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Abstract: Cloud storage has become a crucial service for many users who deal with big data. The
auditing scheme for cloud storage is a mechanism that checks the integrity of outsourced data. Cloud
storage deduplication is a technique that helps cloud service providers save on storage costs by storing
only one copy of a file when multiple users outsource the same file to cloud servers. However, com-
bining storage auditing and deduplication techniques can be challenging. To address this challenge, in
2019 Hou et al. proposed a cloud storage auditing scheme with deduplication that supports different
security levels of data popularity. This proposal is interesting and has practical applications. However,
in this paper, we show that their proposal has a flaw: the cloud or other adversaries can easily forge the
data block’s authenticators, which means the cloud can delete all the outsourced encrypted data blocks
but still provide correct storage proof for the third-party auditor. Based on Hou et al.’s scheme, we
propose an improved cloud storage auditing scheme with deduplication and analyze its security. The
results show that the proposed scheme is more secure.
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1. Introduction

1.1. Background

Nowadays, a large amount of data is generated every day. Securely storing and processing such a
large amount of data is a significant challenge [1–3]. Cloud computing [4], artificial intelligence [5–8],
and big data techniques [9] are promising ways to address this challenge. Among them, cloud storage
is essential because it provides a basic way of storing such a vast amount of data. Cloud storage ser-
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vices are becoming increasingly popular, and many people have outsourced their data, including files,
movies, and photos, to the cloud. On the one hand, this service is very convenient for users since they
do not need to maintain their data locally. Furthermore, they can access it via their mobile devices at
any time and from anywhere. For some users, perhaps the most valuable aspect of cloud storage is
the assurance that their outsourced data is almost never lost. On the other hand, the security of these
outsourced files, movies, and photos cannot be guaranteed by the cloud storage service providers them-
selves. We need mechanisms to ensure their security, such as encryption, secure search, deduplication,
and auditing techniques.

1.2. Motivation

Due to limited local storage, many data owners want to outsource their files to a cloud server,
such as movies, pictures, or music. Before outsourcing the file to the cloud server, the data owners
encrypt their files using convergent encryption. Then they outsource the encrypted files to the cloud
server. If many data owners (more than the predefined threshold) outsource the same encrypted files
to the cloud server, these encrypted files will be the same and denoted as “popular.” They will then be
deduplicated, and the cloud server will only store one copy for all the data owners. However, if only a
few data owners (less than the predefined threshold) outsource the encrypted files to the cloud server,
these encrypted files will be denoted as “unpopular,” and they will not be deduplicated. In this way, the
cloud server can save on storage costs. The technique of deduplication has been used by many cloud
service providers, such as Amazon.

In this paper, we focus on a recently proposed scheme for cloud storage auditing [10] with dedupli-
cation. It supports different security levels and first introduces the concept of different security levels in
this context. In this scheme, the outsourced data is categorized as popular or unpopular. If many data
users have outsourced the same file to the cloud, this file can be considered popular. Otherwise, if the
outsourced file has not been outsourced by many users, it can be categorized as unpopular. For popular
files, Hou et al. suggest using convergent encryption to encrypt them, which is better for deduplica-
tion. In this way, cloud service providers can greatly reduce storage space. But for unpopular files,
they suggest using probabilistic encryption to achieve semantic security, which is more secure than
convergent encryption. Due to the unpopularity of these files, deduplication is no longer necessary.
Generally speaking, this proposal is very interesting and valuable. However, we will show that it is not
as secure as claimed, as there are some flaws in the scheme that invalidate its protocol’s security. We
also propose an improved scheme to achieve the security goal.

1.3. Our contribution

Our contribution can be summarized is two-fold. First, we focus on and demonstrate that the scheme
proposed in [10] is not secure. Although it is the first relevant work on introducing data popularity to
cloud auditing, this scheme is not entirely secure. We also analyze why their scheme has this security
flaw and show how to avoid it. Then , we present an improved scheme building on the ideas proposed
in [10], and provide a thorough analysis of its security. Our scheme addresses the security flaw present
in the original proposal, and we explain in detail why it is more resistant to attacks.
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1.4. Organization

In section 1, we provide the background, paper contribution, and organization. In section 2, we
discuss related work. In section 3, we review the scheme proposed by Hou et al. In section 4, we
present the attack. In section 5, we provide an improved proposal and briefly analyze its security.
Finally, in section 6, we conclude the paper.

2. Related work

There is a large body of research in this context, and we have included the most relevant works to
the one presented in this paper. This includes related work on encryption and deduplication techniques,
as well as auditing schemes.

