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Abstract: Objective: Quantification of disease-disease association (DDA) enables the understanding of 
disease relationships for discovering disease progression and finding comorbidity. For effective DDA 
strength calculation, there is a need to address the main challenge of integration of various biomedical 
aspects of DDA is to obtain an information rich disease representation. Materials and Methods: An 
enhanced and integrated DDA framework is developed that integrates enriched literature-based with 
concept-based DDA representation. The literature component of the proposed framework uses PubMed 
abstracts and consists of improved neural network model that classifies DDAs for an enhanced literature-
based DDA representation. Similarly, an ontology-based joint multi-source association embedding model 
is proposed in the ontology component using Disease Ontology (DO), UMLS, claims insurance, clinical 
notes etc. Results and Discussion: The obtained information rich disease representation is evaluated on 
different aspects of DDA datasets such as Gene, Variant, Gene Ontology (GO) and a human rated 
benchmark dataset. The DDA scores calculated using the proposed method achieved a high correlation 
mainly in gene-based dataset. The quantified scores also shown better correlation of 0.821, when evaluated 
on human rated 213 disease pairs. In addition, the generated disease representation is proved to have 
substantial effect on correlation of DDA scores for different categories of disease pairs. Conclusion: The 
enhanced context and semantic DDA framework provides an enriched disease representation, resulting in 
high correlated results with different DDA datasets. We have also presented the biological 
interpretation of disease pairs. The developed framework can also be used for deriving the strength 
of other biomedical associations. 
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quantification 
 

1. Introduction 

DDA acts as a key factor to understanding disease relationships, such as comorbidity, which is 
essentially the co-occurrence of diseases among the same patients that plays an important role in health 
care for drug discovery [1] and better treatment plan. To meet the emerging need, several studies in 
biomedical domain for relating diseases have been carried out [1,2–4]. In the work of Suratanee and 
Plaimas [3], a network-based approach was employed to calculate DDA strength that achieves a 
performance of 0.71 area under curve (AUC). Zitnik et al. [1] has predicted DDA relationships and 
found about 66 disease classes have significant high relationships with p-value < 0.001. Another work 
in [4], a disease similarity database tool was developed that performs hypergeometric test of p-values 
for different pairs of diseases. On the other hand, the DDA relationships were analysed using disease 
causality network. Further, the sorted potential association strength were compared between top and 
bottom group of disease pairs and found 95% of disease pairs in upper group. Since one disease can 
multiply into another in any patient, treating associated diseases is a great challenge for modern 
medicine. Hence, exploring DDA helps in gaining better insight of disease relationships, which is 
helpful for clinicians in proper diagnosis and treatment. 

For better understanding of DDA, it is important to know the various underlying aspects with 
which diseases are associated. One such aspect considers biological entities such as other diseases [5], 
genes [4,6], pathways [7], drugs [8], and phenotypes [9] as intermediate factors, facilitating indirect 
DD association. Another aspect, revolves around the vast established heterogeneous biomedical 
databases such as biomedical datasets including Protein-Protein Interaction Network [4,10], 
HumanNet [11] and biomedical ontologies like DO [12], GO [13], Human Phenotype Ontology [14], 
Unified Medical Language System (UMLS) [15], Medical Subject Headings (MeSH) [16]. On the 
other hand, connection between diseases can be inferred using biomedical text such as PubMed [17,18], 
MedLine [19], Clinical Notes, Claims Database and PubMed Central (PMC) [20], Electronic Health 
Records [21] and HealthMap Corpus [22]. In order to widen the range of components affecting disease 
associations, non-Biomedical Text such as Wikipedia [17,23] has also been considered. 

In addition, measuring the strength of DDA helps to improve the clinical decision making. As a 
quantitative measurement, disease similarity is generally used to indicate the extent to which the 
diseases are associated, since similar diseases are usually caused by similar semantic aspects such as 
similar etiology, markers, mechanisms, patterns etc. In this regard, by involving a single biological 
source, the strength of disease associations is computed by IC-Based methods such as Wang et al. [24], 
Resnik [25] and Lin [26], accomplished solely based on semantic associations of ontologies such as 
MeSH, DO, HPO. Taking advantage of biological process terms, some statistical-based approaches are 
proposed. In the work of Mathur and Dinakarpandian [27] calculated the association strength by 
overlapping genes of diseases using GO. In another work, association of diseases is computed using 
both information content and co-occurrence of terms in ontology [28]. Recently some research 
employed neural network approach, word embedding model, to learn ontological node vector 
representations used in application of associating diseases through similarity values [29]. Apart from 
ontologies, DDAs can also be quantified by mining a large corpus of biomedical literature. In the 
context of text, O’Shea [18] used a network-based shortest path distance method to calculate the 
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relatedness between diseases from occurrence frequency of disease terms. Alternatively, using neural 
network-based approach, Beam et al. [20] derived distributional vector representations from clinical 
notes, insurance claims, journal articles and projected the learned context-based concept vector 
representations to distributional space for relatedness computation. Therefore, in general either 
semantic aspects or concept-based aspects have been considered for the calculation of DDA strength. 
However, considering both the above aspects could lead to more effective strength calculation. 

Some efforts have been put-forth to combine different biomedical knowledge from various 
sources to derive representations of biomedical concepts for measuring the relatedness of the concepts. 
There are works that fused various biomedical knowledge such as biomedical entities, biomedical 
datasets and ontologies [30,31]. On the other hand, with the growing biomedical literature, some work 
has attempted to compute relatedness of biomedical concepts, with an integrated vector representations 
mined from both literature and semantic ontological information [32,33]. However, the integrated 
vector encoded only limited aspects of contextual relations from literature and semantic relations from 
ontology. Hence, in this paper, an integrated vector is derived covering a wide range of both contextual 
and semantic relations for an effective DDA strength calculation. 

The structure of the paper is organized as follows: Section 2 briefly reviews the state-of-the-art 
methods related to biomedical association classification and strength computation. Subsequently, a set of 
datasets used in this work and the proposed DDA framework is described in detail in Sections 3 and 4 
respectively. Section 5 presents the experimental results that evaluates the quantified DDA scores obtained 
using the proposed framework. Finally, an outline of conclusion is drawn in Section 6. 

2. Related works 

2.1. Literature-based approaches 

Biomedical literature contains associations linking diseases with other diseases. Given their 
significance in health-oriented applications, it is imperative to investigate these digitized data to extract 
the type of association using text mining approach. Given a sentence and disease pair appearing within 
the sentence, the DDA type can be of 3 types: positive association, where there exists an explicit 
mention of association with words like association, comorbidity factors, complicatin, risk factors, etc., 
negative association, in which a negative word explicitly conveying that no relation exists between the 
two disease mentions and neutral or null association that does not state about any association between 
the co-occurring diseases. Towards this end, a number of literature-based methods have been proposed 
for the extraction of associations between different biomedical entities [17,34–37]. 

The co-occurrence statistical technique, assumes that more the frequency of entities occurring 
together within abstract or sentence higher the chance of being positively associated [8]. Li et al. [38] 
employed the co-occurrence statistics to detect disease-related associations. Rosário-Ferreira et al. [47] 
considered diseases to be related if they are co-mentioned in the abstract text. However, entities 
occurring together may not be semantically connected, and thus result in low precision [39–41]. 

Some manually or automatically formulated rules finds its role in the association extraction task. 
Lee et al. [42] and Song et al. [43] drafted number of rules manually for PPI and disease-gene relation 
extraction respectively. In addition, Tari et al. [44] used automatically created rules to identify the 
biomedical relations from MEDLINE abstracts. The major limitation of rule-based system is that it is 
difficult to create rules entailing all types of associations and moreover a deeper insight into the 
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biomedical knowledge for creation of such rules is required. 
However, with the huge set of annotated training text available for biomedical associations, 

machine learning approach can overcome the above limitations by its ability to learn relation patterns 
of sentences which can then automatically detect the association type in unseen texts. Bhasuran and 
Natarajan [45] used a supervised machine learning method for gene-disease association extraction, which 
required a large training set and was time-consuming. Zhang and Lu [46] and Rosário-Ferreira et al. [47] 
eliminated this deficiency by using a semi-supervised method, that utilized a small training set which 
learns DDA patterns from PubMed abstracts. However, machine learning (ML)-based methods require 
enormous manual efforts in designing biomedical relation features for the association extraction task 
as ML methods lack automatic feature extraction. 

These issues were addressed by employing deep neural networks for efficient feature engineering 
in text-mining for curating number of biomedical relation types, as it involved an automatic feature 
learning process [35,48–50]. One of the popular deep neural network models, Convolutional Neural 
Network (CNN), was widely used for classifying whether sentences contain positive, negative or null 
associations between biomedical entities using sentence representation, where different 
representations of various local-level features captured at sentence-level and global-level features 
captured at corpus-level were used for classification [17,34,37]. 

A Multi-Channel Dependency based CNN extracted PPIs into positive and negative associations, 
where the sentence representation covered word embeddings trained only on global-level features from 
PubMed and PMC [35]. Using additional embeddings from Wikipedia and MEDLINE, the Multi-
Channel CNN (MCCNN) model classified DDI and PPI into positive associations such as effect, 
mechanism, etc and negative associations. An attempt was made to classify different biomedical 
associations such as gene-disease associations (GDAs) [34], using disease position as the only local-
level feature, DDAs [17] using Parts-of-Speech (POS) as additional feature and spice-disease [37] 
using Parts-of-Speech (POS) and chunk tag as additional local-level features.  

However, only a limited number of local-level and global-level features were used in sentence 
representation for the sentence-level classification of biomedical associations into positive, negative 
and null.  

Similar research considering local and global text and video features have been carried out in the 
work of Wang et al. [51] for video-text retrieval. In the text part, they considered only the encoded full 
text representation as global text feature and the decoded global representation is extracted as local 
text feature. In neither case, no various local-level features nor the global-level features of each word 
in given text is embedded. 

Moreover, most of the above work, only classified associations and did not attempt to calculate 
the association strength. An attempt was made to calculate only the strength of positively correlated 
pairs using statistical [18] and pattern-based approaches [52]. While literature-based approaches have 
mainly been used for the classification of biomedical associations, we need a concept-based approach 
for effective association strength calculation. 

2.2. Concept-based approaches 

Biomedical ontologies have integrated non-duplicative biomedical concept terms and medical 
data, providing a high coverage of biomedical concept terms which have been used to compute the 
semantic association strength between biomedical entities. Quantitative semantic association among 
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diseases help clinicians gain a better knowledge of diseases, since semantically associated diseases 
reveal similar or common underlying attributes, that further help in proper treatment plan [31]. 
Therefore, discovering the quantitative semantic biomedical associations using biomedical ontologies 
plays a crucial role in biomedical field [11,31]. 

Some work has encoded conceptual sources for computing semantic associations. Wei et al. [53], 
Beam et al. [20] and Pakhomov et al. [54] used only unstructured corpora such as insurance claims, clinical 
notes, etc., to include the conceptual aspects into the association computation. While Wei et al. [53] 
exploited ontology only to retrieve disease concepts. With additional semantic relation types 
information, Yu et al. [33] attempted to associate biological entities with improved semantics. However, 
taxonomic relationships conveyed by ontologies are needed for an enhanced semantic association 
quantification. 

