h0)
ℏ2t2α

Γ(2α + 1)

− (ϕαmβ
α
mϕ
α
hβ
α
hΛ
α
h

Ih0S m0

NhNm
− ϕ2α

m β
2α
m ϕ
α
hβ
α
h

Ih0 Im0S h0S m0

N2
h Nm

− ϕαmϕ
α
hβ
α
hβ
α
mγ
α
h

S h0S m0 Ih0

NhNm

− ϕαmβ
α
mγ
α
hΛ
α
h − ϕ

2α
m β

2α
m γ
α
h

I2
m0

S h0

Nh
+ γαhϕ

α
mβ
α
mS h0 Im0)

ℏ3t3α

Γ(3α + 1)
,

Ih2(t) =ϕ
α
mβ
α
m(ϕαhβ

α
h Ih0

S m0

Nm
− ϕγαmIm0)(Λ

α
h − ϕ

α
mβ
α
mIm0

S h0

Nh
− γαh S h0)

ℏ3t3α

Γ(3α + 1)

− (µαh + τ
α
h + γ

α
h )[(ϕαmβ

α
m)Im0

S h0

Nh
− Ih0(µ

α
h + τ

α
h + γ

α
h )]

ℏ2t2α

Γ(2α + 1)
,

Hh2(t) =[ϕαmβ
α
mµ
α
h Im0

S h0

Nh
− µαh (µαh + τ

α
h + γ

α
h )Ih0 − (ϵαh + υ

α
h + γ

α
h )µαh Ih0

+ (ϵαh + υ
α
h + γ

α
h )2Hh0]

ℏ2t2α

Γ(2α + 1)
,

Rh2(t) =[ταmϕ
α
mβ
α
mIm0

S h0

Nh
− ταh (µαh + τ

α
h + γ

α
h )Ih0 + υ

α
hµ
α
h Ih0 − υ

α
h (ϵαh + υ

α
h + γ

α
h )Hh0 − γ

α
hτ
α
h Ih0

− γαhυ
α
h Hh0 + γ

2α
h Rh0]

ℏ2t2α

Γ(2α + 1)
,

S m2(t) =Λ
α
m
ℏtα

Γ(α + 1)
− γαm(Λαm − ϕ

α
hβ
α
h Ih0

S m0

Nm
− γαmS m0)

ℏ2t2α

Γ(2α + 1)
− [ϕαhβ

α
hϕ
α
mβ
α
mImo

S h0

Nh

− (µαh + τ
α
h + γ

α
h )Ih0

(Λαm − ϕ
α
hβ
α
h Ih0

S m0
Nm
− γαmS m0)

Nm
]
ℏ3t3α

Γ(3α + 1)
,

Im2(t) = − γ
α
m(Λαm − ϕ

α
hβ
α
h Ih0

S m0

Nm
− γαmS m0)

ℏ2t2α

Γ(2α + 1)
+ [(ϕαhβ

α
hϕ
α
mβ
α
mIm0

S h0

Nh

− ϕαhβ
α
h (µαh + τ

α
h + γ

α
h )Ih0)(Λ

α
m − ϕ

α
hβ
α
h Ih0

S m0

Nm
− γαmS m0)Nm]

ℏ3t3α

Γ(3α + 1)
.
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...

We can get the rest of the term in a similar way. The q-HATM series solution for the FBM equation
considered in Eq (5.1) is given by

S h(t) = S h0(t) +
∞∑

n=1

S hn(t)
(

1
m

)n

,

Ih(t) = Ih0(t) +
∞∑

n=1

Ihn(t)
(

1
m

)n

,

Hh(t) = Hh0(t) +
∞∑

n=1

Hhn(t)
(

1
m

)n

,

Rh(t) = Rh0(t) +
∞∑

n=1

Rhn(t)
(

1
m

)n

,

S m(t) = S m0(t) +
∞∑

n=1

S mn(t)
(

1
m

)n

,

Im(t) = Im0(t) +
∞∑

n=1

Imn(t)
(

1
m

)n

.

(5.7)

5.1. Boundedness of the solutions

In this section the total population is denoted as

Nh(t) = S h(t) + Ih(t) + Hh(t) + Rh(t)

and the total mosquito population is denoted as

Nm(t) = S m(t) + Im(t).

The linearity of the Caputo operator in the above two different populations becomes,

CDαt Nh(t) = CDαt S h(t) + CDαt Ih(t) + CDαt Hh(t) + CDαt Rh(t),
= Λαh − ϵ

α
h Hh(t) − γαh Nh(t),

≤ Λαh − γ
α
h Nh(t).

(5.8)

and

CDαt Nm(t) = CDαt S m(t) + CDαt Im(t),
≤ Λαm − γ

α
mNh(t).

(5.9)

We apply the Laplace transform method [27] to solve the Gronwall’s inequality in (5.8) and (5.9)
with initial condition N(t0) ≥ 0

L{C0 Dαt Nh(t) + γαh Nh(t)} ≤ L{Λαh },
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and

L{C0 Dαt Nm(t) + γαh Nm(t)} ≤ L{Λαm}.

The linearity property of the Laplace transform gives

L{C0 Dαt Nh(t)} + γαh L{Nh(t)} ≤ L{Λαh },

S αL{Nh(t)} −
n−1∑
k=0

S α−k−1N(k)
h (t0) + γαh L{Nh(t)} ≤

Λαh

S
,

L{Nh(t)} ≤
Λαh

S (S α + γαh )
+

n−1∑
k=0

S α−k−1

S α + γαh
N(k)

h (t0).

(5.10)

and

L{C0 Dαt Nm(t)} + γαmL{Nm(t)} ≤ L{Λαm},

S αL{Nm(t)} −
n−1∑
k=0

S α−k−1N(k)
m (t0) + γαmL{Nm(t)} ≤

Λαm

S
,

L{Nm(t)} ≤
Λαm

S (S α + γαm)
+

n−1∑
k=0

S α−k−1

S α + γαm
N(k)

m (t0).