1. Encryption and deduplication are important techniques for ensuring the confidentiality and effi-
cient management of outsourced data. While traditional encryption techniques, such as proba-
bilistic public key encryption or symmetric encryption like AES, can achieve semantic security,
they are not suitable for implementing functionality such as searching and deduplication. There-
fore, novel encryption techniques have been developed specifically for use in cloud computing,
including encryption with keyword search [11–14], encryption with access control [15, 16], con-
vergent encryption with deduplication [17, 18], and others [19].

2. Auditing is an important way to ensure the integrity of the outsourced data. In 2007, Ateneo et
al. [20] proposed the concept of provable data possession, which aims to allow the cloud servers
to provide proof that they have stored the outsourced data well to the cloud users. Furthermore,
the proof is very compact and the probability of cheating by the cloud servers is very low. This
interesting primitive is actually a new auditing method for cloud storage. Since then, many cloud
auditing schemes following this paradigm have been proposed, such as dynamic provable data
possession [21], proof of retrievability [22, 23], compact proof of retrievability [24], publicly
verifiable auditing [25, 26].

3. In 2016, Yu proposed a cloud data integrity checking scheme with an identity-based auditing
mechanism from RSA [27]. Later, they proposed identity-based [28], attribute-based [29], and
blockchain-based [30] cloud auditing schemes with different properties, and these are very in-
teresting results in this field. Sometimes, the cloud service provider needs to use both auditing
and deduplication techniques simultaneously. This way, the cloud service provider can reduce its
costs when many users are outsourcing the same file, like popular movies, popular music, etc.,
and at the same time, the cloud users can ensure that their outsourced data, like files and photos,
have not been lost or tampered with.

3. Description of Hou et al.’s scheme

The system model of Hou et al.’s cloud auditing scheme with deduplication [10] is shown in Figure
1. There are three roles in the system: the data owners, the cloud server, and the TPA (third-party
auditor). The system operates as follows:

1. To check the integrity of the outsourced files, the data owners, cloud server, and TPA (third party
auditor) run the auditing scheme proposed by Hou et al. In this scheme, the data owners compute
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Figure 1. System model of Hou et al’s cloud auditing scheme with deduplication.

the authenticators for the data blocks of the files and outsource both the files and the authenticators
to the cloud server. When the data owners want to check the integrity of the outsourced files,
they delegate this task to the TPA. The TPA launches a challenge-proof game with the cloud
server. First, the TPA sends a challenge to the cloud server requesting the server to return the
aggregated data blocks and the corresponding aggregated authenticators as proof for the integrity
of the outsourced file. Then, the cloud server returns the proof to the TPA, who checks the
correctness of the proof using verification equations.

2. However, in the auditing process described above, the cloud server may be malicious. In an effort
to reduce storage space, it may delete or modify some outsourced files without being detected by
the data owners or the TPA. This means that the malicious cloud server has a strong incentive to
delete the outsourced files. In the following section, we will demonstrate an attack on Hou et al’s
auditing scheme. In this attack, the malicious cloud server is able to forge the authenticator for
any data block, which in turn invalidates their auditing scheme.

We will now review Hou et al.’s scheme [10]. The core data flow between the data owner and cloud
storage server, between the IS and cloud storage server, and between the TPA and cloud storage server
can be seen in Figures 2, 3, and 4.

Notations: Assume the file outsourced to the cloud by the data owner is F = {m1,m2, · · · ,mn}. Each
mi = {mi1,mi2, · · · ,mis}, here 1 ≤ i ≤ n. The file has its unique file identifier, it is signed with signature
S S ig to prevent the attackers to modify it. The user (data owner) keeps his secret key for generating
S S ig and publish the public key for signature.
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1. Setup: With parameter k as the input,

(a) Running IG(1k) to generate G1 and G2, which are two cyclic multiplicative groups of large
prime order p. There exists a e : G1 ×G1 → G2 which is a bilinear pairing.

(b) We denote h : {0, 1}∗ → {0, 1}∗ as an indexing function, φ : Z∗p × Z∗p → Z∗p and π : Z∗p ×
{1, 2, · · · , n} as a PRF and a PRP, denote H1 : {0, 1}∗ → G1, H2 : G2 → {0, 1}l, H3 : {0, 1}∗ →
G1 as three cryptographic hash functions.

