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Abstract: Non-consumptive effects such as fear of depredation, can strongly influence predator-prey
dynamics. There are several ecological and social motivations for these effects in competitive systems
as well. In this work we consider the classic two species ODE and PDE Lotka-Volterra competition
models, where one of the competitors is “fearful” of the other. We find that the presence of fear can
have several interesting dynamical effects on the classical competitive scenarios. Notably, for fear
levels in certain regimes, we show novel bi-stability dynamics. Furthermore, in the spatially explicit
setting, the effects of several spatially heterogeneous fear functions are investigated. In particular, we
show that under certain integral restrictions on the fear function, a weak competition type situation can
change to competitive exclusion. Applications of these results to ecological as well as sociopolitical
settings are discussed, that connect to the “landscape of fear” (LOF) concept in ecology.

Keywords: reaction-diffusion system; Lotka-Volterra competition model; fear effect; bifurcation
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1. Introduction

Fear, is defined as, “An unpleasant emotion caused by the belief that someone or something is
dangerous” [1].

It is a complex emotion, that is critical as a safety measure, and can trigger the “fight or flight”
response [2] - in particular it can change the way one acts, even when there is no threat present [3].
In predator-prey systems, this is most naturally observed among prey, due to their perceived threat of
depredation [4]. This perception can lead to non-consumptive effects or trait-mediated interactions,
which are behavioral, morphological or physiological changes in prey phenotype, due to this threat [4,
5]. Such effects are known to strongly influence predator-prey dynamics [6]. From a mathematical
viewpoint, the effects of fear in predator-prey systems has been intensely investigated since the seminal
work of Brown et al. [7], where optimal foraging theory is extended to consider a game theoretic setup,
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played out by predator and prey, exhibiting stealth and fear, in which an animal follows a map or a
“landscape of fear” (LOF), which describes its predation risk while it navigates the physical landscape.
In recent work, Wang et al. [8], model fear of depredation, as a (predator) density dependent effect, that
negatively effects the prey population. In essence, the prey’s growth rate is modeled as a monotonically
decreasing function of predator density. Dynamically, a key finding in [8] is that under the parametric
restrictions of a Hopf bifurcation, an increase in the fear parameter (and prey’s birth rate parameter)
can alter the direction of a Hopf bifurcation from supercritical to subcritical. Thus, fear enables both
supercritical and subcritical Hopf bifurcations, contrary to only the supercritical bifurcations found
in classical predator-prey systems. In essence, the fear effect can change the fundamental cyclical
patterns of predator-prey dynamics, leading to large scale ecological consequences [9]. Note, age/stage
structure in the model can also have influence on the dynamics. For example, in [10] anti-predator
sensitivity, as a consequence of fear, is introduced. Higher values of anti-predator sensitivity may
cause predator extinction, thus adult prey persistence. However, lower values lead to co-existence,
thus bi-stability is observed.

These results have since initiated a host of activities in diverse ecological scenarios such as when
refuges are present [11,12] or when the prey has tendencies to avoid predators [13]. Predator avoidance
could cause its own cascade of dynamics, such as bats avoiding cave predators could fall prey to diurnal
birds [14], or the green anolis lizard avoiding curly predatory tailed lizards could in turn introduce
refuge competition [15]. A predator’s response could also be influenced by interference pressures, for
instance, via a Beddington-DeAngelis functional response [16]. Various works have considered the
fear effect in case of group defense by the prey [10, 17]. It has been investigated in the context of
cooperative and competitive systems within the larger predator-prey context. These include the fear
effect when predators are cooperating, as earlier mentioned [14, 18] in the hunting process, or when
they are hunting for competing prey [19]. These effects have been investigated in the three and multi-
species settings as well [20,21] where fear can damp population explosions [22]. Various authors have
considered the fear effect in a stochastic setting [23] as well as a spatially explicit setting, in the context
of taxis type movements, as well as pattern formation [24,25]. It can also lead to chaotic dynamics [26].
However, the effect of fear has been far less investigated in classical monotone systems, such as purely
cooperative or competitive two species systems - that are outside the predator-prey setting.

Competition among two species, typically modeled via the Lotka–Volterra competition model and
its variants have been intensely investigated in the last few decades. These models take into account
growth and inter/intraspecific competition [27], and predict well-observed states in biology of
co-existence, competitive exclusion of one competitor, and bi-stability, and find diverse applications
in ecology and invasion science [28–32]. There are several ecological motivations for competitors
being fearful of each other. This is perhaps most naturally seen to occur with intraguild predation - a
widespread phenomenon in many food webs, where competitors will kill and consume each
other [33]. Recent evidence of non-consumptive effects exerted by intraguild predator mites
(Blattisocius dentriticus) on their competitor (Neoseiulus cucumeris) show this can be an important
factor in determining food web dynamics in biological control [34, 35]. However, there is strong
evidence for fear in purely competitive two species systems without predatory effects. Barred owls
(Strix varia) are a species of owl, native to eastern North America. They have expanded their range
westward over the last century and are considered invasive in western North America. Currently, their
range overlaps with the spotted owl (Strix occidentalis), which is native to the north west and western
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North America. This has resulted in intense competition between the two species [36]. Barred owls
exert a strong negative influence on spotted owls, threatening their possible competitive
exclusion [37]. Field observations report frequent barred owl attacks on spotted owls, and even on
surveyors imitating spotted owl calls [38]. There is also evidence of barred owls aggressively chasing
spotted owls out of shared habitat - but not the opposite [39]. There is also other very recent empirical
evidence to support such investigations. In [15] a series of 6 year long experiments are conducted in
various Caribbean islands that aim to refute the theory of adaptive predation - which suggests that
predators reduce dominant competitors, thus preventing competitive exclusion and enhancing
coexistence in food webs. However, non-consumptive effects such as fear of depredation can have
strongly influencing effects [15, 40–42]. [15] considers a series of experiments with two competing
species of lizards, brown anolis (Anolis sagrei) that dwells on tree trunks, and green anolis (Anolis
smaragdinus) that dwells on tree canopies. The experiments show that typically these species co-exist
- due to a clear niche separation. However, the introduction of an intraguild predator, the curly tailed
lizard (Leiocephalus carinatus) that dwells on the ground, causes (non-consumptive) fear driven
effects. The brown anolis being fearful of possible depredation (as the lower half of tree trunks are
within striking distance of the curly tailed lizard) moves upwards into the canopy, which is occupied
by the green anolis. Herein interspecific competition intensifies leading to a loss of co-existence.
However, what is most crucial in this study, is that the fecal analysis of the curly tail lizard shows that
its diet included the brown anolis, in only 2 out of 51 samples examined. Thus the new dispersal
pattern of the brown anolis and the “refuge competition” is driven strongly by a non-consumptive fear
effect and not a consumptive one. Thus the brown anolis and the curly tail lizards are really
competitors, as they have a strong overlap in dietary niche for several insects. However, the brown
anolis is clearly fearful of the curly tailed lizard [15]. There is further evidence of non consumptive
effects such as fear among competing aphid species, as well as competitors that feed on
aphids [43, 44]. Such interplay between competition and predation has been investigated [45], where
it is proposed that in many ecological processes, competition and predation are interlinked, and
depending on niche overlap, one of them will dominate to drive the underlying dynamics. Such
evidence clearly motivates considering fear dynamics into competitive two species model where one
of the competitors is fearful of the other. Furthermore, one could look at more complex settings as
well, consisting of several interacting predators and prey, across several trophic levels [46].

There are also several socio-economic-political settings, where pure competitors may be fearful of
each other. Small/new businesses (as weaker competitors) may be fearful of large businesses (that are
stronger/dominant competitors), due to their already large market share [47]. But large business may
also be fearful of small local businesses, due to their familiarity with local nuances, that may yield
competitive advantage at a small local scale [48] - Thus there could be strong spatial heterogeneity
associated to the way in which competitors are fearful of each other. Fear is also conceivable among
two competing political parties, where the weaker party on a national scale, may have a stronger voter
bank at a regional scale [49] - This again is a clear example of spatial heterogeneity, in that a weaker
competitor overall is dominant or exerts fear on a stronger competitor at a local/regional scale. Or
perhaps two warring drug cartels, where the weaker cartel has certain local/territorial
strongholds [50, 51] - within which they might be able to induce fear among the stronger cartel [50].
Such phenomenon becomes even more interesting in the spatially explicit case where this fear could
be heterogeneous in the spatial domain of interest. This connects back to the LOF concept, where the
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fear function is essentially the map that describes how the fear levels change as a species disperses
over a physical landscape.

2. Model formulation

2.1. Recap of basic competition model

Consider the classical two species Lotka-Volterra ODE competition model,
du
dt

= u(a1 − b1u − c1v),

dv
dt

= v(a2 − b2v − c2u),
(2.1)

where u and v are the population densities of two competing species, a1 and a2 are the intrinsic (per
capita) growth rates, b1 and b2 are the intraspecific competition rates, c1 and c2 are the interspecific
competition rates. All parameters considered are positive. The dynamics of this system are well
studied [52]. We recap these briefly,

• E0 = (0, 0) is always unstable.

• Eu = (a1
b1
, 0) is globally asymptotically stable if

a1

a2
> max

{
b1

c2
,

c1

b2

}
. Herein u is said to

competitively exclude v.

• Ev = (0, a2
b2

) is globally asymptotically stable if
a1

a2
< min

{
b1

c2
,

c1

b2

}
. Herein v is said to

competitively exclude u.

• E∗ =
(

a1b2−a2c1
b1b2−c1c2

, a2b1−a1c2
b1b2−c1c2

)
exists when b1b2 − c1c2 , 0. The positivity of the equilibrium holds if

c2
b1
< a2

a1
< b2

c1
and is globally asymptotically stable if b1b2 − c1c2 > 0. This is said to be the case of

weak competition.