Most of the ontology-based methods were node-based, edge/path-based and hybrid-based. The 
node-based approaches use properties of the node such as Information Content (IC) [25,55] and their 
variants [56–58] for computing semantic association between the concepts based on their lowest 
common ancestor. However, the IC values computation is based on the annotated corpus and hence is 
corpus dependant. On the other hand, the edge/path- based approach uses the edges count between the 
given concepts to measure the association. One such method proposed by Wu and Palmer [59], used 
the common path from root node to the least common ancestor node while Richardson et al. [60] used 
the edge weight technique based on node density, depth and connections between parent-child nodes 
for computing the conceptual associations. Further, Cheng et al. [61] proposed a weighted maximum 
common ancestor depth and Wu et al. [62] proposed a non-weighted maximum common ancestor depth 
to measure the semantic associations. Using the topology of DO, Wang et al. [63] calculated the 
strength of association by considering the semantic impact of ancestors on the entities involved in 
association. However, the problem with edge-based measure is that the concepts at same depth are not 
semantically well differentiated. As a hybrid measure, Mazandu and Mulder [64] used the topological 
positional characteristics of the GO for association strength calculation. Zhao and Wang [58] computed 
relatedness using the count of children nodes and topology of GO. Kamran and Naveed [65] also 
exploited the topology of GO along with common descendants to calculate the strength of associations.  
However, the computation of semantic relatedness using hybrid methods have not incorporated the 
semantic meaning of the concepts captured within the ontology. 

Semantic associations based on semantic meaning of concepts can also be computed using vectors 
learnt from the ontological graph structure. Camacho-Collados et al. [66] used the graph-based vectors 
and computed the semantic association, where the vector representation is solely based on the structure 
of the graph. Guo et al. [67] and Zhong et al. [68], used graph embeddings which can capture the 
structural information connecting nodes in graph but no relationship information was considered. 
Smaili et al. [69] represented concepts by general corpus trained aggregated embeddings of all its 
annotated nodes including the ancestors, where there is no control on the amount of ancestorial 
information affecting the given concept. Hence, the problem with vector-based association is that 
representation of vectors has encoded only a limited ontological relationship information without any 
control of the contribution effect of the entities involved in the association. 

2.3. Integrated approaches 

Attempts have been made to measure association between diseases by integrating multiple data 
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sources as well as fusing the details of various biological entities extracted from these biomedical 
sources. Su et al. [31] developed a joint association method combining biological entities such as genes, 
phenotypes and integrating ontological sources (DO, HPO), where semantic associations determine 
the disease associations. Similarly, Cheng et al. [30] spans different biomedical sources (DO, 
HumanNet) fusing functional and semantic associations for measuring the association strength. With 
the unprecedented growth of biomedical literature, there has been a significant gap between the 
increasing published scientific knowledge and the tailored biological data knowledge [70]. Hence, it 
is necessary to integrate the contextual knowledge obtained from biomedical literature with the 
semantic knowledge of biological data sources for the DDA task. Deng et al. [71] used the biological-
process based approach, integrating both literature and ontology (GO) and proposed a combined score 
of semantic and contextual associations using symptoms, genes and their related functions. In addition, 
li et al. [72] proposed a relatedness method integrating contextual and functional associations mined 
from literature (MedLine) and biomedical network (PPI), respectively. Moreover, Jiang et al. [32] 
proposed a hybrid semantic embedding model incorporating both corpus-based distributional 
representation into multiple ontologies to gain a better similarity score of biomedical concepts. 
Similarly, Yu et al. [33] used neural network approach to induce the vector representation of biomedical 
concepts by retrofitting contextual information from literature (PubMed) using semantic information 
from ontology (UMLS) such that the resulting vectors can be utilized to measure the association 
strength. However, both Jiang et al. [32] and Yu et al. [33], generated the corpus-based representation 
for each concept independently without considering the different types of context (association) of the 
sentences. On the other hand, the ontological knowledge integrated by Jiang et al. [32], was only edge-
based semantic similarity of concept pairs that did not incorporate semantic meaning of concepts as 
well as their ontological relationship connections. In addition, the existing methods associate the 
biomedical concepts (entities) using only a limited aspect of contextual and semantic relations, which 
results in low correlation with human judged association scores.  

Thus, for the biomedical association quantification from literature, particularly DDA, the existing 
classification model has used only a limited number of local-level and global-level features that could 
capture only limited syntactic, semantic, and contextual features for sentence representation learning. 
Hence, in order to improve the classification performance, there is a need to include additional local 
and global-level features. The existing methods either not calculated or calculated only positive 
association strengths. However, it is important to quantify the strength of DDA pairs based on all 
types of DDA pairs positively, negatively, and null associated by sentence embeddings under 
different contexts. 

Similarly, for concept-based quantification of DDA, existing methods embedded concepts by 
considering only the connectivity of concepts in ontology. The semantic meaning of concepts and the 
various ontological relationships affecting the associations not embedded. In addition, all ancestors are 
treated equally. However, controlling the impact of ancestorial embedding is important as each 
ancestor may either be closely or distantly related to each concept in the association. 

The integrated approaches fusing literature and ontology, did not consider different context types 
of sentences from literature and did not incorporate multiple semantic meaning of concepts with 
ontological relationships. Moreover, the existing methods have fused only limited semantic type 
relations from ontology with limited contextual relations from literature. However, the association 
varies based on the taxonomical connection relationship type that exists in the ontology. Therefore, 
there is a need to integrate both contextual relations from literature and richer semantic relationships 
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from ontologies for an enhanced DDA strength quantification. 
Of significance, while there are existing association quantification methods that have fused 

semantic relations from ontology with contextual relations from literature, we improve the association 
quantification in this paper: 
1) We enhanced literature-based DDA representation by considering all context types of association 
sentences such as positive, negative and null with improved sentence representation. 
2) We also enhanced concept-based DDA representation by the proposed ontology-based joint multi-
source association representation where semantic meaning of concepts and the various ontological 
relationship connections are incorporated for a better DDA quantification. 
3) We present an enhanced and integrated DDA framework to widen the coverage of various 
relationship aspects of association components both contextually A) and conceptually (semantically) 
B) to build an information enriched disease vector representation. 

3. Dataset description 

3.1. Collection of unlabeled PubMed abstracts 

We initially used the available and already annotated 521 abstracts dataset [17] for training of the 
proposed ESEC-CNN model. However, in order to achieve better modelling, we expanded this dataset. 
To assist the DDA dataset expansion, an initial set of approximately 3 million bio-concept annotated 
disease-related PubMed abstracts have been extracted using PubTator. PubTator, an automatic text-
mining tool, recognize various biomedical entities such as genes/proteins, diseases, genetic variants, 
spices and chemicals in the titles, abstracts of PubMed articles [73]. To ensure sentence-based DDA, 
only 39,510 abstracts with at least a DDA sentence are retained for further processing. 

3.2. Disease ontology 

DO, a taxonomy of diseases, in which each disease term is linked to another in a hierarchical 
manner by a semantic type “is_a” association has been used [12]. DO mapping each disease term to 
its disease id DOID along with the term definition and the human disease related knowledge base is 
downloaded from http://purl.obolibrary.org/obo/doid/releases/2022-06-07/doid.owl (accessed 7 June 
2022). In this work, the conceptual linking of diseases for concept-based DDA has been established 
using various DO relationships. Approximately 8000 diseases out of 14,958 diseases from the 
enhanced dataset were mapped to DO, whose corresponding term definitions are further utilized in 
concept embedding. 

3.3. Unified Medical Language System 

The UMLS consists of three components, Metathesaurus, Semantic Network and Lexicon tools, 
that has concepts with concept ID (CUI), definitions and its linkage to other concepts with semantic 
relations such as CHD “Child”, SY “asserted synonymy”, RN “has a narrower relationship”, RO “has 
other relationship”, RQ “related and possibly synonymous”, etc. In this work, only Metathesaurus 
concepts file, containing the concept pairs relationships are used for concept embedding in concept-
based DDA [15]. 
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3.4. Datasets for evaluation 

We evaluate the obtained DDA scores of our approach against the results of DisGeNET, that 
contains about 10,48,575 DD pairs from a curated DDA database. DisGeNET defines DDAs based on 
shared genes and variants among the available gene-disease associations [74]. This well-known database 
has been used for direct comparison of DDA strengths in both the perspectives. Nicia et al. [47] used 
DisGeNET to evaluate the results of DDAs obtained using SicknessMiner. The phenotypic similarity 
of diseases werealso evaluated using the DisGeNET scores for inborn errors of immunity [75]. Further, 
we created a standard dataset, to compute DDA strength using functional GO as an association criteria. 
The disease-related GOs are obtained from CTD. Some of the attributes of the datasets are disease1, 
disease2 and the Jaccard similarity scores using genes, variants and GOs. In this work, we have adopted 
DisGeNET as well as the created standard dataset for evaluating DDA strength.  

In addition, the performance of the obtained DDA strength of our approach is also evaluated using 
the human rated DDA pairs. Hence, a combined standard DDA dataset with human assessed scores is 
created using 213 disease-disease pairs obtained from UMNSRS [54] and MayoSRS [76], by mapping 
the concept terms to disease terms using CTD disease vocabulary [77].  

4. Integrated and enhanced DDA strength quantification framework 

The proposed work effectively measures the association strength between different diseases by 
integrating various types of disease-disease linking contextual and conceptual relations. In this work, 
contextual relationships are obtained from biomedical literature such as the PubMed abstracts. 
Similarly, biomedical databases (DO [12], UMLS [15] and biomedical text (Clinical Notes, Insurance 
Claims Database, Journal Articles) [20] are utilized to obtain conceptual relations. Deriving DDAs 
through integration of multiple linking perspectives associating the given disease pair and computing 
the aggregated DDA strength are important. 

Figure 1 describes the proposed framework. With the list of diseases as main input, collection of 
associated PubMed abstracts is the first step. In Section 4.1, the proposed deep neural network model, 
Enhanced Sentence Embedding with Context-Based CNN (ESEC-CNN) is trained on preprocessed 
and labelled (positive, negative and null DD pairs) 521 PubMed abstracts [17]. The built model is 
further exploited to classify a new set of PubMed abstracts collected iteratively. This dataset is used to 
improve the general performance of DDA prediction. This dataset is used to improve the general 
performance of DDA prediction. The set of classified DDAs and sentence embeddings obtained from 
the enhanced dataset are further utilized to construct literature-based DDA matrices. In addition, the 
enhanced list of diseases is also used for the construction of concept-based DDA matrix of DDA 
representations as described in Section 4.2. Using the biomedical text and biomedical databases, 
Ontology-based joint multi-source association embedding model is proposed to improve concept-
based DDA. The integration of literature-based and concept-based DDAs for DD association 
enhancement is described in Section 4.3 using a modified vector-similarity fusion method [78] to 
improve the quality of integrated disease vector. Finally, the relatedness score between DDs is 
calculated using cosine similarity of the integrated disease vector [79]. 
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Figure 1. The proposed framework for calculating DDA. 