(5.11)

Splitting (5.10) and (5.11) to partial fraction gives the following:

L{Nh(t)} ≤ Λαh

(
1
S
−

S α−1

S α + γαh

)
+

n−1∑
k=0

S α−k−1

S α + γαh
N(k)

h (t0),

= Λαh

 1
S
−

1
S

1

1 + γ
α
h

S α

 + n−1∑
k=0

1
S k+1

1

1 + γ
α
h

S α

N(k)
h (t0).

and

L{Nm(t)} ≤ Λαm

(
1
S
−

S α−1

S α + γαm

)
+

n−1∑
k=0

S α−k−1

S α + γαm
N(k)

m (t0),

= Λαm

 1
S
−

1
S

1

1 + γ
α
m

S α

 + n−1∑
k=0

1
S k+1

1

1 + γ
α
m

S α

N(k)
m (t0).

According to Taylor series, we get

1

1 + γ
α
h

S α

=

∞∑
n=0

(
−γαh
S α

)n

,
1

1 + γ
α
m

S α

=

∞∑
n=0

(
−γαm
S α

)n

.

Therefore
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L{Nh(t)} ≤ Λαh

 1
S
−

1
S

∞∑
n=0

(
−γαh
S α

)n + n−1∑
k=0

1
S k+1 N(k)

h (t0)
∞∑

n=0

(
−γαh
S α

)n

,

= Λαh

 1
S
−

∞∑
n=0

(
−γαh

)n

S αn+1

 + n−1∑
k=0

∞∑
n=0

1
S k+1

(
−γαh

)n

S αn+k+1 N(k)
h (t0).

(5.12)

and

L{Nm(t)} ≤ Λαm

 1
S
−

1
S

∞∑
n=0

(
−γαm
S α

)n + n−1∑
k=0

1
S k+1 N(k)

m (t0)
∞∑

n=0

(
−γαm
S α

)n

,

= Λαm

 1
S
−

∞∑
n=0

(
−γαm

)n

S αn+1

 + n−1∑
k=0

∞∑
n=0

1
S k+1

(
−γαm

)n

S αn+k+1 N(k)
m (t0).

(5.13)

using the inverse Laplace transform of (5.12) and (5.13), we have

Nh(t) ≤ Λαh L−1
[

1
S

]
− Λαh

∞∑
n=0

(−γαh )nL−1
[

1
S αn+1

]
+

n−1∑
k=0

∞∑
n=0

(
−γαh

)n N(k)
h (t0)L−1

[
1

S αn+k+1

]
,

and

Nm(t) ≤ ΛαmL−1
[

1
S

]
− Λαm

∞∑
n=0

(
−γαm

)n L−1
[

1
S αn+1

]
+

n−1∑
k=0

∞∑
n=0

(
−γαm

)n N(k)
m (t0)L−1

[
1

S αn+k+1

]
.

According to Laplace formula,

L[tm] =
m!

S m+1 =
Γ(m + 1)

S m+1 ,

or

L−1
[

1
S m+1

]
=

tm

Γ(m + 1)
.

Thus

Nh(t) ≤ Λαh − Λ
α
h

∞∑
n=0

(−γαh )n tαn

Γ(αn + 1)
+

n−1∑
k=0

∞∑
n=0

(−γαh )nN(k)
h × (t0)

tαn+k

Γ(αn + k + 1)
,

Nh(t) ≤ Λαh − Λ
α
h

∞∑
n=0

(−γαh tα)n

Γ(αn + 1)
+

n−1∑
k=0

∞∑
n=0

(−γαh tα)n

Γ(αn + k + 1)
tkN(k)

h (t0).

and

Nm(t) ≤ Λαm − Λ
α
m

∞∑
n=0

(−γαm)n tαn

Γ(αn + 1)
+

n−1∑
k=0

∞∑
n=0

(−γαm)nN(k)
m × (t0)

tαn+k

Γ(αn + k + 1)
,

Nm(t) ≤ Λαm − Λ
α
m

∞∑
n=0

(−γαmtα)n

Γ(αn + 1)
+

n−1∑
k=0

∞∑
n=0

(−γαmtα)n

Γ(αn + k + 1)
tkN(k)

m (t0).

Substituting the Mittag-Leffler function we get,
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Nh(t) ≤ Λαh [1 − E1(−γαh tα)] +
n−1∑
k=0

Ek+1(−γαh tα)Nh
h (k)(t0)tk. (5.14)

and

Nm(t) ≤ Λαm[1 − E1(−γαmtα)] +
n−1∑
k=0

Ek+1(−γαmtα)N(k)
m (t0)tk. (5.15)

where E1(−γαh tα),Ek+1(−γαh tα), and E1(−γαmtα),Ek+1(−γαmtα) are the series of Mittag-Leffler function (as
in definition 4), so we say that the solution to the model is bounded. Thus,

(S h(t), Ih(t),Hh(t),Rh(t)) ∈ R4
+ : S h(t), Ih(t),Hh(t),Rh(t) ≤ Λαh [1 − E1(−γαh tα)] +

n−1∑
k=0

Ek+1(−γαh tα)N(k)(t0)tk

 .
(5.16)

and (S m(t), Im(t)) ∈ R2
+ : S m(t), Im(t) ≤ Λαm

[
1 − E1(−γαmtα)

]
+

n−1∑
k=0

Ek+1(−γαmtα)N(k)(t0)tk

 . (5.17)

5.2. Uniqueness of the solution

In this section we will prove the uniqueness of (3.1). Consider the system (3.1) written as

C
0 Dαt x(t) = F(t, x), x(0) = x0, (5.18)

F(t, x) = Ax + g(x) + b,

x = x(t) = (S h(t), Ih(t),Hh(t),Rh(t))T , b = (Λh, o, o, o)T ,

A =


γαh 0 0 0
0 −µαh − τ

α
h − γ

α
h 0 0

0 µαh −ϵαh − υ
α
h − γ

α
h 0

0 ταh υαh −γαh

 , g(x(t)) =


−ϕαmβ

α
mIm

S h
Nh

ϕαmβ
α
mIm

S h
Nh

0
0

 . (5.19)

Theorem 2. System (5.18) satisfies Lipschitz continuity
Proof. Since

|F(t, x) − F(t, x∗)| = |A(x(t)) − A(x∗(t)) + g(x(t)) − g(x∗(t))|
≤ (||A|| + 1)||x(t) − x∗(t)||,

||F(t, x(t)) − F(t, x∗(t))|| ≤ L||x(t) − x∗(t)||, L = ||A|| + 1 < ∞.
(5.20)

It is clear that F is continuous and bounded function. Using Picard-Lindelof theorem [29] we
establish the following theorem.