• If b1b2 − c1c2 < 0, then E∗ =
(

a1b2−a2c1
b1b2−c1c2

, a2b1−a1c2
b1b2−c1c2

)
is unstable as a saddle. In this setting, one has

initial condition dependent attraction to either Eu(a1
b1
, 0) or Ev(0, a2

b2
). This is the case of strong

competition.

We proceed by considering the effects of fear on the classical model (2.1), when one of the
competitors is fearful of the other.

2.2. The fear model for two competitors

Species diffusion is ubiquitous in spatial ecology [53]. Species disperse to find mates, food and
shelter [54]. Such movement is modeled often via reaction diffusion systems [53]. The spatially
explicit Lotka-Volterra model, particularly in the case of heterogeneity in spatial resources has been
intensely investigated, [27, 55–64]. Herein, we consider the spatially explicit version of the Lotka-
Volterra competition model for two competing species u, v, where the competitor v is fearful of u. We
model the fear effect as in [8], where the growth rate of the fearful competitor v, is not constant but
rather density dependent. Essentially, the growth rate is decreased by a factor ≈ 1

1+ku , where k ≥ 0 is

Mathematical Biosciences and Engineering Volume 20, Issue 5, 8814–8855.



8818

a fear coefficient. Thus a higher density of the competitor u increases the fear in v. When k = 0, the
assumption is there is no fear and one recovers the classical spatially explicit model. If fear is present,
we obtain the following spatially explicit model,

ut = d1∆u + a1u − b1u2 − c1uv, x ∈ Ω,

vt = d2∆v +
a2v

1 + ku
− b2v2 − c2uv, x ∈ Ω,

∂u
∂ν
=
∂v
∂ν
= 0, on ∂Ω,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0.

(2.2)

Here u(x, t), v(x, t) are the densities of two competing species, where v is also fearful of u. The species
diffuse in a bounded domain Ω ⊂ Rn, with dispersal speeds d1 and d2, respectively. We prescribe
Neumann boundary conditions, modeling the effect that the species do not immigrate or emigrate from
the domain Ω. Also the initial data is chosen to be positive. We now proceed to study the dynamics
of the above model, when various forms of fear are considered. We divide the dynamical analysis into
two components, d1 = d2 = 0, the ODE case discussed next, after which we consider the PDE case
d1 > 0, d2 > 0, where we allow a spatially heterogenous fear function as well, so k = k(x).

3. The ODE case

3.1. The case of v fearing u

We consider the dynamics of (2.2), when d1 = d2 = 0, and we are in a bonafide ODE setting, where
the competitor v is fearful of u,

du
dt
= a1u − b1u2 − c1uv,

dv
dt
=

a2v
1 + ku

− b2v2 − c2uv.
(3.1)

3.1.1. Existence

The nullclines associated with the system (3.1) are

u(a1 − b1u − c1v) = 0 and v
( a2

1 + ku
− b2v − c2u

)
.

Hence, the boundary equilibrium points are obtained by substituting u = 0 and v = 0 in the above
equations of the nullclines, respectively. Denote the boundary equilibrium points as Ê1 = (0, 0), Ê2 =

( a1
b1
, 0) and Ê3 = (0, a2

b2
).

For the interior equilibrium, substitute u∗ = a1
b1
−

c1
b1

v∗ in the second nullcline equation, i.e.,

a2

1 + k
(

a1
b1
−

c1
b1

v∗
) − b2v∗ − c2

(a1

b1
−

c1

b1
v∗

)
= 0.
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On simplification, we have that v∗ solves a quadratic equation of the form A1(v∗)2 + B1v∗ + C1 = 0,
where

A1 = c1k(b2b1 − c1c2),
B1 = b1(c1c2 − b2b1) − a1k(b2b1 − 2c1c2),
C1 = b1(a2b1 − a1c2) − a2

1c2k.

(3.2)

Let

v∗1,2 =
−B1 ±

√
B2

1 − 4A1C1

2A1
(3.3)

be the two roots of above quadratic equation. Define discriminant as ∆1 = B2
1−4A1C1. WLOG assume

v∗1 < v∗2.Moreover, consider the following parametric restriction

b1(a1c2 − a2b1) + a2
1c2k <

[
(b2b1 − c1c2)(2a1k − b1) − a1kc1c2

]a1

c1
. (3.4)

We can prove the existence of a positive equilibrium point Ê4 with the choice of specific parameters.
Let us use Descartes’s rule of sign to establish some sufficient conditions for the existence of one or
two positive equilibrium points.

Two positive equilibrium points: Under the assumption A1 > 0, B1 < 0,C1 > 0, i.e., b2b1 > 2c1c2 >

c1c2, k <
1

a2
1c2

(
b2

1a2 − a1c2b1

)
and ∆1 > 0, we have two positive roots. In order to claim that these two

roots correspond to two positive interior equilibria, we need some extra assumption given by:

v∗1 < v∗2 :=
−B1 ±

√
B2

1 − 4A1C1

2A1
<

a1

c1
=⇒ −C1 < (A1

a1

c1
+ B1)

a1

c1
.

Hence, if b1(a1c2 − a2b1)+ a2
1c2k < [(b2b1 − c1c2)(2a1k− b1)− a1kc1c2]a1

c1
, we have two positive interior

equilibrium points Ê4 = (u∗i , v
∗
i ) for i = 1, 2.

Remark 1. The existence of two positive internal equilibrium points can also be observed under the
assumption A1 > 0, B1 < 0,C1 > 0, and ∆1 > 0, which ensures that

v∗2 =
−B1 +

√
∆1

2A1
< −

B1

A1
<

a1

c1
,

and there must be two positive internal equilibria. Similarly, under the assumption A1 < 0, B1 > 0,C1 <

0, and ∆1 > 0, we have the existence of two positive internal equilibria.

One positive equilibrium point: Under the assumption A1 > 0, B1 < 0, i.e., b2b1 > 2c1c2 > c1c2, we

have at least one positive root of the quadratic equation. If C1 < 0, which is k >
1

a2
1c2

(
b2

1a2 − a1c2b1

)
along with (3.4) gives existence of one positive equilibrium point Ê4 = (u∗, v∗). Moreover, if C1 > 0,

which is k <
1

a2
1c2

(
b2

1a2 − a1c2b1

)
, ∆1 > 0, and v∗1 <

a1
c1

and v∗2 >
a1
c1

, then we have existence of one

positive equilibrium point Ê4 = (u∗, v∗).
We formulate all these restrictions as an existence theorem:
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Theorem 3.1. For the given ODE system (3.1), we always have three boundary equilibrium points,
namely Ê1 := (0, 0), Ê2 := ( a1

b1
, 0) and Ê3 := (0, a2

b2
). For the case of two positive interior equilibrium

points Ê4 =
(
u∗i , v

∗
i

)
i=1,2

, we have the following parametric restrictions:

b2b1 >2c1c2 > c1c2, k <
1

a2
1c2

[
b2

1a2 − a1c2b1

]
, ∆1 > 0, & (3.4) holds true.

Lastly, for the case of one positive interior equilibrium point Ê4 = (u∗, v∗), we have either one of the
following choices of parametric restrictions:

1) b2b1 > 2c1c2 > c1c2, k >
1

a2
1c2

(
b2

1a2 − a1c2b1

)
and (3.4) holds true.

2) b2b1 > 2c1c2 > c1c2, k <
1

a2
1c2

(
b2

1a2 − a1c2b1

)
, ∆1 > 0 and v∗1 <

a1
c1

and v∗2 >
a1
c1

.

3) b2b1 < c1c2 < 2c1c2, k >
1

a2
1c2

(
b2

1a2 − a1c2b1

)
, ∆1 > 0 and v∗1 <

a1
c1

and v∗2 >
a1
c1

,

where v∗i are the roots of the quadratic equation defined as (3.3).

We now provide several lemmas, so that we can compare the effect of fear to the classical
competition case.

Lemma 3.2. Consider the given ODE system (3.1), with k = 0, such that the system is in the weak

competition setting with b2b1 > 2c1c2. Then for a fear coefficient k such that k > kc =
1

a2
1c2

(
b2

1a2 −

a1c2b1

)
, (a1

b1
, 0) is globally asymptotically stable. That is, u will competitively exclude v.

Remark 2. For the existence of one positive interior equilibrium point for the given system (3.1), we
have either one of the following choices of parametric restrictions: For weak competition,

b2b1 > 2c1c2 > c1c2 &
c2

b1
<

a2

a1
<

b2

c1
, (3.5)

and for strong competition,

b2b1 < c1c2 < 2c1c2 &
c2

b1
>

a2

a1
>

b2

c1
. (3.6)

3.1.2. Linear stability analysis

We next perform stability analysis on the equilibrium points of system (3.1). The Jacobian matrix
of system (3.1) is given by

J(u∗, v∗) =

 a1 − 2b1u∗ − c1v∗ −c1u∗

−
a2kv∗

(ku∗ + 1)2 − c2v∗
a2

ku∗ + 1
− 2b2v∗ − c2u∗

 . (3.7)

We state the following lemmas:
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Lemma 3.3. Ê1 is unstable.

Proof. On evaluating (3.7) at Ê1, we have

J(Ê1) =
(

a1 0
0 a2

)
.

Being a triangular matrix, we know that the above matrix has two positive eigenvalues a1 and a2.
Hence, the equilibrium point Ê1 is unstable. □

Lemma 3.4. Ê2 is locally stable iff k >
a2b2

1 − c2a1b1

a2
1c2

.

Proof. We again evaluate (3.7) at Ê2 and obtain

J(Ê2) =


−a1 −

c1a1

b1

0
a2b1

b1 + ka1
−

c2a1

b1

 .
Being a triangular matrix, the above matrix has two eigenvalues, λ1 = −a1 and λ2 =

a2b1
b1+ka1

−
c2a1
b1

. As
λ1 is always negative, if we can show that λ2 is negative, we are done. We make the assumption that,

k >
a2b2

1 − c2a1b1

a2
1c2

⇐⇒ λ2 =
a2b1

b1 + ka1
−

c2a1

b1
< 0.