4.1. Enhanced Literature-Based DDA 

4.1.1. Enhanced sentence embedding context-based CNN 

The DDA dataset derived from initial 521 labelled abstracts are used for construction of enhanced 
literature-based DDA matrices using sentences with disease pairs classified into positive, negative and 
null pairs. For this classification, we proposed a neural network architecture as illustrated in Figure 2. 
The network is designed to capture syntactic and semantic information for a given sentence with DD 
pairs from three different perspectives using 

1) Sentence-based local-level features 
At sentence-level, we have used Parts-of-Speech (POS) feature using one-hot encoding scheme 

represented by 11-bit binary vector [35] and two-dimensional disease distance feature [17]. For DDA, 
new additional features such as dependency relations [80] and chunk [81] are included and Named 
Disease Entity (NDE) feature is obtained, similar to the work of Peng and Lu [35]. The NDE feature 
is applied to each word in a sentence represented by a four dimensional encoding < D1, D2, D, O >, 
where D1 and D2, represents the disease pair under consideration. Other disease words and non-
disease words are represented by D and O respectively. 

2) Sentence-based global-level features 
Using a popular embedding model word2vec [82], the embedding of each word in a sentence is 

learnt at corpus-level using both domain-specific context such as PubMed and PMC and general 
contexts including news, in addition to Wikipedia [83].  

3) Document-level features 
Similar to the work of Lai et al. [17], the traditional document features such as Bag-Of-Word, 

word-based Parts of Speech, NDE information and document-based information are represented using 
one-hot encoding. 

Thus, in this work, an enhanced sentence embedding with additional features is framed that helps 
the proposed classification model in better classification of different types of association. 
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Figure 2. ESEC-CNN) architecture NDE-Named Disease Entity, POS- Parts-of-Speech, 
Dep. Rel.-dependency relation. 

In Figure 2, the input to ESEC-CNN is the embedding layer representing the sentence followed by 
convolution and pooling layers outputting an n-dimensional enhanced sentence embedding vector. 
Similarly, the document representation [17] of m-dimension is merged with enhanced sentence 
embedding to create (n + m) dimensional final single vector. The fully connected layer with categorical 
hinge loss in activation function [84] is applied to the obtained merged vector. The combined vector is 
further passed on to three-dimensional output layer representing the probability of classes: positive, 
negative, null. 

4.1.2. Enhanced construction of literature-based DDA matrices 

The trained classifier model is effectively utilized in our work to classify the new set of extracted 
PubMed abstracts. In order to improve the performance of DDA strength calculation, it is essential to 
widen the range of positive, negative and null contexts of DD pairs, therein, aggregating the contextual 
information contribution to the DD strength during the construction of enhanced literature-Based DDA 
matrix. Further, the number of seed diseases is also increased, thus we attempt to measure the strength 
of association between a larger number of DD pairs. The dataset is constructed by an iterative technique 
with initial 213 seed DD pairs collected from a combined benchmark datasets including UMNSRS 
Similarity and Relatedness [54], MayoSRS and MiniMayoSRS between Medical term pairs [76], until 
we obtain 58,980 unique DD pairs. 

In order to effectively quantify DDA strength using literature, considering positive, negative and 
null associations is important as each type conveys different degrees of association. Hence, the DDA 
classes (positive, negative and null) predicted by LC-CNN model along with improved sentence 
representations are further utilized to construct two literature-based DDA matrices namely, 
literature-based positive, negative DDA matrix of DDA representations and literature-based null 
similarity matrix. 

1) Literature-based positive, negative DDA matrix 
As discussed in Section 2.1, sentence-based biomedical associations are classified into only 

positive, negative [17,34–37] or only as negative [36]. While during the strength calculation, O’Shea [18] 
and Xu et al. [52] considered only positively correlated pairs. However, it is important to calculate the 
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strength of association of pairs that occur in both positive and negative contexts and those that occur 
only in negative context. Considering the above aspects, cumulative association strength is calculated 
in Eq (1). 

 𝐿𝑉
𝑛 ∗ ∑ 𝐷 𝐷 𝑇𝐷𝑉𝑒𝑐𝑡𝑜𝑟

𝑛 ∗ ∑ 𝐷 𝐷 𝑇𝐷𝑉𝑒𝑐𝑡𝑜𝑟
  (1) 

where: 𝐿𝑉   represents association vector of disease pair 𝐷 𝐷  , 𝑛   and 𝑛   is the 
number of positive contexts and negative contexts respectively. 𝑇𝐷𝑉𝑒𝑐𝑡𝑜𝑟   and 𝑇𝐷𝑉𝑒𝑐𝑡𝑜𝑟  
denote enhanced sentence representations with two disease mentions vector in positive and 
negative cases respectively. 
The association strength of disease pair 𝐷 𝐷 , is dealt differently if it falls in any of the three cases. 
Case 1 𝑛 ∗ ∑ 𝐷 𝐷 𝑇𝐷𝑉𝑒𝑐𝑡𝑜𝑟   , strengths the DDA if 𝐷 𝐷   occurs only in positive 
contexts. 
Case 2 𝑛 ∗ ∑ 𝐷 𝐷 𝑇𝐷𝑉𝑒𝑐𝑡𝑜𝑟   , identifies negative association strength if 𝐷 𝐷  

occurs only in negative context. 
Case 3 Eq (1) combines case 1 and case 2 using an association modification factor (-) that modifies 
association strength if 𝐷 𝐷   occurs in both positive and negative contexts. 

2) Literature-based null similarity matrix 
Though Rakhi et al. [37] has classified sentence-based biomedical entity pairs as null, these 

associations were not considered while calculating the strength of association. However, null pairs 
with unmentioned associations may also be associated with some strength and hence needs to be taken 
into consideration. In addition, in this work, we have also extended the concept of null association 
within same sentence [17,34,37] to across different sentences having single disease mention and 
therefore, including corresponding embedding information also contributes to DDA strength 
computation. Accordingly, we have derived an equation Eq (2) representing a disease vector. 

 𝐿𝑉 𝐷 ∑ 𝑇𝐷𝑉𝑒𝑐𝑡𝑜𝑟 ∑ 𝑂𝐷𝑉𝑒𝑐𝑡𝑜𝑟   (2) 

where: 𝐿𝑉 𝐷   denote the disease vector representation of disease 𝐷  , 
𝑇𝐷𝑉𝑒𝑐𝑡𝑜𝑟  𝑎𝑛𝑑 𝑂𝐷𝑉𝑒𝑐𝑡𝑜𝑟  denote two-disease and single disease mention enhanced sentence 

representations. 
The represented disease vector 𝐿𝑉 𝐷 , consists of 2 important components in the context of 

DDA as follows: 
 ∑ 𝑇𝐷𝑉𝑒𝑐𝑡𝑜𝑟 , accumulates enhanced sentence representations of 𝐷  when it occurs in the 

same sentence with all other unmentioned or null associated diseases. 
 ∑ 𝑂𝐷𝑉𝑒𝑐𝑡𝑜𝑟  , accumulates enhanced sentence representations of 𝐷   when it occurs as 

single disease mention in sentences. 
𝐿𝑉 𝐷  is calculated in the same way and 𝐷 𝐷  strength is calculated using cosine similarity, 

cos 𝐿𝑉 𝐷 , 𝐿𝑉 𝐷  , that helps modify DDA with null associations and discover DDAs that are 

not directly conveyed by positive/negative associations. 
Using Eqs (1) and (2) described in 1) and 2), we are able to construct an enhanced literature-based 

positive, negative DDA matrix and literature-based null similarity matrix shown in Figure 3. that is 
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later used to calculate literature-based DDA strength. 

 

Figure 3. Literature-based matrices with association vector 𝐿𝑉  and similarity score 𝑆 . 

4.2. Concept-based DDA using ontology-based joint multi-source embedding model 

In order to integrate conceptual aspects for DDA calculation, a detailed ontological mapping 
covering a wide range of taxonomic relationships, plays a vital role and contributes to the 
quantification of semantic associations between diseases. Some of the taxonomical ontological 
relationships include ancestorial parent-child relationship and other relationships like sibling and 
indirect relationships (uncle, cousin). Wang et al. [63] has not considered the semantic relationship in 
disease association measurement while only parent-child relationship is considered in the prediction 
of onset of diseases [85,86]. For DDA, in this work, we consider ancestorial and other closely related 
taxonomical relationships to derive a better degree of association linking diseases. Given DO as a DAG, 
having nodes corresponding to the ancestors and disease concepts 𝐷  𝑎𝑛𝑑 𝐷  involved in 𝐷
𝐷  association, the ancestorial relationship and ontological relationship connection between 𝐷  
(disease concept1), 𝐷  disease-concept2) are used to learn the association representation.  

For DDA measurement, when we embed each disease (concept), we need to do so in relation to a 
disease pair. For this, the connectedness of concepts [68] and semantic information of all ancestors are 
used [29,85,86]. However, discovering new ancestors sets 𝑁𝑒𝑤_𝐴𝑛𝑐_𝑆𝑒𝑡 , prior to association 
representation is important as not all ancestors contribute to the final association. 

After discovering the ancestors sets, we introduce a 2-stage DDA quantification, ontology-based 
joint multi-source association representation, shown in Figure 4. In stage-1, we have included the 
association effect of the influential factors by infusing multi-source semantic (DO, UMLS) and 
contextual information (clinical notes, insurance claims, journal articles) of ancestors including the 
root ancestor node and leaf node. In addition, we add novel level-weight to the multi-source ancestorial 
representation, where the level-weight is based on new ancestors sets 𝑁𝑒𝑤_𝐴𝑛𝑐_𝑆𝑒𝑡  discovered 
initially, thus producing an association embedding matrix. In stage-2, we introduce ontological 
relationship connection-based DDA quantification that varies the embedded association strength 
between diseases based on their type of relation connection in the ontology, thus resulting in concept-
based association matrix of DDA representations. 

Thus, in this work, we try to improve the concept-based DDA by constructing a concept-based 
DDA matrix of DDA representations using ontology-based joint multi-source association embedding 
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model as shown in Figure 4. 

 

Figure 4. Pipeline of concept-based DDA using proposed ontology joint multi-source 
association representation. 

4.2.1. Discovery of new ancestors sets 

As discussed in Section 4.2, including all ancestors of given disease concept may cause semantic 
contribution of even the concepts that are not common between diseases in the disease pair and hence, 
embedding of disease under consideration may lead to incorrect association. In order to tackle this aspect, 
that is, rather than considering all ancestors of a particular node in the ontology, we consider only those 
ancestors that contribute to the association between diseases by defining new sets of ancestors 
𝑁𝑒𝑤_𝐴𝑛𝑐_𝑆𝑒𝑡 𝐷 and𝑁𝑒𝑤_𝐴𝑛𝑐_𝑆𝑒𝑡 𝐷   for 𝐷   and 𝐷   respectively for 𝐷 𝐷   association. 
Therefore, the derived ancestors set 𝐴𝑛𝑐_𝑆𝑒𝑡 𝐷  of disease 𝐷  in 𝐷 𝐷  association is described 
in Eq (3), where only common ancestors 𝐴 𝑠 are considered since two diseases are associated by sharing 

of common diseases in the DO. In addition, the ancestors on the longest path 𝐴 𝑠 with respect to 𝐷  is 

also considered to cover a broader etiology of the disease concept. 

 𝑁𝑒𝑤 𝐴 𝑠 ∈ 𝑐𝑜𝑚𝑚𝑜𝑛 𝐷 ,𝐷 𝐴 𝑠 𝑜𝑛 𝑙𝑜𝑛𝑔𝑒𝑠𝑡 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝐿𝐶𝑆 𝐷 ,𝐷   (3) 

where 𝑐𝑜𝑚𝑚𝑜𝑛 𝐷 ,𝐷  denotes the common ancestors of 𝐷  and 𝐷 .  