Theorem 3. Let 0 < α < 1, I = [0, h∗] ⊆ R and J = |x(t) − x(0)| ≤ k and let f : I × J → R
be continuous bounded function, that is ∃M > 0 such that | f (t, x)| ≤ M, Since f satisfies Lipschitz

Mathematical Biosciences and Engineering Volume 20, Issue 6, 9891–9922.



9906

conditions. If Lk < M, then there exists a unique x ∈ Cα[0, h∗] that holds for the initial value problem
(5.18). Where h∗ = min{h, ( kΓ(α+1)

M )
1
α }.

Proof. Suppose T = x ∈ C[0, h∗] : ||x(t) − x(0)|| ≤ k, Since T ⊆ R and its closed set, then T is
complete metric space. The continuous system (5.18) can be transformed to equivalent equations as;

C
0 D−αt [C

0 Dαt x(t)] = C
0 D−αt f (t, x)),

x(t) − x(0) =
1
Γ(α)

∫ t

0
(t − τ)α−1 f (τ, x(τ))dτ,

x(t) = x0 +
1
Γ(α)

∫ t

0
(t − τ)α−1 f (τ, x(τ))dτ.

(5.21)

Equation (5.21) is equivalent to Volterra integral equation that solves (5.18). Define an operator F
in T

F[x](t) = x0 +
1
Γ(α)

∫ t

0
(t − τ)α−1 f (τ, x(τ))dτ. (5.22)

Now we need to proof that (5.22) satisfies the hypothesis of contradiction mapping principle. First
to show F : T → T,

|F[x(t)] − x(0)| =

∣∣∣∣∣∣ 1
Γ(α)

∫ t

0
(t − τ)α−1 f (τ, x(τ))dτ

∣∣∣∣∣∣
≤

1
Γ(α)

∫ t

0
(t − τ)α−1| f (τ, x(τ))|dτ

≤
1
Γ(α)

∫ t

0
(t − τ)α−1Mdτ

=
M

Γ(α + 1)
tα

=
M

Γ(α + 1)
(h∗)α

≤
M

Γ(α + 1)
kΓ(α + 1)

M
.

(5.23)

Or, x(0) − k ≤ F[x](t) ≤ x(0) + k,∀t ∈ [0, h∗]. Hence the operator F maps T onto itself. Secondly, to
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show that T is a contradiction, we have

|F[x](t) − F[x∗](t)| =

∣∣∣∣∣∣ 1
Γ(α)

∫ t

0
(t − τ)α−1[ f (τ, x(τ)) − f (τ, x∗(τ))]dτ

∣∣∣∣∣∣
≤

1
Γ(α)

∫ t

0
(t − τ)α−1 | f (τ, x(τ)) − f (τ, x∗(τ))| dτ

≤
1
Γ(α)

∫ t

0
(t − τ)α−1L||x − x∗||dτ

=
L
Γ(α)
||x − x∗||

∫ t

0
(t − τ)α−1τ0dτ

=
L
Γ(α)
||x − x∗||

Γ(α)
(Γα + 1)

tα

=
L
Γ(α)
||x − x∗||tα

≤
L

Γ(α + 1)
||x − x∗||(h∗)α

≤
L

Γ(α + 1)
||x − x∗||

kΓ(α + 1)
M

.

(5.24)

Since by hypothesis Lk
M < 1, then T is a contradiction and has a unique fixed point. Thus,

system (5.18) has a unique solution in Ω̄. □
Theorem 4. The closed set Ω = {(x1, x2, x3, x4) ∈ R4

+ : 0 ≤ x1+ x2+ x3+ x4 ≤ M1, 0 ≤ x5+ x6 ≤ M2}

is a positive invariant set for the proposed fractional order system (3.1).
Proof. To prove that the system of Eq (3.1) has a non-negative solution, the system of Eq (3.1)

implies 

C
0 Dαt S h|S h=0 = Λ

α
h > 0,

C
0 Dαt Ih|Ih=0 = ϕ

α
mβ
α
mIm

S h
Nh
≥ 0,

C
0 Dαt Hh|Hh=0 = µ

α
h Ih ≥ 0,

C
0 Dαt Rh|Rh=0 = τ

α
h Ih + υ

α
h Hh ≥ 0,

C
0 Dαt S m|S m=0 = Λ

α
m > 0,

C
0 Dαt Im|Im=0 = ϕ

α
hβ
α
h Ih

S m
Nm
≥ 0.

(5.25)

Thus, the fractional system (3.1) has non-negative solutions. In the end, from the first four equations
of the fractional system (3.1), we obtain C

0 Dαt (x1 + x2 + x3 + x4) ≤ Λαh − γ
α
h (x1 + x2 + x3 + x4). Solving

the above inequality, we obtain

(x1(t) + x2(t) + x3(t) + x4(t)) ≤
(
x1(0) + x2(0) + x3(0) + x4(0) −

Λαh

γαh

)
Eα(−γαh tα) +

Λαh

γαh
.

so by the asymptotic behavior of Mittag-Leffler function [25], we obtain (x1(t)+x2(t)+x3(t)+x4(t)) ≤
Λαh
γαh
� M1. Taking the same steps for the last two equations of system (3.1), we get

x5(t) + x6(t) ≤ M2,M2 =
Λαm

γαm
.