Therefore, the boundary equilibrium point Ê2 is locally stable. □

Local stability of Ê2 actually implies global stability, we can see this via a simple geometric
argument.

Lemma 3.5. Ê2 is globally stable if k > kc =
a2b2

1 − c2a1b1

a2
1c2

.

Proof. Consider the nullclines of u and v, where,

v =
1
c1

(a1 − b1u) & v =
1
b2

( a2

1 + ku
− c2u

)
.

In order to establish the global stability of Ê2, via the geometry of the nullclines, it suffices to show
that

a1 − b1u
c1

>
1
b2

( a2

1 + ku
− c2u

)
when u = a1

b1
, i.e., when k > a2b2

1−c2a1b1

a2
1c2

. Herein, the v-nullcline lies completely below the u-nullcline,
and via the convexity of the v-nullcline, it lies completely below the straight line connecting its v and u
intercepts - which lies completely below the u-nullcline. Now, via the standard theory of competition
and a comparison argument, where v is compared to the ṽ that is a solution to the straight line nullcline
connecting the v and u intercepts of the v-nullcline, we have the global stability of Ê2. □
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Figure 1. Phase plots showing dynamics under competition exclusion parametric restriction.
The orange curve is the u-nullcline and blue curve is the v-nullcline. Here, (u∗, 0) always
wins. Parameters used are a1 = 3, a2 = 1, b1 = 1, b2 = 1, c1 = 0.5, c2 = 0.5 and this choice
meets the parametric constraint of the Lemma 3.4.

Lemma 3.6. The equilibrium point Ê3 is locally stable iff a1b2 < c1a2.

Proof. Similar evaluation of (3.7) at Ê3 yields

J(Ê3) =


a1 −

c1a2

b2
0

−
ka2

2

b2
−

c2a2

b2
−a1

 .
Being a triangular matrix, the above matrix has two eigenvalues, λ1 = −a1 and λ2 = a1 −

c1a2

b2
. Under

the assumed parametric restriction,

a1b2 < c1a2 ⇐⇒ λ2 < 0.

Hence, the equilibrium point Ê3 is locally stable.
□

Remark 3. This is essentially the parametric restriction for the case when v excludes u, see Figure 4.
Thus under this parametric restriction, Ê3 is locally stable for all k, but globally stable only for certain
k values.

Lemma 3.7. The interior equilibrium Ê4 exists and is locally stable if 0 < k < 1
a2

(
b1b2
c1
− c2

)
.

Proof. On evaluating (3.7) again at Ê4, we have

J(Ê4) =

 −b1u∗ −c1u∗

−
ka2v∗

(1 + ku∗)2 − c2v∗ −b2v∗

 .
For the local stability of Ê4, it is enough to show that Tr(J(Ê4)) < 0 and det(J(Ê4)) > 0. Simple
computations yield

Tr(J(Ê4)) = −b1u∗ − b2v∗ < 0,
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and

det(J(Ê4)) = b1b2u∗v∗ − c1u∗
(

ka2v∗

(1 + ku∗)2 + c2v∗
)
= u∗v∗

{
b1b2 − c1

(
ka2

(1 + ku∗)2 + c2

) }
.

Note that
ka2 >

ka2

(1 + ku∗)2 .

Therefore, if k is chosen such that, 0 < k < 1
a2

(
b1b2
c1
− c2

)
, then,

b1b2 > c1(ka2 + c2) > c1

[ ka2

(1 + ku∗)2 + c2

]
=⇒ det(J(Ê4)) > 0,

and the result follows.
□

E1


E3


E4


E2


0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

u

v

(a) k = 10−3

E1


E3


E2


0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

u

v

(b) k = 0.3

Figure 2. Phase plots showing various dynamics under weak competition parametric
restriction. Here (u∗, v∗) is a sink and both (0, v∗) and (u∗, 0) are saddles in (A). In (B)
there is competition exclusion and (u∗, 0) wins. The orange curve is the u-nullcline and blue
curve is the v-nullcline. Parameters used are a1 = 1, a2 = 2, b1 = 1, b2 = 2, c1 = 0.3, c2 = 1.8
and this choice meets the parametric constraint of the Lemma 3.7.

Lemma 3.8. The interior equilibrium Ê4 exists and is a saddle if

b2b1

c1
− c2 <

ka2b2
1

(b1 + ka1)2 .

Proof. In order to claim that the interior equilibrium Ê4 is a saddle, it is enough to show that
Tr(J(Ê4)) < 0 and det(J(Ê4)) < 0.We have that

Tr(J(Ê4)) = −b1u∗ − b2v∗ < 0,

and

det(J(Ê4)) = b1b2u∗v∗ − c1u∗
(

ka2v∗

(1 + ku∗)2 + c2v∗
)
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= u∗v∗
{
b1b2 − c1

(
ka2

(1 + ku∗)2 + c2

) }
.

Under the assumption and density of reals, we have

b2b1

c1
− c2 <

ka2

(1 + ka1
b1

)2
<

ka2

(1 + ku∗)2 =⇒ det(J(Ê4)) < 0.

Hence, Ê4 is a saddle. □
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Figure 3. Phase diagrams showing dynamics under strong competition parametric
restriction. The orange curve is the u-nullcline, blue curve is the v-nullcline and
separatrix/stable manifold is in green. Here, (u∗, v∗) is saddle. Parameters used are a1 =

0.5, a2 = 2, b1 = 0.5, b2 = 0.8, c1 = 4, c2 = 4 and this choice meets the parametric constraint
of the Lemma 3.8.

Lemma 3.9. Consider the system (3.1). For any given k > 0 such that, there exist two positive interior
equilibria, a sink and a saddle.

Proof. Theorem 3.1 provides conditions under which two positive interior equilibria exists. Since
stability has to alternate by standard theory [65] for planar systems, one of the equilibrium is stable
while the other is unstable. Instability as a source is impossible due to the lack of periodic dynamics
in the system via Lemma 3.10. Thus the unstable equilibrium must be a saddle. This proves the
lemma. □

Lemma 3.10. Consider the ODE system (3.1). There do not exist any periodic orbits for the system,
for any values of the fear parameter k.

Proof. Consider the function ϕ(u, v) = 1
uv where u and v are both non-zero. Let,

F1(u, v) = a1u − b1u2 − c1uv,

F2(u, v) =
a2v

1 + ku
− b2v2 − c2uv.
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Then we have

∂(F1ϕ)
∂u

+
∂(F2ϕ)
∂v

=
∂

∂u

(
1
uv

(a1u − b1u2 − c1uv)
)
+

∂

∂v

(
1
uv

( a2v
1 + ku

− b2v2 − c2uv
))

= −
b1

v
−

b2

u
< 0.

The result follows by application of the Dulac criterion [65]. □

Corollary 1. Consider the ODE system (3.1), with the fear term modeled as
a2v

1 + kF(u)
, where F(u) ∈

C0,1. There do not exist any periodic orbits for the system, for any values of the fear parameter k.

Proof. The result follows via direct application of the Dulac function from Lemma 3.10. □
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Figure 4. Phase plot showing competition exclusion in (A) when fear is absent in both
competing species where (0, v∗) wins. In (B), we observe the occurrence of two positive
interior equilibria when k = 15. The orange curve is the u-nullcline, blue curve is the
v-nullcline and separatrix/stable manifold is in green. Parameters used are a1 = 1, a2 =

2, b1 = 2, b2 = 0.3, c1 = 0.3, c2 = 0.05 and this choice meets the parametric constraint of the
Lemma 3.9.

Remark 4. Some observations:

1) From Figure 4, we observe that when there is no fear, then (0, v∗) is globally stable. For a
sufficiently large level of fear in species v, a bi-stability situation is created. That is, for a certain
initial data, species u is completely excluded by v and initial data is attracted to the co-existence
state (See Figure 4).

2) If (0, v∗) is globally attracting, a much higher level of fear in species v (≈ 200) can change the
dynamics to a strong competition type case. However most data in this setting is attracted to
(u∗, v∗). For initial data (u0, v0) to be attracted to (0, v∗), we would need v0 ≫ 1, u0 ≪ 1.
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3) Lemma 3.10 shows the lack of periodic orbits in (3.1), which could be interpreted as the inability
of the fear factor to destabilize a steady state through a Hopf bifurcation to cyclical dynamics.
This result could be extended to a wider class of fear models if fear in the second competitor was
modeled as a2v

1+kF(u) , where F(u) was a general density dependent fear effect, not necessarily linear.
See Corollary 1 which shows non existence of periodic orbits. Thus the result can be extended to
a more general class of models than (3.1).

4) One could consider the case of u fearing v, but since the fear model is symmetric, most of the
results will be similar. Thus we do not consider this case in detail, rather relegate a few
technicalities to the appendix Section A.1, that rigorously show that the case of u fearing v and v
fearing u, are indeed models that are symmetric.

3.2. Bifurcation Analysis

A bifurcation is said to occur in a dynamical system when the behavior of solutions changes when
a parameter is varied. Bifurcation analysis is useful in understanding and measuring these qualitative
changes as the system switches from stable to unstable and vice-versa.

3.2.1. Saddle-node bifurcation

The following theorem is connected to the existence of a saddle-node bifurcation for the growth
rate a1 when there is no fear effect in competitor u.

Theorem 3.11. The ODE system (3.1) undergoes a saddle-node bifurcation around Ê4 at a1 = a∗1 =
2(ku∗+1)2(b1u∗(2b2v∗+c2u∗)+b2c1v∗2)−a2(2b1u∗(ku∗+1)+c1v∗(2ku∗+1))

(ku∗+1)((ku∗+1)(2b2v∗+c2u∗)−a2) and when c1 >
a2(2b2v∗+c2u∗)

u∗v∗(ka2+(1+ku∗)2c2) .