(c) Run εµ.S etup(k, n, t) → (pk, sk, S ) where pk = {p,G1,G2, e,H1,H2,H3, h, g, gpub}, n key
shares {xi}n−1

i=0 also generated.

2. Join: this algorithm is not directly related with the attack.
3. Upload: this algorithm is not directly related with the attack.
4. AuthGen: With a ciphertext of file C = {c1, c2, · · · , cn} (specially C is Cεµ or Cε) and a secret key

ktag ← Z∗p, the key v ← gktag is computed and published by the user. For each ciphertext block
ci(1 ≤ i ≤ n), the authenticator Ti is generated by Ui and uploaded to the cloud.

(a) u1, u2, · · · , us are s generators of G1, which are chosen by Ui, r ← Z∗p is also randomly chosen
by Ui.

(b) Denote τ0 = name||n||vr||u1||u2|| · · · ||us. Let ssk ← Z∗p be signing key and Pssk ← gssk the
corresponding verification key. These are randomly generated by the user. The file tag is
τ← τ0||S S igssk(τ0).

(c) For each data block the authenticator is computed by Ui as

Ti =

H3(name||i) ·
s∏

j=1

uci j

j


ktag

.

(d) {
u

ktag(r(Cεµ )i,1−(Cε )i,1)
1 , u

ktag(r(Cεµ )i,2−(Cε )i,2)
2 , · · · , uktag(r(Cεµ )i,s−(Cε )i,s)

s

}

are computed by Ui and sent to IS .
(e) The file tag and {Ti}1≤i≤n are sent by Ui to the cloud.

5. PopulartityChange: For the popularity threshold t, the algorithm is executed whenever the users’
number that are submitting the same index is higer than it. The file F is not needed to upload
to cloud again by the user Ui. IS sends the set index to the cloud, and Ui sends it to the cloud.
For all those users with file index in the set index, the storage cloud collects decryption shares
of them. Then the ciphertext Cεµ uploaded by these users can be decrypted by the storage cloud.
Then, the ciphertext FC encrypted by the convergent encryption can be obtained by the storage
cloud. Thus, as the ciphertext FC coincides with that for file F, the deduplication can be achieved.

Finally,
{
u

ktag(r(Cεµ )i,1−(Cε )i,1)
1 , u

ktag(r(Cεµ )i,2−(Cε )i,2)
2 , · · · , uktag(r(Cεµ )i,s−(Cε )i,s)

s

}
are sent to the cloud by the IS .

The new data block authenticator∗

T ′i = Ti ·
s∏

j=1

u
ktag(rcεµi j

−cεi j
)

j

for each user are created by the clouds.

∗In [10], T ′i = Ti ·∏s
j=1 u

ktag(rcεµi j
−cεi j

)

j , but we think it should be T ′i = Ti ·∏s
j=1 u

ktag(r(Cεµ )i, j−(Cε )i, j)
j .
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6. ProofGen: With the {ci}1≤i≤n, {Ti}1≤i≤n as the input,

• The auditing challenge is generated by T PA as the following:
(a) The file tag gained by the TPA from the cloud and using the key Pssk it checks whether

the correctness of signature on τ0. TPA rejects and halts if the signature is not correct.
(b) Otherwise, filename name, n, vr and {u1, u2, · · · , us} are recovered by the TPA. Then c,

with 1 ≤ c ≤ n is chosen by him.
(c) Parameters k1 ← Z∗p, k2 ← Z∗p are randomly selected by the TPA.
(d) The challenge chal = (c, k1, k2) is sent by the TPA to the cloud.
• The cloud yields lt = πk1(t) and at = φk2(t) wherein 1 ≤ t ≤ c after receiving chal from the

TPA. And then the proof T =
∏c

t=1 T at
lt

, η j =
∑c

t=1 at · clt , j, 1 ≤ j ≤ s is computed.

7. ProofVerify: With the proof P = (T, η) and the challenge massage chal = (c, k1, k2), TPA com-
putes lt = πk1(t) together with at = φk2(t) wherein 1 ≤ t ≤ c. Subsequently, the below verification
equations are checked

e(T, g) = e


c∏

t=1

H3 (name||lt)at

s∏

j=1

uη j

j

 , v
 ,

e(T, g) = e


c∏

t=1

H3 (name||lt)at

s∏

j=1

uη j

j

 , v
r

 .

If one of them passed, the proof is valid.