Further, by utilizing the discovered ancestors sets, ontology-based joint multi-source association 
embedding model is proposed, consisting of 2 stages, described in sub-sections 4.2.2 and 4.2.3. 

4.2.2. Ontology-based joint multi-source association embedding model 

Stage-1 Novel-ancestorial level-based DDA quantification using multi-source embeddings 
Figure 5 shows the derived embedded association representation, 𝐶𝑉  for two disease nodes in 

the given DO, where the representation is divided into two components, A) Multi-source ancestorial 
Embedding and B) Novel ancestorial level-weight for each of the diseases 𝐷  𝑎𝑛𝑑 𝐷  respectively, 
discussed in following sections. 
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Figure 5. 𝐶𝑉 , an embedded association representation of 𝐷 𝐷 . 

A) Multi-source ancestorial embedding 
As discussed earlier in Section 4.2, Song et al. [86] considered all ancestors and included only 

semantic embeddings of ancestors excluding the root ancestor node and leaf node (𝐷  𝑖𝑛 𝐷 𝐷 ). 
However, we consider only new ancestors sets, 𝑁𝑒𝑤_𝐴𝑛𝑐_𝑆𝑒𝑡 𝐷   𝑎𝑛𝑑 𝑁𝑒𝑤_𝐴𝑛𝑐_𝑆𝑒𝑡 𝐷   as 
discussed in Section 4.2.1 and various conceptual knowledge of ancestors from multiple sources, since, 
𝐷 𝐷  𝑎ssociation may be influenced by several factors such as symptoms, biological entities (genes, 
proteins, etc.), other diseases, affected patient records, etc., which can be covered by infusing 
embeddings from different sources. In addition, considering multi-source information of root node and 
leaf node (𝐷 ) is important in the context of DDA as root node is common to both 𝐷 and 𝐷  and leaf 
node 𝐷   is involved in 𝐷 𝐷  𝑎 ssociation. As shown in Figure 5, the multi-source ancestorial 
embedding of 𝐴 ∈ 𝑁𝑒𝑤_𝐴𝑛𝑐_𝑆𝑒𝑡 𝐷 is given by the component A, in which we assign multi-source 
contextual embeddings 𝑣 , 𝑣  from DO and biomedical text [3] and semantic embedding 
𝑣   from UMLS [33]. For embedding text definition from DO, in this work, we adopted the 

procedure used by Park et al. [23] to fill in the definition of diseases using the first lead paragraph from 
Wikipedia, applying an embedding method, Doc2Vec [87]. The combined semantic and contextual 
information is then infused into the deep neural network embedding model through attention 
mechanism [85,86]. The attention weights on multi-source embeddings with respect to 𝐷   are 
denoted by 𝛼 ,𝛼 ,𝛼 . The weight computation for text definition embedding from 

DO for ancestor 𝐴 ∈ 𝑁𝑒𝑤_𝐴𝑛𝑐_𝑆𝑒𝑡 𝐷   is computed using equation Eq (4.1) by SoftMax 
function as follows: 

 𝛼
 ,

  (4.1) 

where 𝑤 is given by Eq (4.2). 

𝑤 ∑ exp 𝑓 𝑣 , 𝑣 exp 𝑓 𝑣 ,𝑣 exp 𝑓 𝑣 , 𝑣∈ _ _   (4.2) 
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where 𝑓 𝑣 ,𝑣 ,𝑓 𝑣 , 𝑣 ,𝑓 𝑣 , 𝑣   denotes the scalar score 

functions defined in Eq (4.2) to find the compatibility between text embedding of 𝐷  from DO and 
multi-source ancestorial embeddings, which are computed using a single layer feed forward neural 
network using Eq (4.3). 

 𝑓 𝑣 ,𝑣 𝑧 tanh 𝑁
𝑣

𝑣
𝑏𝑖𝑎𝑠   (4.3) 

Z, N and bias are the learning parameters used by the neural network. 
Similarly, other attention weights of ancestor 𝐴 w.r.t 𝐷  from other sources are calculated in similar 
manner. Similar kind of equations are adopted in case of ancestor 𝐴  w.r.t 𝐷 . 
B) Novel ancestorial level-weight 

The next component of stage-1, controls the semantic and contextual contribution effect of each 
ancestor by adding level-weight to the aggregated multi-source embeddings obtained using component 
A. We used the ancestorial level-weights similar to Wang et al. [63] (relative positions in MeSH) and 
Kamran et al. [65]. Wang et al. [63] and Kamran and Naveed [65], calculated the ancestorial level-
weight by choosing the maximum of level-weights among all children of ancestor with respect to each 
entity in association. This may lead to assigning level-weight of ancestor by children which may be 
neither common nor on the longest path to 𝐷  and 𝐷 , thus failing to include level-weights of nodes 
contributing to the association.  Thus, selecting the level-weight contributed by children that are 
common ancestors and those that fall into longest path with respect to 𝐷  and 𝐷 , 𝑁𝑒𝑤_𝐴𝑛𝑐_𝑆𝑒𝑡 
of 𝐷  𝑎𝑛𝑑 𝐷 , reveals the actual semantic value or level-weight of ancestors. As a special case of 
computing level-weight of least common subsumer (LCS), Kamran et al. [65], calculated the semantic 
value or level-weight of LCS by considering only the level-weights of the ancestors on the longest 
path from root to LCS which included only the influential effect of ancestors of LCS. However, this 
will not help in identifying the true level weight of LCS with respect to each of the descendant entities 
in association. Therefore, for computing the level-weight of LCS, it is required to consider level-
weights of children of LCS on deeper or longest path that connects LCS with each of its descendant 
entities in association as it reveals the actual semantic value of LCS. Therefore, in this work, a novel 
ancestorial level-weight contributing to the association strength is derived and is denoted by 
component B in Figure 5 and given in equation Eq (5) for ancestor 𝐴  w.r.t 𝐷 . 

Therefore, in this work, a novel ancestorial level-weight contributing to the association strength 
is derived and is denoted by component B in Figure 5 and given in equation Eq (5) for ancestor 𝐴  
w.r.t 𝐷 . 

 𝐿 𝐴 =

𝐿 𝐷 1

𝐿 𝐴 ∆ ∗ 𝐿 𝑡 𝑡 ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝐴 ∈ 𝑁𝑒𝑤_𝐴𝑛𝑐_𝑆𝑒𝑡 𝐷
∆→ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑎𝑐𝑡𝑜𝑟

  (5) 

where ∆ is the weight factor of the edge linking 𝐴  with its child 𝑡. The weight factor helps reduce 
the contribution effect of ancestors that are distant from 𝐷 , ranging from 0 to 1 and we found that 
∆ 0.4  gives better correlation with the standard DDA scores from DisGeNET. Similarly, level-
weight of ancestor 𝐴  w.r.t 𝐷  is derived. 

Finally, the derived two components in Section 4.2.2 are then multiplied to get the final 
association representation, 𝐶𝑉  , for 𝐷 𝐷   association. With the derived 𝐷 𝐷   association 
vector 𝐶𝑉  , we further vary the association based on the connectedness ontological relationship 
between 𝐷  𝑎𝑛𝑑 𝐷 , using an additional DDA quantification described in the following Section 4.2.3. 
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4.2.3. Stage-2 Ontological relationship connection-based DDA quantification 

Given a disease pair 𝐷 𝐷 , whose association can be established through other diseases in the 
ontology using ancestorial relationship without considering the variation factor is discussed in Section 
4.2.2. However, the type of ontological relationship connection between 𝐷  𝑎𝑛𝑑 𝐷 , reveals the actual 
association. Hence, varying the association based on type of the relationship connection, provides a 
finer adjustment to the already derived association vector  𝐶𝑉 . Therefore, in this work, we proposed 
an ontological relationship variation factor (ORVF) for the second level of DDA quantification. 

As a diagrammatic illustration, ORVF values for different types of ontological relationship 
connections are shown in Figure 6. 

 

Figure 6. ORVF calculation for different types of ontological relationship connections 
between 𝐷  𝑎𝑛𝑑 𝐷 . 

In Figure 6(a), the ORVF is 0 when both 𝐷  𝑎𝑛𝑑 𝐷  are at same distances 0.1 or immediate 
children of 𝐷 , considering the edge weight as 0.1. Similarly, in Figure 6(b), the ORVF is 0 as 𝐷 is 
the direct parent of 𝐷 , with a distance 0.1. Thus, ORVF 0, represents that there is no variation of 
association when 𝐷  𝑎𝑛𝑑 𝐷  are very closely related as a sibling and direct parent-child relationships. 
However, the variation occurs when 𝐷  𝑎𝑛𝑑 𝐷  are distantly related. For example, the ORVF values 
are calculated for the indirect relationships shown in Figure 6(c) (d) and (e). In Figure 6(c), 𝐷 acts as 
grandparent of 𝐷 , producing ORVF 0.2 as 𝐷  is at a distance of 0.2 from 𝐷 , while an uncle relationship 
connection in Figure 6 (d), calculated ORVF of 0.3as an aggregation of distances 0.1 and 0.2 with respect 
to𝐷  and 𝐷 respectively, from LCS(𝐷 ,𝐷 ) 𝐷 ). On the other hand, in Figure 6(e),  𝐷  acts as a 
cousin of 𝐷 resulting in ORVF of 0.4 as both 𝐷  and 𝐷  are at distance 0.2 from LCS (𝐷 ,𝐷 ) 
𝐷 ). Thus, ORVF helps in varying the extent of DD association by each Ds independent distance 

from LCS. 
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Algorithm 1 summarizes the procedure of adjusting the stage-1 association vector 𝐶𝑉  by the 
proposed ORVF is as follows. 

Algorithm 1 𝑪𝑽𝒙𝒚 𝒂djustment by ORVF 

1: 𝑝𝑎𝑡ℎ 𝐷 ⃪𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑁𝑒𝑤_𝐴𝑛𝑐_𝑆𝑒𝑡 𝐷 , 𝑝𝑎𝑡ℎ 𝐷 ⃪𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑁𝑒𝑤_𝐴𝑛𝑐_𝑆𝑒𝑡 𝐷 , 

2: 𝐿𝐶𝑆 ⃪𝐿𝑒𝑎𝑠𝑡 𝐶𝑜𝑚𝑚𝑜𝑛 𝑆𝑢𝑏𝑠𝑢𝑚𝑒𝑟 𝑝𝑎𝑡ℎ 𝐷 ,𝑝𝑎𝑡ℎ 𝐷  

3: 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐿𝑒𝑣𝑒𝑙 𝐿𝐶𝑆 , 𝐿𝑒𝑣𝑒𝑙 𝐿𝐶𝑆  

Compute ORVF:  

Case 1: Direct parent/Siblings 

4: If 𝐿𝑒𝑣𝑒𝑙 𝐿𝐶𝑆 𝐿𝑒𝑣𝑒𝑙 𝐿𝐶𝑆 1 

5: 𝐶𝑉 ⃪𝐶𝑉 , ORVF=0 i.e. No Variation 

Case 2: Broader/Indirect Relationship 

6: If 𝐿𝑒𝑣𝑒𝑙 𝐿𝐶𝑆 , 𝐿𝑒𝑣𝑒𝑙 𝐿𝐶𝑆 1 

7: 𝐶𝑉  ⃪ 𝐶𝑉 ∗ ORVF, ORVF⃪ 𝐿𝑒𝑣𝑒𝑙 𝐿𝐶𝑆 𝐿𝑒𝑣𝑒𝑙 𝐿𝐶𝑆  

An illustration of the above algorithm is given in Figure 7(a) and (b) showing the ORVF 
calculations for sibling and cousin ontological relationships connecting 𝐷  𝑎𝑛𝑑 𝐷 respectively. 