Proof. We shall use the Sotomayor’s Theorem [65] to show the occurrence of a saddle-node bifurcation
at a1 = a∗1. At a1 = a∗1, we can have det(J) = 0 and for c1 >

a2(2b2v∗+c2u∗)
u∗v∗(ka2+(1+ku∗)2c2) , Tr(J) < 0. This implies

that, det(J) admits a zero eigenvalue. Now let P = (p1, p2)T and Q = (q1, q2)T be the eigenvectors of J
and JT corresponding to the zero eigenvalue respectively.

We have that, P =
(
−B
A
, 1

)T

and Q =
(
−A
F
, 1

)T

where A = a1 − 2b1u∗ − c1v∗, B = −c1u∗, F = −
a2kv∗

(1 + ku∗)2 − c2v∗.

Now, let X = (X1, X2)T where

X1 = a1u − b1u2 − c1uv,

X2 =
a2v

1 + ku
− b2v2 − c2uv.

Furthermore,

QT Xa1(Ê4, a∗1) =
(
−A
F
, 1

)
(u∗, 0)T

= −
Au∗

F
, 0

and
QT [D2X(Ê4, a∗1)(P, P)] =(
−A
F
, 1

) (2B
A

(b1d f racBA + c1) ,
2a2kB

A (1 + ku∗)2

[
1 −

kv∗

1 + ku∗

]
−

BC2

A
− b2

)T

, 0.
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Therefore by the Sotomayor’s theorem system (3.1) undergoes a saddle-node bifurcation at a1 = a∗1
around Ê4. □

Remark 5. Consider the case of two interior equilibria, such as in Figure 4. Then decreasing the fear
coefficient k results in a saddle-node bifurcation, where the interior equilibrium (the saddle Ê4 and the
node Ê5) collide and disappear, resulting in the boundary equilibrium Ê2 = (u∗, 0) becoming globally
asymptotically stable. Thus in this setting, a certain critical level of “fear” can maintain a co-existence
state, but fear less than this level takes the system back to a competitive exclusion type scenario. This
transition occurs via a saddle-node bifurcation. This can be rigorously proven by adopting the methods
of Theorem 3.11, to the parameter k instead of using a1.

3.2.2. Transcritical bifurcation

Theorem 3.12. The model (3.1) undergoes a transcritical bifurcation around Ê3 when a1 = a∗1 =
c1a2

b2

and c1 ,
b1b2

ka2 + c2
.

Proof. The Jacobian matrix for system (3.1) evaluated at Ê3 with a∗1 =
c1a2

b2
is given as

J =

 0 0
−

a2

b2
(a2k + c2) −a2

 . (3.8)

The corresponding eigenvalues to the Jacobian of (3.1) in Eq (3.8) are λ1 = 0 and λ2 = −a2. Clearly,
there is a zero eigenvalue at a1 = a∗1 =

c1a2

b2
. Next, we let W = (w1,w2)T and Z = (z1, z2)T represent the

eigenvectors related to the zero eigenvalue of the matrices J and JT respectively.

We obtain W =

(
−

b2

ka2 + c2
, 1

)T

and Z = (1, 0)T . Now, let X = (X1, X2)T as already defined.

Presently, we validate the transversality conditions using the Sotomayor’s theorem [65]. Now,

ZT Xa1(Ê3, a∗1) = (1, 0) (0, 0)T = 0.

Also,

ZT
[
DXa1

(
Ê3, a∗1

)
W

]
=

(
1 0

) ( 1 0
0 0

) (
w1

w2

)
= −

b2

ka2 + c2
, 0

and

ZT
[
D2X

(
Ê3, a∗1

)
(W,W)

]
=

(
1 0

) 
2b2

ka2 + c2

(
c1 −

b1b2

ka2 + c2

)
2a2

2k2b2

(ka2 + c2)2


=

2b2

ka2 + c2

(
c1 −

b1b2

ka2 + c2

)
, 0.
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Therefore by the Sotomayor’s theorem system (3.1) experiences a transcritical bifurcation at a1 =

a∗1 =
c1a2

b2
around Ê3. □
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Figure 5. Bifurcation diagrams showing the impacts of the interspecific competition rate c1

and the fear effect parameter k. In (A) we observe the occurrence of a saddle-node bifurcation
at c1 = c∗1 = 1.8107. The parameters used are a2 = 3.6, b1 = 1, b2 = 1.8, a1 = 3, c2 = 0.5, k =
0.4. A transcritical bifurcation is also observed in (B) at k = k∗ = 0.3333. The parameters
are chosen as a2 = 1, a1 = 2, b1 = 1, b2 = 1 and c2 = 0.3, c1 = 1.8. (Note: TC=Transcritical
point, SN = Saddle-Node point, BP = Branch Point.)

(a) (b)

Figure 6. Bifurcation diagrams showing the impact of the fear parameter k with different
parameter sets. The parameters are chosen as a1 = 3, b1 = 1, c2 = 0.5, c1 = 1.8. In (A),
a2 = 1.8, b2 = 1 and a transcritical bifurcation is observed at k = k∗ = 0.0666. In (B),
a2 = 3.6, b2 = 1.8 and we observe the occurrence of a saddle-node at k = k∗ = 0.3966
and a transcritical bifurcation at k = k∗ = 0.4666. (Note: TC = Transcritical point, SN =
Saddle-Node point.)

Remark 6. Consider the case of one interior equilibrium, such as in Figure 2 - that is, we are in the
weak competition case, when there is no fear or k = 0. Now increasing the fear coefficient k, results in
a transcritical bifurcation, where the interior equilibrium (the node Ê4) and the boundary saddle
equilibrium Ê2 = (u∗, 0) collide, exchange stability, after which Ê4 now moves to the 4th quadrant,
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while Ê2 becomes globally asymptotically stable. Thus in this setting, a certain critical level of “fear”
can move the system from a weak competition setting of coexistence to a competitive exclusion type
scenario. This transition occurs via a transcritical bifurcation. This is rigorously proven in
Theorem 3.12.

Figure 7. Two parameter bifurcation diagram for parameters k and c1. We observe the
occurrence of a Saddle-Node Transcritical (SNTC) bifurcation and a Bogdanov-Takens (BT)
bifurcation. SNTC bifurcation occurs around k = 0.1945 and c1 = 1.5. BT bifurcation occurs
around k = 0.0323 and c1 = 2.2738. Parameters used are chosen from Figure 6(B).

Table 1. Effect of fear on classical competition dynamics.

Classical case k > 0
(i) CE (u∗, 0) Species v is competitively excluded for both small and large k.

(ii) CE (0, v∗) 1) If a2b2
1k

(b1+ka1)2 <
b1b2−c1c2

c1
, then species u is competitively excluded.

2) Possibility of one interior saddle equilibrium, with a large level of k.
3) Possibility of two positive interior equilibria, one sink and one saddle,
with an intermediate level of k.

(iii) weak competition 1) If k < kc =
b2b1−c2c1

a2c1
via Thm 3.1 yields co-existence.

2) If k > kc, then species v is competitively excluded.
(iv) strong competition Interior equilibrium always exists and is a saddle.

4. The PDE Case

In this section we consider the dynamics of (2.2), when d1, d2 > 0, and we are in a bonafide PDE
setting, where the competitor v is fearful of u.

4.1. Notations and preliminary observations

To prove global existence of solutions to (2.2), it suffices to derive uniform estimate on the Lp norms
of the R.H.S. of (2.2), for some p > n

2 . Classical theory will then yield global existence [66]. The usual
norms in spaces Lp(Ω), L∞(Ω) and C

(
Ω
)

are respectively denoted by
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∥u∥pp =
∫
Ω

|u(x)|p dx, ∥u∥∞ =ess sup
x∈Ω

|u(x)| . (4.1)

To this end, we use standard techniques [67]. We first recall classical results guaranteeing non-
negativity of solutions, local and global existence [67, 68]:

Lemma 4.1. Let us consider the following m × m - reaction diffusion system: for all i = 1, ...,m,

∂tui − di∆ui = fi(u1, ..., um) in R+ ×Ω, ∂νui = 0 on ∂Ω, ui(0) = ui0, (4.2)

where di ∈ (0,+∞), f = ( f1, ..., fm) : Rm → Rm is C1(Ω) and ui0 ∈ L∞(Ω). Then there exists a T > 0
and a unique classical solution of (4.2) on [0,T ). If T ∗ denotes the greatest of these T ′s, then[

sup
t∈[0,T ∗),1≤i≤m

||ui(t)||L∞(Ω) < +∞

]
=⇒ [T ∗ = +∞].

If the nonlinearity ( fi)1≤i≤m is moreover quasi-positive, which means

∀i = 1, ...,m, ∀u1, ..., um ≥ 0, fi(u1, ..., ui−1, 0, ui+1, ..., um) ≥ 0,

then
[∀i = 1, ...,m, ui0 ≥ 0] =⇒ [∀i = 1, ...,m, ∀t ∈ [0,T ∗), ui(t) ≥ 0].

Lemma 4.2. Using the same notations and hypotheses as in Lemma 4.1, suppose moreover that f has
at most polynomial growth and that there exists b ∈ Rm and a lower triangular invertible matrix P with
nonnegative entries such that

∀r ∈ [0,+∞)m, P f (r) ≤
[
1 +

m∑
i=1

ri

]
b.

Then, for u0 ∈ L∞(Ω,Rm
+), the system (4.2) has a strong global solution.

Under these assumptions, the following local existence result is well known, see D. Henry [66].

Theorem 4.3. The system (4.4) admits a unique, classical solution (u, v) on [0,Tmax] ×Ω. If Tmax < ∞

then
lim

t↗Tmax

{
∥u(t, .)∥∞ + ∥v(t, .)∥∞

}
= ∞, (4.3)

where Tmax denotes the eventual blow-up time in L∞(Ω).

The next result follows from the application of standard theory [69].

