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Correction

A note on Insider information and its relation with the arbitrage condition
and the utility maximization problem
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Abstract: We prove that Theorem 4.16 in [1] is false by constructing a strategy that generates
(FLVR)H(G). However, we success to prove that the no arbitrage property still holds when the agent
only plays with strategies belonging to the admissible set called buy-and-hold.
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In this note we show that the result of Theorem 4.16 of [1] is false by constructing a sequence
of simple predictable strategies achieving Free-Lunch-with-Vanishing-Risk (FLVR) whose existence
contradicts the conclusions of the theorem. The fault in the proof in [1] comes from the improper use
of a bound on the compensator αG. Indeed the bound holds only P-almost surely, that is not strong
enough to assure the required Novikov condition.

Using the notation introduced in [1], we consider the initial enlargement G ⊃ F obtained by extend-
ing the natural filtration by the random variable

G = 1
{
BT ∈ ∪

+∞
k=−∞[2k − 1, 2k]

}
. (1)

Assuming a constant proportional volatility ξ > 0, it follows that

S T = s̃0 exp (ξBT ) , s̃0 := s0 exp
(∫ T

0

(
ηt − ξ

2/2
)

dt
)
,

and the random variable G can be rewritten as G = 1
{
S T ∈ ∪

+∞
k=−∞[c2k−1, c2k]

}
, where ck := s̃0eξk. The

length of each interval is λk := c2k − c2k−1 = s̃0eξ2k
(
1 − e−ξ

)
> 0. To simplify the computations, we

assume that the interest rate r = 0.

Proposition 1. Let G be as in (1), the condition (FLVR)H(G) is satisfied.
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Proof. Without loss of generality, we assume that, for some t0 < T there exists k0 ∈ Z such that
c2k0 − λk0/4 ≥ S t0 ≥ c2k0−1 + λk0/4. We reason for the case G = 0, that in particular implies that
S T < (c2k0−1, c2k0), the case G = 1 is equivalent by symmetry. We define the following finite sets

Aδn :=
{
c2k0 −

λk0

4
−
δ(k0)

2n , c2k0−1 +
λk0

4
+
δ(k0)

2n

}
, n ≥ 0 ,

together with the following sequence of stopping times, τ0 = t0 and for n ≥ 1

τ2n−1 := inf{τ2n−2 ≤ t < T : S τ2n−2 < {c2k0 , c2k0−1}, S t ∈ Aδ∞} ,

τ2n := inf{τ2n−1 ≤ t < T : S t ∈ {c2k0 , c2k0−1} ∪ Aδn} .

where we define inf ∅ = T . With some abuse of notation, we construct a sequence of strategies {Θn}n

with Θ0 = 0 and Θn := Θn−1+Cn1]]τ2n−1,τ2n]] for n ≥ 1, being Cn the following Fτ2n−1-measurable random
variable

Cn :=
{
+1 if S τ2n−1 = c2k0 − λk0/4
−1 if S τ2n−1 = c2k0−1 + λk0/4 .

We prove that the sequence of strategies {Θn}n achieves a gain greater than
λk0

4
− δ(k0), and by ap-

propriately choosing δ(k0) we can get (FLVR)H(G). To short the notation, we introduce the family
Hm := 1{S τ2n < {c2k0 , c2k0−1}, ∀n < m}

XΘm
T = X0 +

m∑
n=1

HnCn
(
S τ2n − S τ2n−1

)
= X0 −

m∑
n=1

Hn
δ(k0)

2n +
λk0

4
(1 − Hm)

≥ X0 − δ(k0)
(
1 −

1
2m

)
+
λk0

4
(1 − Hm) ≥ X0 − δ(k0) +

λk0

4
(1 − Hm) .

We need to verify that limm→∞ Hm = 0, P(· |G = 0)-a.s. By definition of convergence a.s., it is equiva-
lent to

lim
m→∞

P(Hm < ε |G = 0) = 1 , ∀ε > 0 .

The sequence of indicator functions is strictly decreasing by construction, so we need to check that

1 = lim
m→∞

P(Hm = 0 |G = 0) = lim
m→∞

P(S τ2n ∈ {c2k0 , c2k0−1} for some n < m |G = 0)

= lim
m→∞

P(S τ2n ∈ {c2k0 , c2k0−1} for some n < m | S T < (c2k0−1, c2k0)) ,

where the last condition is satisfied. □

Remark. By using an analogous technique, it can be proved that any random variable G = 1{BT∈B}

generates (FLVR) when B is a subset of positive probability less than one.

Since the result of Theorem 4.16 in [1] is false, we prove here a weaker result by showing that
the strategies of type buy-and-hold do not generate arbitrage, (NA), as it is shown in the following
proposition.

Proposition 2. Let G be as in (1), the condition (NA)H(G) is satisfied with strategies of the type Θ =
C1]]σ,T ]], being σ any G-stopping time and C a Gσ-measurable random variable not identically zero.
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Proof. We claim that there exists some Θ = C1]]σ,T ]] achieving arbitrage and we look for a contradic-
tion. We start by computing the following conditional probabilities

P(S T < S σ | Gσ, σ < T ) = P(BT < Bσ | Gσ, σ < T ) > 0 ,
P(S T > S σ | Gσ, σ < T ) = P(BT > Bσ | Gσ, σ < T ) > 0 . (2)

We introduce the event A := {C(S T − S σ) < 0}, by the definition of arbitrage we have P(A) = 0 and
jointly with the law of total probability we find the following contradiction,

0 = P(A) = P(C = 0)P(A |C = 0) + P(C < 0)P(A |C < 0) + P(C > 0)P(A |C > 0)
= P(C < 0)P(S T − S σ > 0) + P(C > 0)P(S T − S σ < 0)
= P(C < 0)E[P(S T > S σ | Gσ, σ < T )] + P(C > 0)E[P(S T < S σ | Gσ, σ < T )] > 0 ,

which is positive because P(C , 0) > 0 and the conditional probabilities given by (2). □
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