4. Attack on the generation and updating of authenticators

The attack is executed according to the following steps:

1. The attacker can be the IS or the cloud. Note here the IS or the cloud can obtain
{
u

ktag(r(Cεµ )i,1−(Cε )i,1)
1 , u

ktag(r(Cεµ )i,2−(Cε )i,2)
2 , · · · , uktag(r(Cεµ )i,s−(Cε )i,s)

s

}
, 1 ≤ i ≤ n

from Ui by running algorithm AuthGen. Concretely the IS or the cloud can obtain
{
u

ktag(r(Cεµ )1,1−(Cε )1,1)
1 , u

ktag(r(Cεµ )1,2−(Cε )1,2)
2 , · · · , uktag(r(Cεµ )1,s−(Cε )1,s)

s

}
,

{
u

ktag(r(Cεµ )2,1−(Cε )2,1)
1 , u

ktag(r(Cεµ )2,2−(Cε )2,2)
2 , · · · , uktag(r(Cεµ )2,s−(Cε )2,s)

s

}
,

{
u

ktag(r(Cεµ )3,1−(Cε )3,1)
1 , u

ktag(r(Cεµ )3,2−(Cε )3,2)
2 , · · · , uktag(r(Cεµ )3,s−(Cε )3,s)

s

}
,

· · · · · · · · · ,{
u

ktag(r(Cεµ )n,1−(Cε )n,1)
1 , u

ktag(r(Cεµ )n,2−(Cε )n,2)
2 , · · · , uktag(r(Cεµ )n,s−(Cε )n,s)

s

}
.

2. Let A1 = urktag

1 , B1 = uktag

1 , A2 = urktag

2 , B2 = uktag

2 , · · · , · · · , · · · , As = urktag
s , Bs = uktag

s then
{
u

ktag(r(Cεµ )1,1−(Cε )1,1)
1 , u

ktag(r(Cεµ )1,2−(Cε )1,2)
2 , · · · , uktag(r(Cεµ )1,s−(Cε )1,s)

s

}
,
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Figure 2. The core data flow between data owner and cloud storage server.

Figure 3. The core data flow between IS and cloud storage server.

Figure 4. The core data flow between TPA and cloud storage server.
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TPA Malicious Cloud Storage Server

c is randomly chosen with 1 ≤ c ≤ n

k1 ← Z∗p, k2 ← Z∗p

chal = (c, k1, k2)

With
{
u

ktag(r(Cεµ )1,1−(Cε )1,1)
1 , u

ktag(r(Cεµ )1,2−(Cε )1,2)
2 , · · · , uktag(r(Cεµ )1,s−(Cε )1,s)

s

}

{
u

ktag(r(Cεµ )2,1−(Cε )2,1)
1 , u

ktag(r(Cεµ )2,2−(Cε )2,2)
2 , · · · , uktag(r(Cεµ )2,s−(Cε )2,s)

s

}

{
u

ktag(r(Cεµ )3,1−(Cε )3,1)
1 , u

ktag(r(Cεµ )3,2−(Cε )3,2)
2 , · · · , uktag(r(Cεµ )3,s−(Cε )3,s)

s

}

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
{
u

ktag(r(Cεµ )n,1−(Cε )n,1)
1 , u

ktag(r(Cεµ )n,2−(Cε )n,2)
2 , · · · , uktag(r(Cεµ )n,s−(Cε )n,s)