Figure 7(a) and (b) follows the same procedure to compute ORVF. The first step gives the 
𝐿𝐶𝑆 𝐷 ,𝐷 ) denoted as 𝐿𝐶𝑆 , by defining the 𝑝𝑎𝑡ℎ 𝐷  and 𝑝𝑎𝑡ℎ 𝐷  using the new ancestors 
sets of 𝐷  and 𝐷  respectively, where 𝐿𝐶𝑆  is equal to𝐷  and 𝐷  corresponding to Figure 7(a) 
and (b). The next step is to find the distance of 𝐿𝐶𝑆   from 𝐷   and 𝐷   independently using 

𝐿𝑒𝑣𝑒𝑙 𝐿𝐶𝑆  and 𝐿𝑒𝑣𝑒𝑙 𝐿𝐶𝑆  and found to be 0.1 for sibling relationship in Figure 7(a) 

and found to be of different distances 0.1 and 0.2 for cousin relationship in Figure 7(b). Finally, with 
the calculated distances, the ORVF is computed for direct/sibling relationships in Figure 7(a) and for 
broader/indirect relationships in Figure 7(b). For direct/sibling relationship, the association embedding 
is not varied since ORVF is 0 whereas the association embedding is reduced by a factor of 0.3 which 
is the total distance of variation between 𝐷  𝑎𝑛𝑑 𝐷  , through 𝐿𝐶𝑆   . Hence, the association 
embedding 𝐶𝑉  is the final association embedding 𝐶𝑉   in case of sibling relationship connection 
in Figure 7(a) whereas  𝐶𝑉  is reduced by a factor of 0.3 contributed by 0.1 and 0.2 from 𝐿𝐶𝑆  from 
𝐷  𝑎𝑛𝑑 𝐷  respectively. 

Using 𝐶𝑉  as shown in Figure 4 and the proposed ORVF, we are able to construct an 
enhanced concept-based DDA matrix of DDA representations 𝐶𝑉  that is later used for concept-
based DDA strength. 

 

Figure 7. Adjusting association vector 𝐶𝑉  by the proposed ORVF for sibling relationship (left) 
and cousin relationship connection (right). 
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4.3. Integration and Enhancement of final disease vector representation 

Finally, an information rich single disease vector of 𝐷   in 𝐷 𝐷   Association, can be 
obtained as shown in Figure 8, by the following steps. Extracting literature-based 𝐷  vectors, from 
the constructed literature-based positive, negative DD association matrix of 𝐿𝑉  and concept-based 
𝐷  vectors from concept-based DD association matrix of 𝐶𝑉  as discussed in Sections 4.1.2 and 4.2. 
Further, the extracted 𝐷   vectors are integrated into single integrated disease vector. As an 
enhancement to final DDA strength, the integrated single disease vector is enhanced with additional 
contextual information obtained from literature-based null DD similarity matrix in Section 4.1.2, using 
vector-similarity fusion method, in order to obtain the final DDA strength. 

 

Figure 8. Integration and enhancement of final disease vector representation. 

4.3.1. Extraction of single disease vector 

For 𝐷 𝐷   association, literature-based single disease vector 𝐿𝑉  of 𝐷   with respect to 

𝐷 , is extracted using association vectors obtained from literature-based positive, negative association 
matrix in Eq (1) by averaging the literature based DDA vectors 𝐿𝑉 ′𝑠  of 𝐷 𝐷   associations, 
where 𝑖 ← 1,2, . . ,𝑛  𝑎𝑛𝑑 𝑖 𝑦 and finally concatenating the averaged component with association 
vector 𝐿𝑉  of 𝐷 𝐷  association as shown in Eq (6). For 𝐷 𝐷  association, it is important to 
preserve the actual information component of 𝐷   through concatenation while representing 𝐷  
vector. Similarly, single disease vector for 𝐷   is extracted. A similar strategy is followed while 
extracting disease vector for 𝐷  𝑎𝑛𝑑 𝐷  from concept-based DDA matrix, where 𝐶𝑉 of 𝐷  with 

respect to 𝐷  is shown in Eq (7). 

 𝐿𝑉 𝐿𝑉  .
∑

, 𝑖 𝑦  (6) 

 𝐶𝑉′ 𝐶𝑉′  .
∑

, 𝑖 𝑦  (7) 

where: 𝐿𝑉  and 𝐶𝑉  are literature-based and concept-based association vector of 𝐷 𝐷  pair. 
𝐿𝑉   represents literature-based single disease vector of 𝐷   with respect to 𝐷  . Similarly, 

𝐶𝑉′  represents concept-based single disease vector of 𝐷  with respect to 𝐷 . 
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4.3.2. Integration of single disease vectors 

For an information-enriched disease vector representation, the extracted literature-based and 
concept-based single disease vectors are integrated into a single information rich disease vector. 
However, for disease vector representation, only a narrow disease-disease linking relations were fused 
[32,33]. In order to achieve better association, in this work, the disease vector is represented by 
integrating vector representations on a wide range of disease-disease linking information from both 
literature and concept-based biomedical data sources. 

Thus, for an information-enriched representation of diseases in 𝐷 𝐷   association, the 
extracted literature-based and concept-based disease vector components in Eqs (6) and (7), 
respectively, are concatenated into a single integrated disease vector 𝐿𝑉𝐶𝑉   for 𝐷   with 

respect to 𝐷  as in Eq (8). 

 𝐿𝑉𝐶𝑉 𝐿𝑉 . 𝐶𝑉′   (8) 

where 𝐿𝑉𝐶𝑉   represents the single integrated disease vector 𝐷   with respect to 𝐷  . 𝐿𝑉  

represents literature-based single disease vector of 𝐷   with respect to 𝐷  . 𝐶𝑉′   represents 

concept-based single disease vector of 𝐷   with respect to 𝐷  . Similarly, 𝐿𝑉𝐶𝑉   for 𝐷   with 
respect to 𝐷  can be defined using Eq (8). 

4.3.3. Enhancement to the integrated disease vector 

In addition, the information-enriched integrated disease vector is enhanced with additional 
contextual relationship with all other diseases obtained from literature-based DD null similarity matrix 
derived earlier in as discussed in Section 4.1.2. Manchanda and Anand [78] enhanced the disease 
vector representation by updating the initial vector representation using only literature (PubMed) with 
the corresponding similarity information with all other diseases. Enhancing such a low informative 
disease vector with similarity is needed to produce a proper enhanced disease vector. Hence, in this 
work, we use the information-enriched integrated disease vector derived in Eq (8) as an initial vector 
for similarity updation using vector-similarity fusion method defined in Eq (9), that uses an objective 
function [rep learning paper], where the scalar component is replaced by the null similarity scores. 

Thus, the enhanced integrated vector 𝐿𝑉𝐶𝑉 ′   for 𝐷  with respect to 𝐷  in 𝐷 𝐷  
association is obtained from 𝐿𝑉𝐶𝑉   in Eq (8) when updated if the objective function 𝐹   is 

minimized as shown in Eq (9) 

 𝐹 ∑
.

 𝐿𝑖𝑡
,

  (9) 

where 𝐿𝑉𝐶𝑉  represents the integrated disease vector 𝐷  with respect to 𝐷 , 𝐿𝑖𝑡
,

 

denotes the literature-based null similarity scores between 𝐷  and 𝐷 , 𝐿𝑉𝐶𝑉  denote length of 

vector 𝐿𝑉𝐶𝑉 , Similarly, the enhanced integrated vector 𝐿𝑉𝐶𝑉 ′  for 𝐷 with respect to 𝐷  in 

𝐷 𝐷  association is updated when the objective function 𝐹  is minimized. 
Thus, a rich integrated and enhanced disease vector representation is derived that helps DDA both 
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contextually and semantically, leading to a better quality of final DDA Strength. 

4.4. Relatedness calculation 

Finally, with the enhanced-integrated disease vector representations obtained in Section 4.3.3, a 
cosine similarity is applied to obtain the final score measuring the actual strength of association for the 
given disease pair as shown in Eq (10). 

 𝐴𝑠𝑠𝑜𝑐_𝑆𝑐𝑜𝑟𝑒 𝐷 ,𝐷 cos 𝐿𝑉𝐶𝑉 ′ , 𝐿𝑉𝐶𝑉 ′   (10) 

where 𝐿𝑉𝐶𝑉 ′  and 𝐿𝑉𝐶𝑉 ′  represent enhanced integrated disease vector 𝐷  with respect to 

𝐷  and 𝐷 with respect to 𝐷  respectively. 
Therefore, in this section, instead of finding the embedding vector for a disease in isolation, we 

used a modified method similar to Manchanda and Anand [78], in which the disease embedding is 
discovered in relation with DDA. We used an integration of literature-based and concept-based 
conceptual and semantic multi-source embeddings and richer ontological embeddings to obtain and 
discover DD associations and derive their strengths. 

5. Results and discussion 

For evaluating the enhanced DDA framework, we first evaluate the performance of the proposed 
association classification model ESEC-CNN with improved sentence representation, which on training 
facilitated the construction of enhanced DDAE dataset. The classification model was evaluated by 
measuring the model’s classification performance using Precision, Recall and F-measure. The correlation 
between the association scores obtained from the enhanced literature-based DDA representations and the 
association metrics Wang et al. [24], Resnik [25], Schlicker et al. [88] and Lin [26] is evaluated using 
spearman’s rank correlation coefficient. Second, the enhanced concept-based DDA representations is 
evaluated on both established biomedical dataset DisGeNet and human-rated DDA datasets using 
spearman’s rank correlation coefficient. Third, the evaluation of single disease vector representation is 
carried out using literature and concept-based approaches independently and using the integration of 
both in a similar manner. Finally, the quantification of DDA pairs obtained using the enhanced single 
disease vector representation is compared to the state-of-art methods and evaluated in different 
perspectives of DDA criteria. Additionally, we have also shown the biological effect of the DDA scores 
derived by integrated and enhanced disease vector representation for mostly associated disease pairs 
category-wise. 

5.1. Literature-based DDA evaluation 

5.1.1. Evaluation of improved sentence representation 

We conducted experiments to show the effect of additional features in sentence representation 
using classification performance of various sentence classification models in Table 1 and also in Figure 9. 
DDA classification performance of the baseline models without (limited local and global-level features) 
and with (additional local and global-level features) improved sentence representation such as, 
LSTM [49], BiLSTM [89], CNN [90], BERT [91], BioBERT [92] and LC-CNN [17] are then 
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evaluated on the available annotated DDA dataset, on a 5-fold cross validation. Implementation is 
carried out on a TensorFlow with hyperparameters of learning rate as 0.025, batch size of 8, epochs 
of 5,10,15 and layer size of 352.  

On comparing with all classification models, CNN-based models are found to perform better as 
LSTM, BiLSTM are sequence-based and hence, CNN-based model shows better sentence 
classification performance. 

The LC-CNN model with additional news embedding feature (global-level) has shown only less 
improvement of F-measure than that of LC-CNN with limited features. With the combined additional 
local-level embeddings of NDE, dependency relation, chunk tag along with other global-level 
embeddings including news, ESEC-CNN model (LC-CNN model with improved sentence 
representation) outperformed the other baseline models including LC-CNN model without improved 
sentence representation with F-measure of 85.54%. 