Theorem 4.4. Consider the reaction diffusion system (2.2). For spatially homogenous initial data
u0 ≡ c, v0 ≡ d, with c, d > 0, then the dynamics of (4.4) and its resulting kinetic (ODE) system, when
d1 = d2 = 0 in (2.2), are equivalent.
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4.2. Spatially heterogeneous fear

Our objective now is to consider the case of a fear function that may be heterogeneous in space.
A motivation for this comes from several ecological and sociological settings. For example it is very
common for prey to be highly fearful closer to a predators lair, but less fearful in a region of refuge [12],
or in regions of high density due to group defense [70]. Furthermore, a conceivably weaker drug cartel,
could have certain localized strongholds, within which they would be more feared by stronger groups.
To these ends, it is conceivable that the fear coefficient k is not a constant, but actually varies in the
spatial domain Ω, so k = k(x), which could take different forms depending on the application at hand.
This is also in line with the LOF concept [7]. Thus we consider the following spatially explicit version
of (3.1), with heterogeneous fear function k(x), resulting in the following reaction diffusion system,

ut = d1(u)xx + a1u − b1u2 − c1uv, x ∈ Ω,

vt = d2(v)xx +
a2v

1 + k(x)u
− b2v2 − c2uv, x ∈ Ω,

∂u
∂ν
=
∂v
∂ν
= 0, on ∂Ω.

u(x, 0) = u0(x) ≡ c > 0, v(x, 0) = v0(x) ≡ d > 0,

(4.4)

where Ω ⊂ Rn. We assume Neumann boundary conditions. Also, we prescribe spatially homogeneous
(flat) initial conditions u(x, 0) = u0(x) ≡ c > 0, v(x, 0) = v0(x) ≡ d > 0. Furthermore, we impose the
following restrictions on the fear function k(x),

(i) k(x) ∈ C1(Ω),
(ii) k(x) ≥ 0,
(iii) If k(x) ≡ 0 on Ω1 ⊂ Ω, then |Ω1| = 0.
(iv) If k(x) ≡ 0 on ∪n

i=1 Ωi ⊂ Ω, then Σn
i=1|Ωi| = 0.

(4.5)

Remark 7. If k(x) ≡ 0 on Ω1 ⊂ Ω, with |Ω1| > δ > 0, or k(x) ≡ 0 on ∪n
i=1Ωi ⊂ Ω, with Σn

i=1|Ωi| > δ > 0,
that is, on non-trivial parts of the domain, the analysis is notoriously difficult, as one now is dealing
with a degenerate problem. See [71,72] for results on this problem. This case is not in the scope of the
current manuscript.

Since the nonlinear right hand side of (4.4) is continuously differentiable on R+× R+, then for any
initial data in C

(
Ω
)

or Lp(Ω), p ∈ (1,+∞), it is standard to estimate the Lp−norms of the solutions and
thus deduce global existence. Standard theory will apply even in the case of a bonafide fear function
k(x), because due to our assumptions on the form of k, standard comparison arguments will apply [73].
Thus applying the classical methods above, via Theorem 4.3, and Lemmas 4.1 and 4.2, we can state
the following lemmas:

Lemma 4.5. Consider the reaction diffusion system (4.4), for k(x) such that the assumtions via (4.5)
hold. Then solutions to (4.4) are non-negative, as long as they initiate from positive initial conditions.

Lemma 4.6. Consider the reaction diffusion system (4.4). For k(x) such that the assumtions via (4.5)
hold, the solutions to (4.4) are classical, that is for (u0, v0) ∈ L∞(Ω), (u, v) ∈ C1(0,T ; C2(Ω)), ∀T.
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Our goal in this section is to investigate the dynamics of (4.4). Herein we will use the comparison
technique, and compare to the ODE cases of classical competition, or the constant fear function case,
where the dynamics are well known.

Remark 8. The analysis in this section are primarily focused on the choice of spatially homogenous
(flat) initial data.

We begin by defining the following systems of PDEs,

ut = d1(u)xx + a1u − b1u2
− c1uv,

vt = d2(v)xx + a2v − b2v2
− c2uv,

(4.6)

ût = d1(̂u)xx + a1û − b1û2 − c1û̂v,

v̂t = d2(̂v)xx +
a2̂v

1 + k̂̂u
− b2̂v2 − c2û̂v,

(4.7)

ũt = d1(̃u)xx + a1ũ − b1ũ2 − c1ũ̃v,

ṽt = d2(̃v)xx +
a2̃v

1 + k̃ũ
− b2̃v2 − c2ũ̃v,

(4.8)

ũt = d1(ũ)xx + a1ũ − b1ũ2 − c1ũ̃v,

ṽt = d2(ṽ)xx +
a2ṽ

1 + k̃ a1
b1

− b2ṽ2 − c2ũṽ, (4.9)

where

k̂ = min
x∈Ω

k(x), k̃ = max
x∈Ω

k(x). (4.10)

We assume Neumann boundary conditions for all of the reaction diffusion systems (4.6)–(4.9). Also
in each of the systems we prescribe spatially homogenous (flat) initial conditions u(x, 0) = u0(x) ≡
c > 0, v(x, 0) = v0(x) ≡ d > 0.

We now state the following lemma:

Lemma 4.7. Consider the reaction diffusion system (4.4), as well as the reaction diffusion systems
(4.6)–(4.9). Then the following point wise comparison holds,

ṽ ≤ ṽ ≤ v ≤ v̂ ≤ v.

Proof. Note via positivity of solutions to (4.4), (4.6)–(4.9), the definitions via (4.10), and the upper
bound on u, which is a solution to (4.4) of a1

b1
, (derived via comparison to the logistic equation), we

have
a2

1 + k̃a1
b1

≤
a2

1 + k̃u(x)
≤

a2

1 + k(x)u(x)
≤

a2

1 + k̂u(x)
≤ a2, ∀x ∈ Ω. (4.11)

Thus the result follows via standard comparison theory [73]. □
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4.3. The competitive exclusion case

Theorem 4.8. Consider the reaction diffusion system (4.4), for a fear function k(x), such that the
assumptions via (4.5) are met, and

k̃ >
a2b2

1 − c2a1b1

a2
1c2

and
a1

a2
> max

{b1

c2
,

c1

b2

}
.

Then the solution (u, v) to (4.4) converges uniformly to the spatially homogenous state ( a1
b1
, 0) as t → ∞.

Proof. From the classical theory of competition [52], we know the dynamics for (4.6), that is in the
competitive exclusion case, when

a1

a2
> max

{b1

c2
,

c1

b2

}
,

we have
(u, v)→

(a1

b1
, 0

)
.

Moreover, under the assumption

k̃ >
a2b2

1 − c2a1b1

a2
1c2

,

and making use of Lemma 3.5, along with the use of Theorem 4.4, we have (̃u, ṽ) →
(a1

b1
, 0

)
. Now

using Lemma 4.7 we have,

ṽ ≤ v ≤ v,

which entails,

lim
t→∞

(̃u, ṽ) ≤ lim
t→∞

(u, v) ≤ lim
t→∞

(u, v),

subsequently, (
a1

b1
, 0

)
≤ lim

t→∞
(u, v) ≤

(
a1

b1
, 0

)
.

Now using a squeezing argument, in the limit that t → ∞, we have uniform convergence of solutions
of (4.4), i.e.,

(u, v)→
(a1

b1
, 0

)
as t → ∞. □

Using the positivity of solutions the requirement on k(x) and so in turn on k̃, can be weakened to
derive a stronger result.

Theorem 4.9. Consider the reaction diffusion system (4.4), for a fear function k(x), such that the

assumptions via (4.5) are met, and
a1

a2
> max

{b1

c2
,

c1

b2

}
. Then the solution (u, v) to (4.4) converges

uniformly to the spatially homogeneous state ( a1
b1
, 0) as t → ∞.
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Proof. From the classical theory of competition [52], we know the dynamics for (4.6), that is in the
competitive exclusion case, when

a1

a2
> max

{b1

c2
,

c1

b2

}
,

we have
(u, v)→

(a1

b1
, 0

)
.

Now using Lemma 4.7, we have

v ≤ v.

Using the non negativity of solutions to (4.4) via Lemma 4.5, entails,

0 ≤ lim
t→∞

v ≤ lim
t→∞

(v) = 0,

subsequently,

lim
t→∞

(u, v)→
(
a1

b1
, 0

)
.

□

Theorem 4.10. Consider the reaction diffusion system (4.4), for a fear function k(x), such that the
assumptions via (4.5) are met, and

a2b2
1k̃

(b1 + k̃a1)2
<

b1b2 − c1c2

c1
and

a1

a2
< min

{b1

c2
,

c1

b2

}
.

Then the solution (u, v) to (4.4) converges uniformly to the spatially homogeneous state (0, a2
b2

) as t →
∞.

Proof. From the classical theory of competition [52], we know the dynamics for (4.6), that is in the
competitive exclusion case, when

a1

a2
< min

{b1

c2
,

c1

b2

}
,

we have
(u, v)→

(
0,

a2

b2

)
.

Consider the nullclines of (4.8). If

d
du

[a1 − b1u
c1

]
<

d
du

[ 1
b2

(
a2

1 + k̃u
− c2u

) ]
,

it follows via the geometry of the nullclines, that the v-nullcline remains above the u-nullcline, and
thus (̃u, ṽ)→

(
0,

a2

b2

)
. On simplification, and using the upper bound estimate for u, we have

a2b2
1k̃

(b1 + k̃a1)2
<

a2k̃
(1 + k̃u)2

<

(
b1b2 − c1c2

c1

)
.
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Now using Lemma 4.7 we have,

ṽ ≤ v ≤ v,

which entails,

lim
t→∞

(̃u, ṽ) ≤ lim
t→∞

(u, v) ≤ lim
t→∞

(u, v),

subsequently, (
0,

a2

b2

)
≤ lim

t→∞
(u, v) ≤

(
0,

a2

b2

)
.