Hence, the closed set Ω is a positive invariant region for the fractional-order dengue model (3.1). □
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6. Model equilibria and basic reproduction number

By getting the model equilibria from the fractional dengue model (3.1) we obtain and by setting

CDαt S h =
CDαt Ih =

CDαt Hh =
CDαt Rh =

CDαt S m =
CDαt Im = 0.

So from some algebraic solution of (3.1) we get,

Λαh − ϕ
α
mβ
α
mIm

S h
Nh
− γαh S h = 0

ϕαmβ
α
mIm

S h
Nh
− (µαh + τ

α
h + γ

α
h )Ih = 0

µαh Ih − (ϵαh + υ
α
h + γ

α
h )Hh = 0

ταh Ih + υ
α
h Hh − γ

α
h Rh = 0

Λαm − ϕ
α
hβ
α
h Ih

S m
Nm
− γαmS m = 0

ϕαhβ
α
h Ih

S m
Nm
− γαmIm = 0.

(6.1)

The fractional dengue model (3.1) obtain the following two equilibrium points: (1) The DFE for
the model (3.1) is given by,

E0 =

(
Λαh

γαh
, 0, 0, 0,

Λαm

γαm
, 0

)
.

(2) The EE for the model (3.1) is given by,

E∗ = (S ∗h, I
∗
h,H

∗
h,R

∗
h, S

∗
m, I

∗
m).

where

S ∗h =
Λαh

τ∗h + γ
α
h

, I∗h =
τ∗hS ∗h

µαh + τ
∗
h + γ

α
h

,H∗h =
µαh I∗h

ϵαh + υ
α
h + γ

α
h

,R∗h =
τ∗hI∗h + υ

α
h H∗h

γαh
,

S ∗m =
Λαm

τ∗m + γ
α
m
, I∗m =

τ∗mS ∗m
γαm
.

where, τ∗h =
ϕαmβ

α
mI∗m

N∗h
and τ∗m =

ϕαhβ
α
h I∗h

N∗m
. Observe that S ∗h, I∗h, H∗h, R∗h, S ∗m, I∗m are positive if and only

if
[
ϕαhϕ

α
mβ
α
hβ
α
mS hS m − NhNmγ

α
m(µαh + τ

α
h + γ

α
h )

]
> 0. Calculate the reproduction number of the fractional

model (3.1) by using the method of next generation matrix and the basic reproduction number present
in [38]. Let us define a vector, X = [Ih,Hh, Im]T , And

f =


ϕαmβ

α
mIm

S h
Nh

0
ϕαhβ

α
h Ih

S m
Nm

 , v =


(µαh + τ

α
h + γ

α
h )Ih

(ϵαh + υ
α
h + γ

α
h )Hh − µ

α
h Ih

γαmIm

 . (6.2)

F =


0 0 ϕαmβ

α
m

S h
Nh

0 0 0
ϕαhβ

α
h

S m
Nm

0 0

 , V =


(µαh + τ
α
h + γ

α
h ) 0 0

−µαh (ϵαh + υ
α
h + γ

α
h ) 0

0 0 γαm

 . (6.3)

Thus the basic reproduction number of the model (3.1) is

R0 = ρ(FV−1) =
ϕαhϕ

α
mβ
α
hβ
α
mS hS m

NhNmγαm
(
µαh + τ

α
h + γ

α
h

) .
It is easy to prove that S ∗h, I

∗
h, H

∗
h, R

∗
h, S

∗
m, I

∗
m, and R∗ > 0 if and only if R0 > 1.
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7. Stability analysis

7.1. Analysis of DFE

Simplifying the stability of the DFE, Suppose DFE is E0 =
(
S h0 , Ih0 ,Hh0 ,Rh0 , S m0 , Im0

)
=(

Λh
γh
, 0, 0, 0, Λm

γm
, 0

)
and the Jacobian matrix of the system in (3.1) can be written as

J(E0) =



−γαh 0 0 0 0 −ϕαmβ
α
m

0 −(µαh + τ
α
h + γ

α
h ) 0 0 0 ϕαmβ

α
m

0 µαh −(ϵαh + υ
α
h + γ

α
h ) 0 0 0

0 ταh υαh −γαh 0 0
0 −ϕαhβ

α
h

S m
Nm

0 0 −γαm 0
0 ϕαhβ

α
h

S m
Nm

0 0 ϕαhβ
α
h

Ih
Nm

−γαm


(7.1)

Now calculating the Jacobian matrix J at DFE point E0 and solved det(J − λI), we obtain, P j(x) =
(λ + γαh )2(λ + ϵαh + υ

α
h + γ

α
h )(λ + γαm)(λ2 + Aλ + B),Where A = µαh + τ

α
h + γ

α
h + γ

α
m and

B = γαm(µαh + τ
α
h + γ

α
h ) − ϕαhϕ

α
mβ
α
hβ
α
m

S m

Nm

= γαm(µαh + τ
α
h + γ

α
h )

[
1 −

ϕαhϕ
α
mβ
α
hβ
α
mS h

NmγαmNh(µαh + τ
α
h + γ

α
h )

]
= γαm

(
µαh + τ

α
h + γ

α
h
)

[1 − R0] .

It is easy to proof that if R0 < 1 , then A > 0 and B > 0. This polynomial λ2 + Aλ + B have two
roots with negative real parts. Thats why, E0 is locally stable because the real parts of six eigenvalues
of the matrix J(E0) are all negative. Therefore, overall we can tell the DFE is stable when B > 0 and
DFE is unstable when B < 0. The following theorem is presented for the global stability of the disease
free equilibrium case E0.

Theorem 5. The fractional dengue model given by (3.1) for the arbitrary fractional order α ∈ (0, 1],
with R0 < 1, is globally asymtotically stable.