A notable observation of F-measure in other baseline models show that models have achieved 
better F-measure when the sentence representation is improved with additional local and global level 
features. Hence, the effect of improved sentence representation has a major positive effect on other 
models also. 

Table 1. Performance of improved sentence representation with different classification 
models. 

Methods 

Without improved sentence representation With improved sentence representation 

Performance measure 

Precision 

(%) 

Recall 

(%) 

F-measure 

(%) 

Precision 

(%) 

Recall 

(%) 

F-measure 

(%) 

LSTM [49] 65.13 67.11 66.11 66.92 68.37 67.64 

BiLSTM [89] 64.88 66.15 65.51 65.15 68.02 66.55 

CNN [90] 74.13 71.27 72.67 75.20 72.64 73.90 

BERT [91] 78.65 80.32 79.48 80.63 82.12 81.37 

BioBERT [92] 81.54 82.01 81.77 82.69 83.88 83.28 

LC-CNN [17] 82.16 84.89 83.50 − − − 

ESEC-CNN*  − − − 83.06 86.54 84.76 

ESEC-CNN** − − − 84.03 87.12 85.54 

*- partial improved sentence representation{(PubMed,PMC,Wiki,News),(POS,NE Dist)} 

**- improved sentence representation {(PubMed,PMC,Wiki,News),(POS,position,Dep. Rel.,Chunk,NE)} 

The better performing ESEC-CNN model (LC-CNN with improved sentence representation) is 
further utilized for DDA dataset expansion, where the size of the labelled PubMed abstracts is 
increased using an initial 213 seed DD pairs obtained from a combined benchmark similarity dataset 
as discussed in Section 4.1.2. 

From PubTator, a set of abstracts are downloaded in BioCXML format from 
https://ftp.ncbi.nlm.nih.gov/pub/lu/PubTatorCentral/PubTatorCentral_BioCXML/BioCXML.9.tar 
(accessed 12 July 2022), ensuring only abstracts that contain sentences with the given DD pairs are 
retrieved. At each iteration, a new unique set of DD pairs are produced from the retrieved set of 
abstracts. The number of newly produced DD pairs are found to increase at the initial few iterations 
and the drop in the count of new DD pairs acts as a stopping criterion for the abstracts retrieval process. 
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With the retrieved 39,510 abstracts, a total of 58,980 unique DD pairs are identified. However, for the 
construction of increased DDA extraction (DDAE) dataset, the LC-CNN model with improved 
sentence representation is trained on the available labelled abstracts [17] and then applied on to the 
created dataset. The trained model is able to identify a large number positive, negative and null pairs 
with only a minimum number of seed pairs. A statistical comparison of the enhanced constructed DDA 
extraction (DDAE) dataset starting with the available 521 labelled DDAE dataset [17] is tabulated 
in Table 2. 

 

Figure 9. DDA classification performance of baseline models without improved sentence 
representation and proposed ESEC-CNN model with improved sentence representation. 

Table 2. Statistics of the available and constructed DDAE dataset. 

Details 
Available 521 labelled 
DDAE dataset [17] 

Constructed DDAE 
dataset 

Abstracts 521 39,510 
Unique Ds 1103 14,598 
Unique DD pairs 3600 28,980 
Unique Positive DD pairs 1626 34,481 
Unique Negative DD pairs 124 5488 
unique Null DD pairs 2649 36102 
Unique Positive-Negative DD pairs 53 3254 
Unique Positive-Negative-Null DD pairs 33 2589 

5.1.2. Evaluation of different types of classified DDAs with enhanced literature-based DDA 
representation 

DD pairs classified by ESEC-CNN model are of 3 types, namely, both positively and negatively 
associated, only negatively associated and null associated and their association scores are validated as 
discussed earlier in this section and the evaluation of the 3 types is shown in Tables 3–5 respectively. 
The association measures are calculated using DOSim package [5]. Further, the concordance of the 
classified DD pairs scores with each of the association metrics is evaluated on both 521 DDA labelled 
abstracts [17] and the constructed DDAE dataset. 
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For both positively and negatively associated DD pairs, as shown in Table 3, [47] and [18] derived 
DDA strength which are less correlated with all metrics when evaluated on both datasets with a count 
of 54 and 3254 DD pairs. The lower correlation is because, Sicknessminer considered the number of 
co-mentions ignoring the context and treated all co-mentioned pairs as equally contributing to DD 
association, while Gextext considered a direct positive association if the DD pair had an average 
occurrence in the whole corpus, thus missing out the negative context of the pairs. Hence, considering 
negative context for association quantification will balance the real context by which disease pairs are 
associated. Further, such consideration could lead to significant correlation achieved by association 
scores computed using literature-based positive, negative association matrix. 

Table 3. Spearman’s rank correlation between enhanced literature-based positive, negative 
DD association matrix and DO-based similarity metrics (Wang, Resnik, Relevance, Lin) 
for both positively and negatively associated DD pairs from different sets of labelled DDA 
dataset. 

Association Type Method 
Wang et 
al. [24] 

Resnik 
[25] 

Schlicker 
et al. [88] 

Lin [26] 

#positively and 
negatively 
associated DD pairs 
= 54 [available 521 
labelled dataset [17]] 

GloVe-50 [93] 0.001 0.007 0.015 0.015 
SicknessMiner [47] 0.277131 0.203487 0.340086 0.340086 
GexText [18] 0.3982 0.3884 0.394 0.4013 
Enhanced literature-
based 
positive,negative 
DDA representation 

0.402411 0.417671 0.531724 0.531724 

#positively and 
negatively 
associated DD 
pairs= 3254 
[Enhanced DDA 
dataset] 

GloVe-50 [93] 0.005 0.009 0.024 0.026 
SicknessMiner [47] 0.323 0.321 0.352 0.349 
GexText [18] 0.468 0.463 0.476 0.476 
Enhanced literature-
based 
positive,negative 
DDA representation 

0.515 0.521 0.575 0.573 

In case of only negatively associated DD pairs as shown in Table 4, a total of 70 and 2234 DD 
pairs were found from the available and enhanced DDAE dataset, respectively, where their derived 
scores from the literature-based DDA matrix are positively correlated while other literature-based 
scores are negatively correlated indicating that considering the context of DD pairs occurrence plays 
a crucial role rather than taking only their occurrence frequency as in other methods. 

Similarly, the associations discovered for 2649 (521 abstracts) and 36102 (enhanced dataset) null 
pairs from literature-based null similarity matrix, have also correlated better when compared to other 
methods shown in Table 5, as only few pairs co-occur and therefore Sicknessminer [47] which used 
the co-mention analysis for association, is less correlated. While GexText [18], resulted in strong 
association for DD pairs with higher occurrence in the corpus which may not be strongly associated 
and hence less correlated compared to our null similarity scores, as the null scores obtained, considered 
the surrounding context influencing the disease in the given pair. On the other hand, GloVe [93] 
generated less informative embeddings for association calculation and therefore less correlated in all 
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the above cases. 

Table 4. Spearman’s rank correlation between enhanced literature-based positive, negative 
DD association matrix with DDA representation and DO-based similarity metrics (Wang, 
Resnik, Relevance, Lin) for only negatively associated DD pairs from different sets of 
labelled DDA dataset. 

Association Type Method 
Wang et al. 

[24] 
Resnik [25] 

Schlicker et 

al. [88] 
Lin [26] 

#Only negatively 

associated DD 

pairs = 70 

[available 521 

labelled dataset 

[17]] 

GloVe-50 [93] −0.356 −0.245 −0.319 −0.319 

SicknessMiner [47] −0.22114 −0.18152 −0.22987 −0.22987 

GexText [18] −0.008 −0.125 −0.012 −0.011 

Enhanced literature-based 

positive, negative DDA 
0.229156 0.208198 0.138969 0.138969 

#Only negatively 

associated DD 

pairs= 2234 

[Enhanced DDA 

dataset] 

GloVe-50 [93] −0.234 −0.301 −0.286 −0.284 

SicknessMiner [47] −0.229 −0.298 −0.251 −0.253 

GexText [18] −0.191 −0.226 −0.218 −0.218 

Enhanced literature-based 

positive, negative DDA 
0.306 0.299 0.274 0.269 

Table 5. Spearman’s rank correlation between literature-based null similarity DD matrix 
and DO-based similarity metrics (Wang, Resnik, Relevance, Lin) for null associated DD 
pairs from different sets of labelled DDA datasets. 

Association 

Type 
Method 

Wang et al. 

[24] 
Resnik [25] 

Schlicker et 

al. [88] 
Lin [26] 

#Null associated 

DD pairs = 2649 

[available 521 

labelled dataset 

[17]] 

GloVe-50 [93] 0.07 0.018 0.0195 0.03 

SicknessMiner [47] −0.0436 −0.009 0.003586 0.002185 

GexText [18] 0.231 0.236 0.196 0.193 

Literature-based Null 

DD similarity  
0.333 0.307 0.281 0.281 

#Null associated 

DD pairs= 36102 

[Enhanced DDA 

dataset] 

GloVe-50 [93] 0.006 0.005 0.002 0.003 

SicknessMiner [47] 0.024 0.017 0.0052 0.00549 

GexText [18] 0.168 0.186 0.210 0.208 

Literature-based Null 

DD similarity 
0.423 0.419 0.454 0.456 

5.2. Concept-based DDA evaluation 

To characterize the concept-based DDA, the derived association embedding consisting of several 
components such as discovered new ancestors sets, mutli-source ancestorial embedding with root and leaf 
node, novel ancestorial level-based DDA quantification and finally, the proposed ontology-based joint 
multi-source association representation with the ontological relationship connections is evaluated with the 
association scores from DisGeNET and the human assessed combined dataset as discussed in Section 3.4. 
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For evaluating the concept embeddings represented using newly defined ancestors sets, the 
ontological sources such as the clinical classifications software for ICD-9-CM (diagnosis) from 
https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp (accessed 2015) and anatomical therapeutic 
chemical classification system (ATC) (medications) https://www.whocc.no/atc/ (accessed 2 
February 2018) are used. 

5.2.1. Evaluation of discovered ancestors sets for DDA quantification 

Table 6 shows the correlation effect of varying combinations of ancestors sets for 𝐷 and𝐷  in 
𝐷 -𝐷  association quantification. With diseases in ontology, 7936 DD pairs found in common with 
DisGeNET, the embeddings derived with discovered new ancestors sets are better correlated compared 
to embeddings with all ancestors [86]. While considering only common ancestors without ancestors 
on longest path to 𝐷  and 𝐷  independently, shows good correlation than all ancestors but still less 
correlated when compared with the new ancestors sets. Since, association is not only influenced by 
commonality but also by ancestors on the longest path to each of the disease. 

Table 6. Comparison of the effect of the new discovered ancestors sets to other ancestors 
sets of 𝐷  and 𝐷  for 𝐷 -𝐷  quantification using spearman’s rank correlation between 
association scores of DDA pairs obtained using different ancestors sets and DisGeNET 
DDA scores. 