Now using a squeezing argument, in the limit that t → ∞, we have uniform convergence of solutions
of (4.4), i.e.,

(u, v)→
(
0,

a2

b2

)
as t → ∞. □
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(a) k = 0.5 + sin2(x)
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(b) k = 10 sin2(100x)
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(c) k = 10x5
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(d) k = x5 + 5x − sin(x)

Figure 8. Numerical simulation of (4.4) for the case of competition exclusion in Ω = [0, 1].
The parameters are chosen as [u0, v0] = [0.1, 0.2], d1 = 1, d2 = 1, a1 = 3, a2 = 1, b1 = b2 = 1
and c1 = c2 = 0.5 and this choice meets the parametric constraint of the Theorem 4.8.
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(a) k = 4 sin2(x)
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(b) k = 5 + x2

Figure 9. Numerical simulation of (4.4) for the case of competition exclusion in Ω = [0, 1].
The parameters are chosen as [u0, v0] = [0.1, 0.2], d1 = 1, d2 = 1, a1 = 1, a2 = 2, b1 = 2, b2 =

1, c1 = 1 and c2 = 1 and this choice meets the parametric constraint of the Theorem 4.10.

4.4. The weak competition case

We state the following result:

Lemma 4.11. Consider the reaction diffusion system (4.4), for a fear function k(x), such that the
assumptions via (4.5) are met, with

k̃ >
a2b2

1 − c2a1b1

a2
1c2

and b1b2 > 2c1c2.

Then the solution (u, v) to (4.4) converges uniformly to the spatially homogeneous state (u∗, 0) as t →
∞.

Proof. Via Lemma 3.2, and the parametric restrictions assumed we have,

ṽ ≤ v ≤ v̂,

and the result follows via similar analysis as in Theorem 4.8. □

Lemma 4.12. Consider the reaction diffusion system (4.4), such that system is in the weak
competition case when k(x) ≡ 0. Then given 0 < ϵ ≪ 1, there exists a fear function kϵ(x), for which
the assumptions via (4.5) are met, such that the solution (u, v) to (4.4) with the fear function kϵ(x),
converges uniformly to a spatially homogeneous state (u∗, v∗) as t → ∞.

Proof. Given 0 < ϵ ≪ 1, we can always construct a kϵ , s.t kc − ϵ ≤ k̂ϵ , whereas k̃ϵ ≤ kc + ϵ. Thus via
Lemma 4.7 we have,

ṽ ≤ vϵ ≤ v̂.

Lemma 3.7 ensures we have (̃u, ṽ) → (u∗, v∗) and (̂u, v̂) → (u∗∗, v∗∗), where the spatially
homogeneous solutions may be different. Hence, via squeezing argument, we can take ϵ → 0, to yield
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the uniform convergence of solutions, i.e.,

lim
ϵ→0

lim
t→∞

(uϵ , vϵ)→ (u∗, v∗).

This proves the lemma. □
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(a) [u0, v0] = [1, 2]
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(b) [u0, v0] = [0.1, 0.2]
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(c) [u0, v0] = [0.1, 0.2]
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(d) [u0, v0] = [0.1, 0.2]

Figure 10. Numerical simulation of (4.4) for the case of weak-competition in Ω = [0, 1].
The parameters are chosen as d1 = 1, d2 = 1, a1 = 1, a2 = 2, b1 = 1, b2 = 2, c1 = 0.3 and
c2 = 1.8 and this choice meets the parametric constraint of the Conjecture 1.

The numerical simulations above motivate the following conjecture:

Conjecture 1. Consider the reaction diffusion system (4.4), for a fear function k(x), such that the
assumptions via (4.5) are met, with

k̃ <
1
a2

(
b1b2

c1
− c2

)
,

and the parameters follow (3.5) and Theorem 3.1, then the solution (u, v) to (4.4) converges uniformly
to the spatially homogenous state (u∗, v∗) as t → ∞.

Remark 9. We see via Lemma 3.5, and Lemma 3.7, that in the ODE case, if we are in the weak
competition setting without fear, then a critical amount of fear kc is both sufficient and necessarily
required to change the system’s dynamics to a competitive exclusion type scenario. In the PDE case,
where the fear function k(x) can be spatially heterogeneous, this requirement is certainly sufficient, as
seen via Theorem 4.13, but not necessary, in a point wise sense.
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This result is stated next:

Theorem 4.13. Consider the reaction diffusion system (4.4), with initial data u0(x) ≥ 1, s.t u ↗ u∗(u
increases to u∗), such that system is in the weak competition setting when k(x) ≡ 0. For a fear function
k(x), s.t the assumptions via (4.5) are met, the solution (u, v) converges uniformly to the spatially
homogeneous state ( a1

b1
, 0) as t → ∞, if the following condition holds,

C1

|Ω|

∫
Ω

1
1 + k(x)

dx <

 1

1 + kc

(
a1
b1

) , (4.12)

where kc is as defined in Lemma 3.5.

Proof. Consider (4.4), integrating the equation over Ω yields,

d
dt

∫
Ω

vdx

=

∫
Ω

(
a2v

1 + k(x)u
− b2v2 − c2uv

)
dx

≤

∫
Ω

(
a2v

1 + k(x)u0
− b2v2 − c2uv

)
dx

=
1

1 + k(x∗)u0

∫
Ω

a2vdx −
∫
Ω

(
b2v2 + c2uv

)
dx

≤
1

1 + k(x∗)

∫
Ω

a2vdx −
∫
Ω

(
b2v2 + c2uv

)
dx

≤

(
C1

∫
Ω

1
1 + k(x)

dx
) ∫
Ω

a2vdx −
∫
Ω

(
b2v2 + c2uv

)
dx

≤

 1
1 + kc

a1
b1

 ∫
Ω

a2vdx −
∫
Ω

(
b2v2 + c2uv

)
dx

≤

∫
Ω

 a2

1 + kc
a1
b1

v − b2v2 − c2uv
 dx.

(4.13)

This follows via the mean value theorem for integrals. We can now compare,

∫
Ω

vdx <
∫
Ω

ṽdx, (4.14)

where ṽ solves dṽ
dt =

a2

1+kc
a1
b1

ṽ − b2ṽ2 − c2uṽ. Thus using Theorem 4.4, Lemma 3.2 and the positivity of

solutions, this entails

0 ≤ lim
t→∞

∫
Ω

vdx ≤ lim
t→∞

∫
Ω

ṽdx = 0. (4.15)
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The bounds on v, standard Lebesgue convergence theorems, and squeezing argument entail,

∫
Ω

(lim
t→∞

v)dx→ 0, (4.16)

which implies the uniform convergence,

lim
t→∞

(u, v)→
(
a1

b1
, 0

)
.

□

Remark 10. The C1 in Theorem 4.13 is a pure constant, that will depend on the size of the domain Ω,
and the other problem parameters, but not on the initial data or the spatial variable x.

Remark 11. Clearly k(x) could be chosen such that it lies below kc for a portion of the domain,
and above kc on some portion of the domain - thus minx∈Ω k(x) does not lie uniformly above kc. Yet
via Theorem 4.13, we see that, one can change the system’s dynamics and bring it to a competitive
exclusion type scenario, from a coexistence situation.

The next result gives a lower estimate for the fear function k.

Lemma 4.14. Consider the fear function k(x) in Theorem 4.13, then we have,

∫
Ω

k(x)dx ≥ |Ω|

1 − 1
C1

 1

1 + kc

(
a1
b1

)
 .

Proof. We have that for any fear function k(x) satisfying (4.5),

1
1 + k(x)

> 1 − k(x) =⇒
∫
Ω

1
1 + k(x)

dx > |Ω| −
∫
Ω

k(x)dx. (4.17)

Now using Theorem 4.13 the result follows. □

4.5. The strong competition case

Theorem 4.15. Consider the reaction diffusion system (4.4), for a fear function k(x), such that the
assumptions via (4.5) are met, with b1b2 < c1c2. Then there exists sufficiently large positive initial
data [u0, v0] for which the solution (u, v) to (4.4) converges uniformly to the spatially homogenous
state (0, a2

b2
) as t → ∞, while there also exists sufficiently small positive initial data [u1, v1] for which

solution (u, v) to (4.4) converges uniformly to the spatially homogenous state (a1
b1
, 0) as t → ∞.

Proof. Consider the system (4.6). From the classical strong competition parametric restrictions, b1b2 <

c1c2 that are assumed, as well as Lemma 4.7, we can make use of standard competition theory and use
the stable manifold theorem, i.e., ∃Ws(E4) ∈ C1 separatrix, such that for initial data (u0, v0) chosen
above Ws(E4) the solution (u, v) → (0, v∗) and for initial data chosen below Ws(E4), (u, v) → (u∗, 0).
Here E4 is the interior saddle equilibrium to the kinetic (ODE) system for (4.6). Moreover, since
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a2

1 + k̃ a1
b1

≤ a2, and b1b2 < c1c2, we have that for (4.10) we still remain in the strong competition case,

and via standard theory again, W1
s (E∗4) ∈ C1 separatrix, such that for initial data (̂u0, v̂0) chosen above

W1
s (E∗4), the solution (ũ, ṽ) → (0, v∗) and for initial data chosen below W1

s (E4), (ũ, ṽ) → (u∗, 0). Here

E∗4 is the interior saddle equilibrium to the kinetic (ODE) system for (4.9). Now since
a2

1 + k̃ a1
b1

≤ a2,

the v component of E∗4 is higher than the v component of E4. Now using the C1 property of the
separatricies W1

s (E∗4),Ws(E4), we have the existence of a wedge V emanating from E4, s.t within V we
have W1

s (E∗4) ≥ Ws(E4). Note via Lemma 4.7, we have ṽ ≤ v ≤ v. Let us consider positive initial data
(u0, v0) chosen large enough, within V s.t. (u0, v0) > W1

s (E∗4) > Ws(E4), we will have

{
(0, v∗)

}
≤

{
(u, v)

}
≤

{
(0, v∗)

}
.

On the other hand, for positive initial data (u1, v1) chosen small enough via an analogous
construction we will have {

(u∗, 0)
}
≤

{
(u, v)

}
≤

{
(u∗, 0)

}
.