Proof. The following Lyapunov function is considered for the proof of the global stability of the
dengue fractional model (3.1):

G(t) = η1

(
S h − S 0

h − S 0
hlog

S h

S 0
h

)
+η2Ih+η3

(
Hh − H0

h − H0
h log

Hh

H0
h

)
Hh+η4

(
S m − S 0

m − S 0
mlog

S m

S 0
m

)
+η5Im,

where ηi > 0 for i= 1,2,3,4, are arbitrary constants to be determined later. We consider the result
described in sect. 2 and taking the time derivative of G(t), we obtain

CDαt G′(t) = η1

(
1 −

S 0
h

S h

)
CDαt S h + η2

CDαt Ih + η3

(
1 −

H0
h

Hh

)
CDαt Hh + η4

(
1 −

S 0
m

S m

)
CDαt S m + η5

CDαt Im.

Considering the fractional system (3.1), we obtain
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CDαt G(t) =η1

(
1 −

S 0
h

S h

) [
Λαh − ϕ

α
mβ
α
mIm

S h

Nh
− γαh S h

]
+ η2

[
ϕαmβ

α
mIm

S h

Nh
− (µαh + τ

α
h + γ

α
h )Ih

]
+ η3

(
1 −

H0
h

Hh

) [
µαh Ih − (ϵαh + υ

α
h + γ

α
h )Hh

]
+ η4

(
1 −

S 0
m

S m

) [
Λαm − ϕ

α
hβ
α
h Ih

S m

Nm
− γαmS m

]
+ η5

[
ϕαhβ

α
h Ih

S m

Nm
− γαmIm

]
.

(7.2)

Using the values of S 0
h and S 0

m at the DFE and simplifying we obtain

CDαt G(t) = −γαhγ
α
m

(S h − S 0
h)2

S h
− ϕαmβ

α
mγ
α
m

(S m − S 0
m)2

S m
− γαm(µαh + τ

α
h + γ

α
h )Ih

(
1 − R2

0

)
,

where η1 = η2 = γ
α
m, η4 = η5 = ϕ

α
hβ
α
h . Thus, CDαt G(t) is negative for R0 ≤ 1. So it follows from the

established results and those given by theorem 1 in [24,39] that the fractional dengue model is globally
asymptotically stable at the DFE case E0.

7.2. Analysis of EE

We prove the global stability results for the fractional model (3.1). Firstly we have the following
results for the model (3.1) at the constant state:

Λαh = ϕ
α
mβ
α
mI∗m

S ∗h
N∗h
+ γαh S ∗h,Λ

α
m =
ϕαhβ

α
h I∗h

N∗m
+ γαmS ∗m, γ

α
m =
ϕαhβ

α
hS ∗mI∗h

N∗mI∗m
,

(
µαh + τ

α
h + γ

α
h
)

I∗h = ϕ
α
mβ
α
mI∗m

S ∗h
N∗h
,
(
ϵαh + υ

α
h + γ

α
h
)

H∗h = µ
α
h I∗h.

Now showing the global stability of the model (3.1) in the following theorem.
Theorem 6. If R0 > 1, then the fractional dengue model (3.1) at E∗ is globally asymptotically

stable.
Proof. We suppose the following Lyapunov function:

L(t) =ϕαhβ
α
h I∗h

S ∗m
N∗m

[(
S h − S ∗h − S ∗H log

S h

S ∗h

)
+

(
Ih − I∗h − I∗h log

Ih

I∗h

)
+

(
Hh − H∗h − H∗h log

Hh

H∗h

)]
+ ϕαmβ

α
mI∗m

S ∗h
N∗h

[(
S m − S ∗m − S ∗m log

S m

S ∗m

)
+

(
Im − I∗m − I∗m log

Im

I∗m

)]
.

(7.3)

The derivative of L(t) with the application of the lemma 1 given in sec. 2 yields
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CDαt L(t) =ϕαhβ
α
h I∗h

S ∗m
N∗m

[(
1 −

S ∗h
S h

)
CDαt S h +

(
1 −

I∗h
Ih

)
CDαt Ih +

(
1 −

H∗h
Hh

)
CDαt Hh

]
+ ϕαmβ

α
mI∗m

S ∗h
N∗h

[(
1 −

S ∗m
S m

)
CDαt S m +

(
1 −

I∗m
Im

)
CDαt Im

]
.

(7.4)

From the fractional dengue model (3.1), we can consider the following way:

CDαt L(t) =ϕαhβ
α
h I∗h

S ∗m
N∗m

[(
1 −

S ∗h
S h

) (
Λαh − ϕ

α
mβ
α
mIm

S h

Nh
− γαh S h

)
+

(
1 −

I∗h
Ih

) (
ϕαmβ

α
mIm

S h

Nh
−

(
µαh + τ

α
h + γ

α
h
)

Ih

)
+

(
1 −

H∗h
Hh

) (
µαh Ih −

(
ϵαh + υ

α
h + γ

α
h
)

Hh
)]
+ ϕαmβ

α
mI∗m

S ∗h
N∗h

[(
1 −

S ∗m
S m

) (
Λαm − ϕ

α
hβ
α
h Ih

S m

Nm
− γαmIm

)
+

(
1 −

I∗m
Im

) (
ϕαhβ

α
h Ih

S m

Nm
− γαmIm

)]
.