Source of multiple embeddings of ancestor Ancestors’ information 

Spearman’s rank 

correlation 

N=7936 DD pairs 

(DisGeNET) 

Ontology Sources- CCS, ATC: 

Clinical Classifications Software for ICD- 

9-CM (CCS) (diagnosis) 

Anatomical Therapeutic Chemical 

classification system (ATC) (medications) 

[86] 

All Ancestors of  D  and D  ∶

 ∀A  and ∀A  [86] 

0.759 

 

Common Ancestors of D  and D ∶ ∀A ∩

∀A  
0.772 

New Ancestors Sets of  D  and D ∶

New_Anc_Set D  and 

New_Anc_Set  D  

0.779 

5.2.2. Evaluation of multi-source embeddings for DDA quantification 

With the best correlated newly defined ancestors sets and with all ancestors, the concept 
embeddings are further evaluated to show the effect of multi-source embeddings of those ancestors 
with and without including multi-source information of root and leaf nodes. In this regard, the concept 
embeddings are evaluated as shown in Table 7 for 2658 DD pairs. We observed that the concept 
embeddings using ancestorial embeddings from multiple conceptual sources including root node and 
leaf node multiple embeddings in addition to the new ancestors sets gives significantly higher 
correlation compared to the baseline that considers only semantic sources [86]. 
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Table 7. Comparison of the effect of multi-source embeddings of ancestors with/without 
multi-source embeddings of root node and leaf node 𝐷  or 𝐷  for 𝐷 -𝐷  quantification 
using spearman’s rank correlation between association scores of DDA pairs obtained using 
multi-source ancestorial embeddings and DisGeNET DDA scores. 

Sources of multiple embeddings 

of ancestor 

Different combination of 

ancestors sets for 𝑫𝒙 -
𝑫𝒚 quantification 

Without Root 

and leaf node 

multi-source 

embeddings 

With Root and leaf 

node multi-source 

embeddings 

Spearman’s rank correlation 

N = 2658 DD pairs (DisGeNET)  

Ontology Sources: 

 Clinical Classifications 

Software for ICD- 9-CM (CCS) 

and 

Anatomical Therapeutic Chemical 

classification system (ATC) [86] 

∀𝐴  𝑎𝑛𝑑 ∀𝐴  [86] 0.612 0.618 

𝑵𝒆𝒘_𝑨𝒏𝒄_𝑺𝒆𝒕 𝑫𝒙  and 

New_𝑨𝒏𝒄_𝑺𝒆𝒕 𝑫𝒚  
0.643 0.695 

Ontology Sources 

• Disease Ontology (DO) 

• UMLS 

Biomedical Text 

• Clinical Notes 

• Insurance Claims Database 

• Journal Articles 

∀𝐴  𝑎𝑛𝑑 ∀𝐴  [86] 0.726 0.730 

𝑵𝒆𝒘_𝑨𝒏𝒄_𝑺𝒆𝒕 𝑫𝒙  and 

New_𝑨𝒏𝒄_𝑺𝒆𝒕 𝑫𝒚  
0.745 0.788 

5.2.3. Evaluation of novel ancestorial level-weight for DDA quantification 

In order to evaluate the effect of level-weight or semantic value of LCS (𝐷  ,𝐷  ) in 𝐷  -𝐷  
association, we compared the level-weight of LCS computed by longest path of lower DAG with 
respect to 𝐷  and 𝐷  separately using the proposed novel level-weight and the upper DAG using 
Baseline_LCA in GOntoSim [65] as shown in Table 8. The results show that the DDA quantification 
by level-weight of LCS using lower part of DAG connecting 𝐷  and 𝐷  is better correlated with 
DisGeNET DDA scores than level-weight of LCS using upper part of DAG. 

To demonstrate the effectiveness of adding novel level-weight to the multi-source ancestorial 
embeddings, we first introduce the effect of varying level-weight calculations of ancestors including 
LCS based on selection of children and then evaluated the effect of various combinations of level-
weight with and without multi-source ancestorial embeddings. As shown in Table 9, with 1,75,939 DD 
pairs, the novel level weight, where the level-weight is contributed by the children that belongs only 
to the newly defined ancestors sets, even without multi-source ancestorial embeddings outperformed 
the baseline level-weight calculation [63]. In addition, the correlation is even better when the novel 
level-weight is applied on multi-source ancestorial embeddings. 
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Table 8. Comparison of the effect of upper and lower DAG-based level-weight or semantic 
value computation of LCS(𝐷 ,𝐷 ) in 𝐷 -𝐷  association quantification using spearman’s 
rank correlation between obtained association scores of DDA pairs by varying level-weight 
of LCS and and DDA scores from DisGeNET. 

Calculation of level-weight of LCS( D  , D  ) for D  - D  

quantification 

Spearman’s rank correlation 

N = 1,75,939 DD pairs 

(DisGeNET) 

Baseline_LCA of GOntoSim: using upper DAG 
Level-weight of LCS( D , D  ) by ancestors on longest path to 

LCS(D , D ) [65] 
0.773 

Novel ancestorial-level weight: using lower DAG 
Level-weight of LCS(D , D  ) by children on longest path to D  

and D  
0.782 

Table 9. Comparison of the effect of novel ancestorial level-based to that of existing 
ancestorial level-based DDA quantification using spearman’s rank correlation between 
association scores of DDA pairs obtained using level-weights of ancestors with and 
without ancestorial embeddings and DDA scores from DisGeNET. 

Method 
Without multi-source ancestorial embedding With multi-source ancestorial embedding 

Spearman’s rank correlation N = 1,75,939 DD pairs (DisGeNET) 

Semantic similarity 

of diseases [63] 
0.610 0.720 

Baseline_LCA of 

GOntoSim [65] 
0.612 0.723 

Novel ancestorial 

level-weight 
0.619 0.756 

5.2.4. Evaluation of ORVF for DDA quantification 

In order to showcase the effect of the proposed ORVF, different combinations of the relationship 
connections as discussed earlier in Section 4.2.3. are considered. The performance of the effect of 
various ontological relationships is then evaluated through DDA quantification on DDA dataset as 
shown in Table 10. 

Further, the proposed ontology-based joint multi-source association representation is evaluated 
against the state-of-art concept representation methods to project the effect of varying the ontological 
relationship connection of the given disease pair applied on to the association embedding derived by 
combining all the better performed components inferred from the sub-experiments as discussed earlier 
and is shown in Table 10 for 1756 DD pairs. The proposed model considering all subcomponents such 
as discovered new ancestors sets, multi-source ancestorial embedding with root and leaf node, novel 
ancestorial level-based DDA quantification and the ontological relationship connections is strongly 
correlated than other existing methods, because [86] considered only semantic ancestorial embeddings 
without level weight on all ancestors, is less correlated compared to other methods that considered 
other contextual and semantic type relations. 
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Table 10. Comparison of ontology-based joint multi-source association representation and 
the existing concept-based representation methods for DDA quantification using 
spearman’s rank correlation between association scores of DDA pairs obtained using 
different concept-based representation methods and DDA scores from DisGeNET. 

Different concept-based representation methods for concept-based DDA 

quantification 

Spearman’s rank 

correlation 

N = 1756 DD pairs 

(DisGeNET) 

MMORE (CCS (diagnosis), ATC (medications)) [86] 0.703 

Cui2vec (Clinical Notes, Claims Insurance, Journal articles) [20] 0.772 

Retrofitted concept vector representation (PubMed, UMLS) [33] 0.781 

Proposed Ontology-based joint multi-source association representation   

Ancestorial level-based + ontological relationship connection based-Parent, 

Grandparents only* 
0.787 

Ancestorial level-based + ontological relationship connection based-Parent, 

Grandparents & sibling only** 
0.790 

Ancestorial level-based + ontological relationship connection based-Parent, 

Grandparents, sibling, uncle & cousin relationships*** 
0.802 

5.3. Evaluation of literature-based, concept-based and integrated approaches of disease 
representation for DDA quantification 

The analysis presented so far shows the effectiveness of literature-based DDA and concept-based 
DDA. However, we need to evaluate integrated literature and concept based DDA representation. This 
requires representing each disease as a single disease vector representation, integrating literature-based 
and concept-based methods. This enhanced single vector representation of two diseases is then used 
to compute the DD association using cosine similarity. In order to show the effect of integrated disease 
representation, the association scores computed is compared with the other state-of-art methods using 
only literature-based, only concept-based and those with integrated literature-based and concept-based 
perspectives.  

The disease representations produced by the models is evaluated across different perspectives of 
datasets. On the basis of type of DDA criteria, various angles of the datasets are used to evaluate the 
scores obtained by the generated disease representations. In this regard, we relied on disease-related 
biological domain database DisGeNet, where two association criteria were used to derive DDA scores. 
One is the disease-associated genes and other is disease-associated variants. Further, the Jaccard index 
similarity is used to compute association scores. In addition, we created a standard dataset covering 
the functional aspects of DDA using GO function. The disease-related GOs are obtained from 
Comparative Toxicogenomics Database (CTD). In order to calculate the DDA score in GO perspective, 
we employed the Jaccard index. Finally, we also evaluated against the human rated DD pairs obtained 
from a benchmark dataset. Details of the datasets used is discussed earlier in Section 3.4. 
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Table 11. Comparison of different aspects of disease vector representations using 
spearman’s rank correlation between association scores of DDA pairs obtained across 
various angles of association criteria using DisGeNet (Gene and Variants), Standard 
dataset (GO) and human assessed scores. 

Disease Vector Representation  Spearman’s Rank Correlation 

Literature-based only 

DisGeNet 

Gene-based 

DisGeNet 

Variant-

based 

Standard 

dataset GO-

based 

Human-rated 

N = 2938 DD pairs (DisGeNET) N = 199 DD pairs 

Cui2vec (Clinical Notes, Claims Insurance, 

Journal articles) [20] 
0.797 0.254 0.422 0.679 

Enhanced Literature-Based Disease 

Vector Representation (Vector-Similarity 

Fusion Without Integration) 

0.799 0.252 0.427 0.682 

Concept-based only 

DisGeNet 

Gene-based 

DisGeNet 

Variant-

based 

Standard 

dataset GO-

based 

Human-rated  

N = 2638 DD pairs N = 50 DD pairs 

MMORE (CCS (diagnosis), ATC 

(medications)) [86] 
0.716 0.144 0.541 0.790 

Ontology-Based Joint Multi-Source 

Association Embedding (Ancestral Level-

Based + Ontological Relationship 

Connection Based) 

0.808 0.146 0.551 0.809 

Integration of literature-based and 

concept-based 

DisGeNet 

Gene-based 

DisGeNet 

Variant-

based 

Standard 

dataset GO-

based 

Human-rated 

N = 1638 DD pairs N = 187 DD pairs 

Retrofitted Concept Vector Representation 

(PubMed, UMLS) [33] 
0.801 0.213 0.592 0.810 

Integration of literature-based and 

concept-based 

DisGeNet 

Gene-based 

DisGeNet 

Variant-

based 

Standard 

dataset GO-

based 

Human-rated 

N = 1638 DD pairs N = 187 DD pairs 

MORE [32] 0.811 0.220 0.609 0.813 

Integrated Disease Vector 

Representation (Literature-Based 

Positive, Negative & Concept-Based DDA) 

0.816 0.225 0.624 0.818 

Enhanced Literature-Based & Concept-

Based Joint Embedding Model for 

Disease Vector Representation (Vector-

Similarity Fusion with Integration) 

0.822 0.227 0.626 0.821 
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Table 11 summarizes the results of correlation of DDA scores obtained by different methods 
across various aspects of datasets. The DDA scores derived using only literature-based disease 
representation, shows better correlation than other literature-based method for DDA quantification in 
case of Gene-based, GO-based and human-rated scores. The reason may be that considering different 
context types in which DD pairs occur has a major influence on DDA scores as the additional features 
during the sentence representation learning can lead to better classified contexts. While, the correlation 
result on Variant-based dataset, is found to be less as the PubMed abstracts taken may not contain 
sentences that reveal much about variant related information or only limited contexts since we consider 
only disease mentioned sentences. 