This proves the theorem.
□

E2
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Figure 11. Numerical simulation for the strong-competition PDE case when species u is
fearing species v in Ω = [0, 1]. The parameters are chosen as a1 = 1, a2 = 1, b1 = 1, b2 =

1, c1 = 2 and c2 = 2. Equilibria: E1 = E∗1 = (0, 0), E2 = E∗2 = (1, 0), E3 = (0, 1), E∗3 =
(0, 0.833333), E4 =

(
1
3 ,

1
3

)
and E∗4 = (0.222222, 0.388889). Ws(E4) (k = 0) and W1

s (E∗4)
(k = 0.2) are two sepratrices passing through E4 and E∗4 respectively. The C1 property of
the separatrices W1

s (E∗4),Ws(E4), shows a wedge V emanating from E4, s.t within V we have
W1

s (E∗4) ≥ Ws(E4). The u-nullcline is in red for k = 0 and k = 0.2. For k = 0, v-nullcline is in
blue. For k = 0.2, v-nullcline is in magenta.
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(a) [u0, v0] = [0.2, 0.2].
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(b) [u0, v0] = [2, 0.5].
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(c) [u0, v0] = [0.2, 0.2].
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(d) [u0, v0] = [2, 0.5].

Figure 12. Numerical simulation of (4.4) for the case of strong-competition in Ω = [0, 1].
The parameters are chosen as d1 = 1, d2 = 1, a1 = 0.5, a2 = 2, b1 = 0.5, b2 = 0.8 and
c1 = c2 = 4 and this choice meets the parametric constraint of the Theorem 4.15.
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(a) [u0, v0] = [0.2, 0.2].
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(b) [u0, v0] = [0.002, 0.2].

Figure 13. Numerical simulation of (4.4) for the case of two-positive interior equilibria in
Ω = [0, 1]. The parameters are chosen as d1 = 1, d2 = 1, a1 = 1, a2 = 2, b1 = 2, b2 = 0.3 and
c1 = 0.3, c2 = 0.05 and this choice meets the parametric constraint of the Theorem 3.9.

From the observations in the above numerical simulations, we can state a conjecture concerning
positive interior equilibrium.
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Conjecture 2. Consider the system (4.4). For any non-negative fear function k(x) such that

b2b1

c1
− c2 <

ka2b2
1

(b1 + ka1)2 (4.18)

and parametric restrictions given by (4.5) and Theorem 3.1 hold true, for k = k̃, k̂. There exists some
data [u0, v0], for which the solution (u, v) → (u∗, v∗), and for some choice of data [u1, v1], the solution
converges to the boundary equilibrium (0, v∗).
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Figure 14. Numerical simulation for the case (v∗ < u∗). The parameters are chosen as
[u0, v0] = [0.1, 0.2], d1 = 1, d2 = 1, a1 = 1, a2 = 2, b1 = 1, b2 = 2, c1 = 0.3 and c2 = 1.8. The
interior equilibrium [u∗, v∗] = [0.958904, 0.136986] and the fear threshold kc =

a2b2
1−c2a1b1

a2
1c2

=

0.11 and C1 = 1 and this choice meets the parametric constraint of the Theorem 4.13 and
Lemma 4.14.

5. Numerical simulation

All of our PDE simulations for the case of a spatially heterogeneous fear function were performed in
MATLAB R2021b, using the MATLAB inbuilt function pdepe, which is used in solving 1−D parabolic and
elliptic PDEs. The simulations were run on an 8−core CPU, Apple M1 pro-chip-based workstation.
In this configuration, a typical simulation takes between 5–7 seconds when the spatial domain is taken
to be [0, 1], and is partitioned into 1000 sub-intervals. The simulations’ parameters are chosen to
meet the parametric constraints of the theorems. In the spatially explicit setting, we have used the
comparison theory to determine point-wise restrictions on the fear functions such that competitive
exclusion or strong competition-type dynamics abound. These are shown via Theorems 4.8, 4.10
and 4.15, whereas Figures 8, 9 and 12 can infer the numerical validation of this result. We also
have numerically validated that in the spatially explicit setting, fear can change a situation of weak
competition to a competitive exclusion type scenario for fear functions with certain L1 restrictions.
This is proved in Theorem 4.13 and Lemma 4.14. Moreover, we have performed a time series analysis
over a long period to numerically validate the result, see Figures 14–16. Various heterogeneous fear
functions are constructed to demonstrate these results numerically; see Figure 17b. All the details about
the parameters and their choice are explicitly mentioned in the captions of the figures of numerical
simulation. Essentially in all of the PDE and ODE simulation, parametric values are chosen that meet
the parametric restrictions of the Lemmas and Theorems that are being numerically demonstrated.
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Also we assume fairly competitive populations, and do not want one population exceeding more than
three times the other. This (under scaling) restricts the choice of the parameters to lie in the range
(0, 3]. This also assists in easier visualization of the dynamics.
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Figure 15. Numerical simulation for the case (u∗ < v∗). The parameters are chosen as
[u0, v0] = [0.1, 0.2], d1 = 1, d2 = 1, a1 = 1.5, a2 = 1.8, b1 = 1, b2 = 1, c1 = 0.8 and c2 =

0.5. The interior equilibrium [u∗, v∗] = [0.1, 1.75] and the fear threshold kc =
a2b2

1−c2a1b1

a2
1c2

=

0.933 and C1 = 0.8 and this choice meets the parametric constraint of the Theorem 4.13 and
Lemma 4.14.
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Figure 16. The parameters are chosen as [u0, v0] = [0.1, 0.2], d1 = 1, d2 = 1, a1 =

1, a2 = 2, b1 = 1, b2 = 2, c1 = 0.3 and c2 = 1.8. The interior equilibrium [u∗, v∗] =
[0.958904, 0.136986] and the fear threshold kc =

a2b2
1−c2a1b1

a2
1c2

= 0.11 and C1 = 1 and this
choice meets the parametric constraint of the Theorem 4.13 and Lemma 4.14.
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(b) Various heterogeneous fear functions

Figure 17. Various heterogeneous fear functions (A) Phase plots showing dynamics under
strong competition parametric restriction of system (A.1). Parameters used are a1 = 1, a2 =

1, b1 = 1, b2 = 1, c1 = 2, c2 = 2 and f = 0.5 (B) Illustration of various heterogeneous fear
functions. k1(x) = 0.8e−x, k2(x) = 0.01 + sin2(10x), k3(x) = x + 0.2x5 and k4(x) = x.

6. Discussion

In this section we discuss several aspects of the lemmas and theorems described in the current
manuscript. We first briefly recap our key results.

• Sufficiently large fear can change a situation of competitive exclusion, to a strong competition
type scenario, where there is bi-stability between boundary equilibrium. Dynamically, this occurs
via a transcritical bifurcation. This is shown via Lemma 3.12, see Figure 6.

• Fear in a certain parametric regime can change a situation of competitive exclusion to bi-stability
between boundary equilibrium and interior equilibrium, see Figure 4. Dynamically, this occurs
via a saddle-node bifurcation. This is shown via Lemma 3.11, see Figure 5. This is in sharp
contrast with classical competition theory, where bi-stability occurs only between boundary
equilibria.

• Sufficiently large fear can change a situation of weak competition to a competitive exclusion type
scenario. This is shown via Lemma 3.5, see Figure 2.

• Fear cannot qualitatively change a strong competition type scenario. This is shown via
Lemma 3.8, see Figure 3. Also, fear cannot produce periodic orbits. This is demonstrated via
Lemma 3.10 and Corollary 1.

• In the spatially explicit setting, comparison theory is used to determine point-wise restrictions on
the fear functions such that competitive exclusion or strong competition type dynamics abounds.
These are shown via Theorems 4.8, 4.10 and 4.15, see Figures 8, 9 and 12.

• In the spatially explicit setting, fear can change a situation of weak competition to a competitive
exclusion type scenario, for fear functions with certain L1 restrictions. This is shown via
Theorem 4.13 and Lemma 4.14, see Figures [14–16]. In particular, the fear functions need not
lie uniformly above the critical fear levels derived in the ODE case via Lemma 3.5.
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• Various heterogeneous fear functions are constructed to demonstrate these results numerically, see
Figure 17b. Applications of these to ecological as well as socio-political settings are discussed in
Section 6.

We see that in the competitive exclusion case, where (u∗, 0) is globally stable, a small amount of
fear in u, can bring about a strong competition type situation - via a transcritical bifurcation. Where
after bifurcation there appears an interior equilibrium, which is a saddle, and one has initial condition
dependent attraction to (u∗, 0) or (0, v∗). See Figures 4 and 6]. However, a slightly larger level of fear,
can bring down the separatrix drastically see Figure 17a. Furthermore, here (depending on parametric
restrictions) only a very small quantity of fear can create two interior equilibriums, see Figure 6, where
there are both weak and strong competition dynamics at play, where most initial conditions are attracted
to an interior equilibrium, but certain initial conditions (u0, v0) (where u0 ≪ 1, v0 ≫ 1), are attracted
to (0, v∗). It is interesting to think about this in an invasion setting. If u were an invasive species,
and v a resident species, then in the absence of fear in u, it can invade and thus exclude v. However,
if the resident v can instill just a small amount of fear in the invader u, coexistence for most initial
conditions is possible. If one plays devil’s advocate, and switches the role of u and v, (u resident, v
invader), then we see in the absence of fear in the resident, it will exclude the invader, but if it can
instill some fear, then coexistence is possible, as earlier alluded to. However, having too much fear in
either case, yields only one interior equilibrium, which is a saddle and we are in a strong competition
type setting, with initial condition dependent attraction to either (u∗, 0) or (0, v∗). Thus if coexistence
(for most initial conditions) is sought after, it is advantageous to induce a little fear - but not too much
fear. Dynamically, this is seen because in the former case we have a saddle-node bifurcation occurring
first, followed by a transcritical bifurcation, see Figure 6b, as opposed to the later case, where only a
transcritical bifurcation occurs, see Figure 6a. Also, a 2 parameter bifurcation in the k − c1 parameter
space reveals a rich higher co-dimensional bifurcation structure. A Bogdanov Takens (BT) bifurcation,
as well as a saddle node transcritical (SNTC) bifurcation is observed. Future work could entail further
theoretical investigations of the SNTC [74], herein numerical investigations are also apt [75,76]. In this
work we assume fear comes from the physical presence of a competitor. However even past presence
such as by scent or other chemical cues can cause fear [77]. It is worthwhile considering modeling
such a scenario in future work.