(7.5)

By direct calculation, we get the following:

(
1 −

S ∗h
S h

)
CDαt S h =

(
1 −

S ∗h
S h

) (
Λαh − ϕ

α
mβ
α
mIm

S h

Nh
− γαh S h

)
=

(
1 −

S ∗h
S h

) (
ϕαmβ

α
mI∗m

S ∗h
N∗h
+ γαh S ∗h − ϕ

α
mβ
α
mIm

S h

Nh
− γαh S h

)

= −γαh

(
S h − S ∗h

)2

S h
+ ϕαmβ

α
mI∗m

S ∗h
N∗h

(
1 −

S ∗h
S h
−

S hImN∗h
S ∗hI∗m

+
ImN∗h
I∗mNh

)
.(

1 −
I∗h
Ih

)
CDαt Ih =

(
1 −

I∗h
Ih

) [
ϕαmβ

α
mIm

S h

Nh
−

(
µαh + τ

α
h + γ

α
h
)

Ih

]
=

(
1 −

I∗h
Ih

) (
ϕαmβ

α
mIm

S h

Nh
− ϕαmβ

α
mI∗m

S ∗h
N∗h

)
= ϕαmβ

α
mI∗m

S ∗h
N∗h

(
1 −

Ih

I∗h
−

S hImN∗h I∗h
NhS ∗hI∗mIh

+
S hImN∗h
S ∗hNhI∗m

)
.(

1 −
H∗h
Hh

)
CDαt Hh =

(
1 −

H∗h
Hh

) [
µαh Ih −

(
ϵαh + υ

α
h + γ

α
h
)

Hh
]

=

(
1 −

H∗h
Hh

) (
µαh Ih − µ

α
h I∗h

)
= µαh I∗h

(
1 −

Hh

H∗h
−

IhH∗h
I∗hHh

+
Ih

I∗h

)
.

(7.6)
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1 −

S ∗m
S m

)
CDαt S m =

(
1 −

S ∗m
S m

) (
Λαm − ϕ

α
hβ
α
h Ih

S m

Nm
− γαmS m

)
=

(
1 −

S ∗m
S m

) (
ϕαhβ

α
h I∗h

S ∗m
N∗m
+ γαmS ∗m − ϕ

α
hβ
α
h Ih

S m

Nm
− γαmS m

)
= −γαm

(S m − S ∗m)2

S m
+ ϕαhβ

α
h I∗h

S ∗m
N∗m

(
1 −

S ∗m
S m
−

S mIhN∗m
NmS ∗mI∗h

+
IhN∗m
I∗hNm

)
.(

1 −
I∗m
Im

)
CDαt Im =

(
1 −

I∗m
Im

) (
ϕαhβ

α
h Ih

S m

Nm
− γαmIm

)
=

(
1 −

I∗m
Im

) (
ϕαhβ

α
h Ih

S m

Nm
− ϕαhβ

α
h I∗h

S ∗m
N∗m

)
= ϕαhβ

α
h I∗h

S ∗m
N∗m

(
1 −

Im

I∗m
−

S mIhN∗mI∗m
NmS ∗mI∗hIm

+
S mIhN∗m
S ∗mN∗mIh

)
.

(7.7)

Using the above expressions (7.6) and (7.7) in Eq (7.5), we obtain

CDαt L(t) =
ϕαmγ

α
hβ
α
mS ∗mI∗hS ∗h
N∗h

(
2 −

S ∗h
S h
−

S h

S ∗h

)
+
ϕαhγ

α
mβ
α
hS ∗mI∗mS ∗h
N∗h

(
2 −

S ∗m
S m
−

S m

S ∗m

)
+
ϕαhϕ

α
mβ
α
hβ
α
mS ∗hS ∗mI∗hI∗m

(N∗h)2

(
5 −

S ∗h
S h
−

I∗h
Ih
−

H∗h
Hh
−

S ∗m
S m
−

I∗m
Im
−

S hImN∗h I∗h
NhS ∗hI∗mI∗mIh

−
IhH∗h
I∗hHh

−
S mIhN∗h I∗m
NhS ∗mI∗hIm

+
ImN∗h
NhI∗m

+
IhN∗h
NhI∗h

)
.

(7.8)

From Eq (7.8), we get the following result,(
2 −

S ∗h
S h
−

S h

S ∗h

)
≤ 0,

(
2 −

S ∗m
S m
−

S m

S ∗m

)
≤ 0

and, in the same way, if(
5 −

S ∗h
S h
−

I∗h
Ih
−

H∗h
Hh
−

S ∗m
S m
−

I∗m
Im
−

S hImN∗h I∗h
NhS ∗hI∗mI∗mIh

−
IhH∗h
I∗hHh

−
S mIhN∗h I∗m
NhS ∗mI∗hIm

+
ImN∗h
NhI∗m

+
IhN∗h
NhI∗h

)
≤ 0

then CDαt L(t) ≤ 0, So it observes that, at the EE point E∗, the fractional dengue model is globally
asymptotically stable at E∗, when R0 > 1.

8. Sensitivity analysis

Sensitivity analysis helps us to identify parameters that have a big impact on the disease
transmission. Such information is important not only for experimental design but also for data
assimilation and reduction to complex nonlinear models [40]. This provides a good strategy to
prevent and restrain the disease. The disease will be controlled and mitigated if we can change the
value of parameters by the control strategies. Usually, in the epidemiological model, the analysis is
used to discover parameters that have greatest influence on the basic reproduction number R0 and
should be targeted by the control strategies. The sensitivity indices of the R0 are determined to allow
us to measure which parameter has the greatest influence on the changes of R0 and, hence, the greatest
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effect in determining whether the disease can be eliminated in the population. The normalized
forward sensitivity index of a variable (R0) with respect to a parameter is the ratio of the relative
change in the variable (R0) to the relative change in the parameter. The systematic description of the
sensitivity analysis of the different parameters in R0 for the model is:

δR0
θ =

dRo
dθ
θ

Ro
.