The DDA scores derived using only concept-based representation, found to have better correlation 
on all aspects of the datasets with only a slightly higher on variant-based. The proposed ontology-
based method tries to embed a narrow information of concepts in ontology rather than generic concepts. 
This is achieved by controlling the contribution of ancestors on DDA in addition to varying the effect 
of different taxonomic relationships in ontology. Moreover, we select ancestors with respect to DDA 
rather than independently with respect to each of the diseases. All these has a major positive effect on 
DDA scores in different aspects. 

On evaluation with the integrated approaches, the proposed method outperforms well compared 
to other baseline methods on all aspects of datasets. Integrating the enhanced literature-based 
contextual relations with enriched semantic relationships gives a broader coverage of relationships that 
might cover various influential factors affecting DDA. This basically includes indirect relationship 
information that can jointly eliminate false positives. Hence, the proposed work has shown promising 
results even for different aspects of DDA. 

5.4. Implementation 

The configurations of the machine include Intel(R) Xenon(R) 3.60 GHz (GPU), 64-bit OS 
(system) and 64 GB RAM (memory). Our system uses Python to implement the models. For literature-
based DDA classification as discussed in Section 5.1.1, Table 12 shows the time taken by the baseline 
models and the proposed model for training and prediction tasks. On observation, we found that CNN 
models take less training time compared with other models since it involves less parameters calculation. 
However, LC-CNN and the proposed ESEC-CNN models, take almost equal time since only additional 
features have been added in the input sentence representation in ESEC-CNN model.  

For concept-based DDA representation as discussed in Section 5.2.4, the proposed ontology-
based joint multi-source embedding representation takes on an average of 22 seconds to derive DDA 
representation which is higher compared to other models. This arises from calculating different 
ancestors’ information as discussed in earlier sections such as level weight, attention weights as well 
as the various ontological relationships to generate final representation of DDA. Other concept-based 
base-line models such as Cui2vec [20], Retrofitted concept vector representation [33] takes less time 
than MMORE [86] and the proposed model, as the former does not consider the deeper ancestors’ 
information and ontological relationships. Compared with MMORE, the proposed model takes much 
more time since additional computation of ancestorial level weights and ontological relationships 
effect are involved. Though the proposed model, takes some time to obtain DDA representation, it 
is still able to produce quality embedding whose effectiveness is proved by the correlated results 
in Table 10. 
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Table 12. Comparison of computation time with base-line models. 

Literature-

based DDA 

sentence 

classification 

models  

LSTM [21] 
BiLSTM 

[89] 

CNN 

[90] 
BERT [91] 

BioBERT 

[92] 

LC-CNN 

[17] 

ESEC-

CNN** 

Training time 

per epoch (in 

seconds) 

240s 237s 184s 262s 270s 196s 200s 

Concept-

based DDA 

representation 

Retrofitted 

concept 

vector 

representation 

[33] 

Cui2vec 

[20] 

MMORE 

[86] 

Ontology-based 

joint multi-source 

association 

representation 

N/A N/A N/A 

Average 

seconds to 

generate 

concept-based 

DDA 

representation 

15s 16s 19s 22s N/A N/A N/A 

N/A-represents not applicable 

5.5. Biological analysis 

The significance of DDA scores obtained by the proposed framework is analysed in biological 
aspects: listing top 20 associated disease-disease pairs with normalized scores in Table 13, disease-
wise most associated diseases in Table 13, top 5 category-wise associations and also the top 10 
associated diseases with corresponding categories for a given disease. 

For a given disease, Table 14 shows the most associated disease pairs comparatively to others. 
The performance of disease representation in DDA quantification is further validated by disease 

categories, where the diseases are classified according to top 14-level DO categories such as “disease 
of cellular proliferation”, “nervous system disease”, “cardiovascular system disease”, 
“musculoskeletal system disease”, “endocrine system disease” and so on [72]. The strength of 
association between disease categories is measured by averaging the normalized DDA scores between 
disease categories. The disease category pairs are ranked based on the normalized score. 

We find that disease associated within same category have high average association score than 
with diseases of other categories as shown in Table 15. On observation, diseases in “nervous system 
disease” category have relatively higher association scores across all other disease categories. On the 
other hand, we find that average association scores of diseases in “disease by infectious agent”, 
“endocrine system disease”, “urinary system disease” have lower association scores with all other 
categories compared to diseases within itself. In case of “nervous system disease” category, is 
comparatively higher within and with “cardiovascular system disease” and “musculoskeletal system 
disease”. While the average association score of diseases in  “disease of cellular proliferation”, are far 
lower with diseases in “endocrine system disease” and “cardiovascular system disease” than for other 
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categories. 

Table 13. Top 20 associated disease pairs ranked by normalized DDA scores. 

Disease 1  Disease 2 Association score 

amyotrophic lateral sclerosis motor neuron disease 0.999998 

Hypertensive retinopathy Vascular disease 0.096729 

cardiovascular disease intrinsic asthma 0.043286 

autosomal dominant polycystic 

kidney disease 

autosomal dominant polycystic kidney 

disease 0.033808 

myopathy Sjogren's syndrome 0.022195 

congenital muscular dystrophy muscular dystrophy 0.010661 

cerebral folate receptor alpha 

deficiency Down syndrome 0.007642 

muscular dystrophy myotonic dystrophy type2 0.006518 

Alzheimer's disease Moyamoya disease 0.004409 

migraine without aura Fibromyalgia 0.003855 

diabetes mellitus diabetic neuropathy 0.003613 

diabetes mellitus Hypoglycemia 0.003495 

acute myeloid leukemia acute monocytic leukemia 0.003449 

lepromatous leprosy Leprosy 0.002793 

marasmus anorexia nervosa 0.002623 

lymphoblastic leukemia lung disease 0.002265 

cystic fibrosis acute pancreatitis 0.002053 

acute monocytic leukemia acute leukemia 0.001959 

Azoospermia oligospermia 0.001876 

acute myeloid leukemia acute leukemia 0.001875 

Table 14. Disease-wise most associated diseases. 

Disease Most associated diseases 

amyotrophic lateral sclerosis Motor neuron disease, lateral sclerosis 

motor neuron disease Motor neuron disease, cardiovascular disease 

Hypertensive retinopathy Vascular disease 

Vascular disease Hypertensive retinopathy, cardiovascular disease 

Intrinsic asthma Cardiovascular disease, lung disease 

autosomal dominant polycystic kidney disease autosomal recessive polycystic kidney disease 

Myopathy Sjogren's syndrome 

Sjogren's syndrome Myopathy, systemic scleroderma, Behcet's 

disease, systemic lupus erythematosus 
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Table 15. Top 5 associated category pairs ranked by average of normalized DDA scores 
between intra and inter disease categories. 

DO Disease Category 
Top 5 associated DO Disease 
Categories 

Normalized average score of 
disease pairs category-wise 

Nervous system disease 

Nervous system disease 0.0223 

Cardiovascular system disease 0.0221 

Musculoskeletal system disease 0.0200 

Physical disorder 0.0085 

Disease of metabolism 0.0025 

Physical disorder 

Physical disorder 0.014 

Nervous system disease 0.0085 

Disease of metabolism 0.0052 

Disease of cellular proliferation 0.0038 

Endocrine system disease 0.00056 

Disease of cellular 
proliferation 

Disease of cellular proliferation 0.00400 

Respiratory system disease 0.00382 

Physical disorder 0.00380 

Endocrine system disease 0.000620 

Cardiovascular system disease 0.000621 

Urinary system disease 

Urinary system disease 0.00109 

Disease of cellular proliferation 0.00062 

Endocrine system disease 0.00059 

Gastrointestinal system disease 0.00054 

Disease by infectious agent 0.00048 

Endocrine system disease 

Endocrine system disease 0.000920 

Disease of cellular proliferation 0.000626 

Urinary system disease 0.000596 

Musculoskeletal system disease 0.000580 

Cardiovascular system disease 0.000564 

Disease by infectious 
agent 

Disease by infectious agent 0.00072 

Endocrine system disease 0.000486 

Nervous system disease 0.000485 

Respiratory system disease 0.000482 

Gastrointestinal system disease 0.000475 

In addition, we have also shown the category-wise top 10 associated disease pairs for “Diabetes 
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mellitus” of “endocrine system disease” and “cardiovascular disease” of “Cardiovascular system 
disease” in table 16. 

Table 16. Top 10 associated diseases category-wise ranked by normalized DDA scores. 

Disease with category 
Top 10 associated disease 

pairs 

Category of associated 

disease pair 

Association 

score 

Diabetes mellitus 

Endocrine system disease 

diabetic neuropathy endocrine system disease 0.003613 

hypoglycaemia endocrine system disease 0.003495 

acute myocardial 

infarction 
cardiovascular system disease 0.000944 

diabetic retinopathy nervous system disease 0.000938 

stomach cancer 
disease of cellular 

proliferations 
0.000918 

kidney failure urinary system disease 0.000728 

Hypothyroidism endocrine system disease 0.000649 

disease of metabolism disease of metabolism 0.000627 

autoimmune disease 
musculoskeletal system 

disease 
0.000603 

brain cancer 
disease of cellular 

proliferations 
0.000567 

Cardiovascular disease 

Cardiovascular system 

disease 

intrinsic asthma respiratory system disease 0.043286 

nephrotic syndrome urinary system disease 0.001028 

vascular disease cardiovascular system disease 0.000399 

disease by infectious agent parasetic infectious disease 0.000376 

vein disease cardiovascular system disease 0.000359 

generalized atherosclerosis cardiovascular system disease 0.000353 

Moyamoya disease cardiovascular system disease 0.000351 

peripheral artery disease cardiovascular sys. disease 0.000347 

Epilepsy nervous system disease 0.000331 

intermediate coronary 

syndrome 
cardiovascular system disease 0.000320 

6. Conclusions 

Representing a richer quality of disease vectors for a qualitative and quantitative measurement of 
DDA strength provides valuable information to the clinicians for better healthcare planning. The 
existing methods of integrated vector representation failed to consider various sentence contexts from 
literature and semantic embedding of concepts along with different ontological relationship 
connections from ontology for better quantification of biomedical associations. To address this issue, 
in this paper, we presented an enhanced and integrated DDA framework incorporating various types 
of sentence contexts such as positive, negative and null from literature with semantically embedded 
concepts and various ontological relationship connections affecting associations from ontology for a 
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richer quality of disease vector representation. The enriched disease vectors achieved well correlated 
DDA scores especially on gene-based when evaluated in different aspects of datasets compared to 
other baseline literature-based, concept-based and integrated representations. Moreover, we also 
shown the top associated disease pairs and category-pairs. Any biomedical association quantification 
using biomedical entities representations could greatly be benefited from a richer vector representation 
using the enhanced and integrated framework. In future, the integrated representation can also be 
carried out for determining the strength of other biomedical associations such as disease-gene, gene-
gene, disease-symptoms etc. 
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