This phenomenon becomes even more interesting in sociological or political settings, particularly
when we are in the spatially explicit scenario. Consider the case of law enforcement trying to control
crime in high crime areas, where traditionally control efforts have failed, indicative of the competitive
exclusion scenario, or a coexistence scenario, where the criminal groups have not been managed so
coexist at high levels, and have not been eradicated. The question becomes, what is the optimal design
of the fear function k(x), that could now yield a co-existence scenario–or one that can yield a
competitive exclusion scenario. We see via Theorem 4.13, that this function could be very small in
some areas of the spatial domain, and large enough in others, so that it would change dynamics - this
is also seen numerically, where “hotspot” type fear functions have been utilized to generate a
competitive exclusion type scenario, see Figures 14–16. Similar ideas for control and policing
activities have been explored in [78,79]. Essentially, the fear function can be modeled through various
functional types, that also preserve spatial features of the underlying domain. For instance, consider
competition between two warring drug cartels, where the weaker cartel has certain territorial
strongholds. This situation can be modeled through oscillatory functions like sin2(nx), where n ∈ N.
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Moreover, for complex ecological models, the result of these theorems also holds, where we need to
model the fear responses by a sequence of functions or in the form of piece-wise functions. We
display some of these functions in Figure 17b. Many of the relevant theorems have been tested by
choosing such functions (See Figures 8, 10, 12 and 13). However, we have not incorporated
non-smooth fear function or non-smooth density dependence herein [31, 80–82], and this remains an
apt direction for future work. In essence the fear model considered can be placed in a much broader
context than ecological. Corollary 1 enables us to provide a mechanistic description of the fear
function in much broader contexts. Also, in sociopolitical domains, the fear effect does not have to be
thought of as consumptive vs non-consumptive. For example a new small business that is fearful of a
larger established business might not invest in advertising or expanding clientele in established
market, rather search for niche markets - which might hinder its growth. Interesting future work could
consider competition models with a fear effect where the outcome of the competition whether contest
or scramble was explicit.

In the weak competition case without fear, once there is a critical level of fear, in either u or v, a
competitive exclusion type phenomenon will occur, see Lemma 3.5. This occurs again via a
transcritical bifurcation, see Theorem 3.12 and Figure 6. This again is interesting in the spatially
explicit setting, as via Theorem 4.8, where the fear function need not be above kc so as to induce
competitive exclusion. We have explored certain types of fear functions herein, see Figures 8,14–16,
but the effect of functions such as in Figure 17b, remain to be explored. Here one could look at the
effect of fear in fragmented domains vs domains that are not, via deriving or enforcing conditions
relating the fear function k(x) to the resource function m(x), see similar ideas explored in [83]. The
results are symmetric even if u is assumed to be fearful of v, and one considers the spatially explicit
case, i.e., when a competitive exclusion situation, can change to a bi-stability type situation, where the
bi-stability is between the (u∗, 0) and a coexistence equilibrium. A further increase of the fear function
causes a strong stability situation to occur. Similar dynamics are seen in changing a weak competition
case to a competitive exclusion case. We are also motivated to studying the fear effect in competitive
systems modeled differently - such as bringing in this effect in the competitive coefficients, rather than
the birth rate. In addition, for competitive systems, one might intuitively think that the “dominant”
population causes fear in the inferior population, which further weakens the inferior population.
However, simulations show this is incorrect. Particularly if one considers fear in both competitors.
The interplay of the heterogenous fear functions k(x), f (x), can actually lead to a co-existence
scenario, even when one competitor is dominant with and without the fear effect. This
counterintuitive situation warrants much further investigation.

An interesting question is the dynamical consequence of Allee effects on the fear models
considered. Note, Allee effects in competition systems have been considered [84, 85], and results
show the possibility of alternate stable states, and even tri-stability situations possible, where the
occurrence of two interior saddle equilibrium, cause the phase to be partitioned such that initial data
can be attracted to (u∗, 0), (0, v∗) or (0,0). However, whether a weak or strong Allee effect is
considered, periodic orbits have not been shown to occur [84–86]. The possibility of two interior
saddles does not preclude the existence of heteroclinic orbits, say via a saddle-saddle
collision–although such dynamics have not been rigorously proved to the best of our knowledge. The
interplay of the fear effect with an Allee effect could well change this situation. For example with a
simple strong Allee effect the Dulac function used in Lemma 3.10 would not be sufficient to claim
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non-existence of limit cycle dynamics. Thus such investigations would make for interesting future
studies. It would be interesting to explore applications of these results to the case of competing
political parties, where a nationally weaker party with smaller voter bank, could have several local
strongholds. What levels of fear need to be instilled in those strongholds so as to enforce competitive
advantage, is an apt question. Herein estimates on the L1(Ω) norm of k(x), would be interesting to
derive. Currently Lemma 4.14, only gives lower estimates - but sharp upper estimates or even just
upper estimates are unknown, and would make for interesting future work. The effect of fear on the
strong competition setting is perhaps the least interesting dynamically. Herein, having fear in u or v,
only shifts the interior saddle equilibrium - but qualitatively the dynamics remain the same, as in a
strong competition type scenario persists, no matter what level of fear ( f or k) is chosen. Also it
would be of interest to rigorously prove Conjectures 1 and 2. Our current numerical evidence clearly
motivates their validity. It would also be of interest to consider fractional derivative extensions of the
fear model (3.1). Such problems have been much investigated recently [87–90].

Also, in [8], it is found that various monotonically decreasing fear functions essentially yield the
same dynamics. This has not been tested in the current work, in the case of competitive systems.
Neither have we investigated rigorously the case of both competitors being fearful of each other with
possible different fear functions, indicative of different LOF for each competitor. Here again, upper
estimates on the fear functions would be useful and we could allude to methods and techniques
explored in [91] and in [92]. Here, one could consider a spatially dependent growth function as well,
such as in [92], and attempt to derive conditions relating the function describing the resources to the
fear function. Furthermore, it would make for interesting future work if certain choices of (density)
dependence or fear functions which lead to degenerate dynamics, can cause periodic orbits. In the
current scenario Lemma 3.10 and Corollary 1, do not allow limit cycle dynamics. All in all, we hope
these questions lead to future investigations of the fear effect in competitive systems, as a host of rich
applications exist.
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Appendix

A.1. The case of u fearing v

Here we shall consider the case when the competitor u is being fearful of v. Modeling as earlier
yields,

du
dt
=

a1u
1 + f v

− b1u2 − c1uv,

dv
dt
= a2v − b2v2 − c2uv.

(A.1)

A.2. Existence

The system (A.1) can have one or two positive interior equilibria, but not three. This is established
via the following lemma:
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Lemma A.2.1. Consider the ODE system (A.1), with f = 0. If we are in the competitive exclusion,
weak-competition, or strong-competition setting, then for any f > 0, under the parametric restrictions
in (A.2), there do not exist three positive interior equilibria.

Proof. On substituting u∗ = 1
b1

( a1
1+ f v∗ −c1v∗) in the second nullcline equation, we get the following third

order polynomial in v∗:
B2(v∗)3 +C2(v∗)2 + D2(v∗) + E2 = 0,

where

B2 = b1 f 2(c1c2 − b1b2),
C2 = a2b2

1 f 2 + 2b1 f (c1c2 − b2b1),
D2 = b1 f (−a1c2 + 2a2b1) + b1(c1c2 − b2b1),
E2 = b1(−a1c2 + a2b1).

(A.1)

We will require the following conditions to satisfy Descartes’s rule of signs, so as to obtain three
positive roots to the cubic equation. These are:

c1c2 − b1b2 < 0,
a2b1 f + 2(c1c2 − b2b1) > 0,

f (−a1c2 + 2a2b1) < −(c1c2 − b2b1),
−a1c2 + a2b1 > 0.

(A.2)

Let us prove this is an impossible claim by contradiction: First, assume the parameter set satisfies both
competitive exclusion-state parametric restriction and (A.2). We know that competitive exclusion-state
is asymptotically stable if a1

a2
> max

{
b1
c2
, c1

b2

}
. On using these parametric restriction, −a1c2 + a2b1 < 0,

which is a contradiction to the last inequality in (A.2).
If the parameter set satisfies both the strong competition state parametric restriction and (A.2), then

we have a contradiction because of the first inequality in (A.2), as under the strong competition state
parametric restriction that inequality should be positive.

For the weak competition, recall the parametric restrictions:

c2

b1
<

a2

a1
<

b2

c1
.

Let us re-write the third inequality in (A.2),

−(c1c2 − b2b1) − f (−a1c2 + 2a2b1) > 0.

On adding the second and third inequality in (A.2), we have

(c1c2 − b1b2) + f (a1c2 − a2b1) > 0,

which is a contradiction as the added inequality should be negative by the parametric restrictions of
weak-competition. This proves the lemma.

□
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Also note:

Remark 12. The cubic equation obtained in (A.1) can be transformed to a quadratic polynomial by
reducing (b1 f v∗ + b1) on both sides, i.e.,

B̃2(v∗)2 + C̃2v∗ + D̃2 = 0,

where
B̃2 = f (c1c2 − b1b2), C̃2 = (c1c2 − b1b2) + a2b1 f , D̃2 = a2b1 − a1c2.

Thus in essence models (3.1) and (A.1) are symmetric, and it suffices to consider (3.1).
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