So the basic reproduction number is,

R0 = ρ(FV−1) =
ϕαhϕ

α
mβ
α
hβ
α
mS hS m

NhNmγαm
(
µαh + τ

α
h + γ

α
h

) .
It is easy to verify that

dR0

dϕh

ϕh

R0
=
ϕhϕmβhβmγm (µh + τh + γh)
γmϕhϕmβhβm (µh + τh + γh)

= 1 > 0

dR0

dϕm

ϕm

R0
=
ϕhϕmβhβmγm(µh + τh + γh)
γmϕhϕmβhβm(µh + τh + γh)

= 1 > 0

dR0

dβh

βh

R0
=
ϕhϕmβhβmγm(µh + τh + γh)
ϕhϕmβhβmγm(µh + τh + γh)

= 1 > 0

dR0

dβm

βm

R0
=
ϕhϕmβhβmγm(µh + τh + γh)
ϕhϕmβhβmγm(µh + τh + γh)

= 1 > 0

dR0

dγm

γm

R0
= −
ϕhϕmβhβmγ

2
m(µh + τh + γh)

ϕhϕmβhβmγ2
m(µh + τh + γh)

= −1 < 0

dR0

dµh

µh

R0
= −

µh

(µh + τh + γh)
< 0

dR0

dτh

τh

R0
= −

τh

(µh + τh + γh)
< 0

dR0

dγh

γh

R0
= −

γh

(µh + τh + γh)
< 0

Using the parameter values from Table 2, the sensitivity indices of R0 with respect to the parameters
are given in Table 3.

Table 3. Sensitivity indices of R0 to the model parameters

Parameter Sensitivity indices
ϕh 1
ϕm 1
βh 1
βm 1
γm −1
γh −0.11075182
τh −0.08084074
µh −0.80840744
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We can conclude from Table 3 that the sensitivity indices are sign-related and, R0 is more sensitive
to the following parameters (ϕh,ϕm, βh, βm) increasing order and a corresponding decrease in R0 as the
following parameters (µh, γh, γm, τh) have a negative impact on R0, that means an increase in these
parameters will reduce R0, while (ϕh, ϕm, βh, βm) has a positive impact, and reducing the value of
these parameters will reduce R0. After the above analytical results, we now perform an R0 sensitivity
analysis to find exact ways to choose the various parameters in R0. The following can be inferred from
the sensitive analysis:

(1). If can reduce the value of the transmission rates βh, βm, and biting rate ϕh, ϕm could be effective
control measures to stop the spread of the dengue virus.

(2). If can increase the natural death rate of mosquitoes γm and natural recovery rate of infected
humans τh so that it will not affect other susceptible individuals.

9. Numerical simulations

In this section, we carry out numerical simulations for system (3.1) by using Euler’s algorithm
method [41]. To have a numerical scheme, we write the model (3.1) in the following form:

CDαt g(t) = G (t, g(t)) , α ∈ (0, 1], t ∈ [0,T ], g(0) = g0, 0 < T < ∞, (9.1)

where g = (x1, x2, x3, x4, x5, x6) ∈ R6
+,G(t, g(t)) is used for a continuous real valued vector function,

which additionally satisfies the Lipschitz condition and g0 stands for initial state vector. Taking Caputo
integral on both sides of (7.1) we get

g(t) = g0 +
1
Γ(α)

∫ t

0
(t − λ)α−1G(λ, g(λ))dλ. (9.2)

To formulate an iterative scheme, we consider a uniform grid on [0,T] with h = T−0
m is the step size

and m ∈ N. Thus, Eq (7.2) gets the structure as follows after making use of the Euler method{
gn+1 = g0 +

hα
Γ(α+1)Σ

n
j=0((n − j + 1)α − (n − j)α)G(t j, g(t j)),
n = 0, 1, 2, ...,m.

(9.3)

Thus, utilizing the above scheme (7.3), we deduced the following iterative formulae for the
corresponding classes of the model (3.1).

We used the above approximation for the solution of our fractional system. In Figures (2) to (5),
we demonstrate the dynamics of susceptible human (S h), infected human (Ih), hospitalized human
(Hh), recovered human (Rh), dead human (Dh), new cases of human, reported dengue cases of human,
cumulative dengue cases of human, susceptible human with different biting rates, infected human with
different biting rates, susceptible mosquitoes (S m), infected mosquitoes (Im), and infected mosquitoes
(with different biting rates b = 0.45, 0.50, 0.68 with the variation of fractional order α = 0.75, integer
order and actual values. We noticed that the variation of fractional order has a great influence on the
infection level of dengue in both populations. In other words, it can highly reduce the level of DF in
the community. We demonstrated the effect of the biting rate ϕh of the mosquitoes on the dynamics
of dengue and observed that the peak of infection can be greatly decreased by decreasing the biting
rate ϕh. The mosquito biting and its generation further can be decreased by spraying or wasting the
standing water around the home or inside the home, which has a great influence on the population of
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mosquitoes that end up biting humans. Using bed nets, avoid to visit areas prone to mosquitoes, using
mosquito repellent, and covering legs and arms by wearing long sleeves and long pants are useful to
prevent biting of mosquitoes. These scenarios predict that the infection can be controlled and prevented
by decreasing the index of memory and biting rate of vectors in the community. In this model, we use
the real data of Bangladesh from (2012–2022) [42].

First, we simulate different values of fractional order α with fixed values of the model parameters.
In this work, the dengue cases data of 11 years (2012–2022) are used with different parametric values
for the numerical simulations based on a case study of Bangladesh cited from the literature; some
are fitted, some are estimated and some are referred. We use the total population of Bangladesh,
Nh = 166303494 [43]. The life expectancy in Bangladesh for the year 2022 is 72.87, so we estimate
γh = 1/72.87 per year. The parameter Λh is estimated from Λh/γh = 166303494, and assumed that
this is to be the limiting population in the disease absence, so Λh = 2278130.05 per year. For the
initial values of the model variables, we use the total initial population Nh(0) = 166303494, so that
Nh(0) = S h(0) + Ih(0) + Hh(0) + Rh(0) and Nm(0) = S m(0) + Im(0), The initial conditions are assumed
as S h(0) = 5000, Ih(0) = 1000,Hh(0) = 500,Rh(0) = 100, S m(0) = 100000, Im(0) = 80000 and the
parameter values are taken from the literature as given in Table 1. As illustrated in Figures 2 to 8, a
smaller fractional order reduces the peak significantly and flattens the progression curve. The dengue
cases reported in Bangladesh are shown in the following Figures and the solution obtained by the Euler
algorithm method is presented in Figure 2 to 8 for different values of α. The number of infected human
real data and simulated results will reach the highest level in eight months for α = 0.75, 1. These
scenarios predict that the infection can be controlled and prevented by decreasing the index of memory
and biting rate of vectors in the community. Fig 6 and 8 describe the behavior of the solutions showing
the dynamics of susceptible human, infected human and infected mosquito population for the biting
rates 0.45 and 0.68 respectively.

cS hp+1 = S 0 +
hα

Γ(α + 1)
× Σ

p
k=0 ((p − k + 1)α − (p − k)α)

(
Λαh − ϕ

α
mβ
α
mIm

S h

Nh
− γαh S h

)
,

cIhp+1 = I0 +
hα

Γ(α + 1)
× Σ

p
k=0((p − k + 1)α − (p − k)α)

(
ϕαmβ

α
mIm

S h

Nh
− (µαh + τ

α
h + γ

α
h )Ih

)
,

cHhp+1 = H0 +
hα

Γ(α + 1)
× Σ

p
k=0((p − k + 1)α − (p − k)α)

(
µαh Ih − (ϵαh + υ

α
h + γ

α
h )Hh

)
,

cRhp+1 = R0 +
hα

Γ(α + 1)
× Σ

p
k=0((p − k + 1)α − (p − k)α)

(
ταh Ih + υ

α
h Hh − γ

α
h Rh

)
,

cS mp+1 = X0 +
hα

Γ(α + 1)
× Σ

p
k=0((p − k + 1)α − (p − k)α)

(
Λαm − ϕ

α
hβ
α
h Ih

S m

Nm
− γαmS m

)
,

cImp+1 = Y0 +
hα

Γ(α + 1)
× Σ

p
k=0((p − k + 1)α − (p − k)α)

(
ϕαhβ

α
h Ih

S m

Nm
− γαmIm

)
.

(9.4)

Mathematical Biosciences and Engineering Volume 20, Issue 6, 9891–9922.



9916

1 2 3 4 5 6 7 8 9 10 11

t (yearly)

-2

0

2

4

6

8

10

12

14

S
u
s
c
e
p
ti
b
le

 h
u
m

a
n

10
4 Bangladesh

actual data

alpha=0.75

alpha=1

(a)

1 2 3 4 5 6 7 8 9 10 11

t (yearly)

0

2

4

6

8

10

12

In
fe

c
te

d
 h

u
m

a
n

10
4 Bangladesh

actual data

alpha=0.75

alpha=1

(b)

Figure 2. Numerical simulation of (a) Susceptible humans S h(t) (b) Infected human Ih(t) for
different values of α and actual values with time (yearly).
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Figure 3. Numerical simulation of (a) Hospitalized human Hh(t) (b) Recovered human Rh(t)
for different values of α and actual values with time (yearly).
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Figure 4. Numerical simulation of (a) Death human Dh(t) for integer and fractional values
of α and actual values (yearly) (b) New cases of human for integer and fractional values of α
and actual values (monthly).

Mathematical Biosciences and Engineering Volume 20, Issue 6, 9891–9922.



9917

0 2 4 6 8 10 12

t (monthly)

0

1000

2000

3000

4000

5000

6000

7000

8000

R
e
p
o
rt

e
d
 d

e
n
g
u
e
 c

a
s
e
s
 o

f 
2
0
2
0
 &

 2
0
2
1

Bangladesh

actual value

alpha=0.75

alpha=1

(a)

0 2 4 6 8 10 12

t (monthly)

0

1

2

3

4

5

6

7

C
u
m

u
la

ti
v
e
 d

e
n
g
u
e
 c

a
s
e
s
 (

2
0
1
0
-2

0
2
1
)

104 Bangladesh

alpha=0.75

alpha=1

actual data

(b)

Figure 5. Numerical simulation of (a) Reported dengue cases of human (b) Cumulative
dengue cases of (2012–2022) with time (monthly) for integer and fractional values of α and
actual values.
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Figure 6. Numerical simulation of (a) Suspected human S h(t) (b) Infected human Ih(t) for
different biting rates b = 0.45, 0.50, 0.68.
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Figure 7. Numerical simulation of (a) Suspected mosquitoes S m(t) (b) Infected mosquitoes
Im(t) for different values of α and actual values (yearly).
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Figure 8. Numerical simulation of (a) Infected mosquitoes Im(t) for different values of biting
rate b = 0.45, 0.50, 0.68.

10. Discussion and conclusions

The objective of this work is to understand, analyze and find the solution to the fractional
epidemiological models. In this paper, we analyze a new fractional epidemic model for the
transmission of dengue infection with a non-integer derivatives and are analysed using q-HATM. The
existence of the solutions of the model is investigated by solving the fractional Grownwall’s
inequality using the Laplace transform approach. The positivity and boundedness of unique solutions
are investigated. The basic reproduction number of the system is calculated by the next-generation
method. We establish two equilibrium solutions, disease-free and endemic are obtained. Both local
and global stability of the equilibria is investigated to depend on the magnitude of the basic
reproduction ratio. Sensitivity analysis of R0 is carried out to know the contribution of input factors in
the results of R0 and observed that ϕh, ϕm, βh, βm are the most critical parameters that highly
contribute to the control and subsequent spread of dengue infection. We showed that the dengue
infection is uniformly persistent in the system for R0 > 1. Numerical simulations are carried out and
dynamics of the populations are shown to vary for different values of α. We obtain feasible results for
the dynamics of dengue infection with the variation of memory index α and suggest that the index of
memory has a dominant influence on the system. We conclude that the fractional-order model can
explore the dengue epidemic disease transmission model rather than the integer-order derivative
models. We can suggest that fractional-order (index of memory) α and biting rate for humans and
mosquitoes ϕh, ϕm can remarkably control and greatly decrease the level of disease in society.
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