s

}

Let A1 = urktag

1 , B1 = uktag

1 , A2 = urktag

2 , B2 = uktag

2 , · · · , · · · , · · · , As = urktag
n , Bs = uktag

2

The above can be rewritten as

X1 = A
(Cεµ )1,1

1 B(Cε )1,1

1 , X2 = A
(Cεµ )1,2

2 B(Cε )1,2

2 , · · · , Xs = A
(Cεµ )1,s
s B(Cε )1,s

s ,

Y1 = A
(Cεµ )2,1

1 B(Cε )2,1

1 ,Y2 = A
(Cεµ )2,2

2 B(Cε )2,2

2 , · · · ,Ys = A
(Cεµ )2,s
s B(Cε )2,s

s

Thus X
(Cεµ )2,1

1 = A
(Cεµ )1,1(Cεµ )2,1

1 B
(Cε )1,1(Cεµ )2,1

1

Y
(Cεµ )1,1

1 = A
(Cεµ )2,1(Cεµ )1,1

1 B
(Cε )2,1(Cεµ )1,1

1

X
(Cεµ )2,1

1

Y
(Cεµ )1,1

1

=
A

(Cεµ )1,1(Cεµ )2,1

1 B
(Cε )1,1(Cεµ )2,1

1

A
(Cεµ )2,1(Cεµ )1,1

1 B
(Cε )2,1(Cεµ )1,1

1

=
B

(Cε )1,1(Cεµ )2,1

1

B
(Cε )2,1(Cεµ )1,1

1

= B
(Cε )1,1(Cεµ )2,1−(Cε )2,1(Cεµ )1,1

1

Let Z1 =
X

(Cεµ )2,1

1

Y
(Cεµ )1,1

1

then B1 = Z((Cε )1,1(Cεµ )2,1−(Cε )2,1(Cεµ )1,1)−1 mod p
1

S imilarly X(Cε )2,1

1 = A
(Cεµ )1,1(Cε )2,1

1 B(Cε )1,1(Cε )2,1

1

Y (Cε )1,1

1 = A
(Cεµ )2,1((Cε )1,1

1 B(Cε )2,1(Cε )1,1

1

X(Cε )2,1

1

Y (Cε )1,1

1

=
A

(Cεµ )1,1(Cε )2,1

1 B(Cε )1,1(Cε )2,1

1

A
(Cεµ )2,1((Cε )1,1

1 B(Cε )2,1(Cε )1,1

1

= A
(Cεµ )1,1(Cε )2,1−(Cεµ )2,1(Cε )1,1

1

Let W1 =
X(Cε )2,1

1

Y (Cε )1,1

1

then A1 = W((Cε )2,1−(Cε )1,1)−1 mod p
1

By using the above same method, the

adversary can compute A2, B2, · · · , · · · , As, Bs

With A1, B1, A2, B2, · · · , · · · , As, Bs,

the adversary can f orge any data block′s authenticator

thus the adversary can f orge the proo f

Forged Proo f

The f orged proo f can

pass the veri f ying equation

Figure 5. The attack.
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{
u

ktag(r(Cεµ )2,1−(Cε )2,1)
1 , u

ktag(r(Cεµ )2,2−(Cε )2,2)
2 , · · · , uktag(r(Cεµ )2,s−(Cε )2,s)

s

}
,

{
u

ktag(r(Cεµ )3,1−(Cε )3,1)
1 , u

ktag(r(Cεµ )3,2−(Cε )3,2)
2 , · · · , uktag(r(Cεµ )3,s−(Cε )3,s)

s

}
,

· · · · · · · · · ,{
u

ktag(r(Cεµ )n,1−(Cε )n,1)
1 , u

ktag(r(Cεµ )n,2−(Cε )n,2)
2 , · · · , uktag(r(Cεµ )n,s−(Cε )n,s)

s

}

can be rewritten as
{
A

(Cεµ )1,1

1 B(Cε )1,1
1 , A

(Cεµ )1,2

2 B(Cε )1,2
2 , · · · , A(Cεµ )1,s

s B(Cε )1,s
s

}
,

{
A

(Cεµ )2,1

1 B(Cε )2,1
1 , A

(Cεµ )2,2

2 B(Cε )2,2
2 , · · · , A(Cεµ )2,s

s B(Cε )2,s
s

}
,

{
A

(Cεµ )3,1

1 B(Cε )3,1
1 , A

(Cεµ )3,2

2 B(Cε )3,2
2 , · · · , A(Cεµ )3,s

s B(Cε )3,s
s

}
,

· · · · · · · · · ,{
A

(Cεµ )n,1

1 B(Cε )n,1
1 , A

(Cεµ )n,2

2 B(Cε )n,2
2 , · · · , A(Cεµ )n,s

s B(Cε )n,s
s

}
.

3. With
{
A

(Cεµ )1,1

1 B(Cε )1,1
1 , A

(Cεµ )1,2

2 B(Cε )1,2
2 , · · · , A(Cεµ )1,s

s B(Cε )1,s
s

}
,

{
A

(Cεµ )2,1

1 B(Cε )2,1
1 , A

(Cεµ )2,2

2 B(Cε )2,2
2 , · · · , A(Cεµ )2,s

s B(Cε )2,s
s

}
,

the attacker can compute A1, B1, · · · , · · · , · · · , As, Bs as following. First let X1 =

A
(Cεµ )1,1

1 B(Cε )1,1
1 , X2 = A

(Cεµ )1,2

2 B(Cε )1,2
2 , · · · , Xs = A

(Cεµ )1,s
s B(Cε )1,s

s , Y1 = A
(Cεµ )2,1

1 B(Cε )2,1
1 ,Y2 =

A
(Cεµ )2,2

2 B(Cε )2,2
2 , · · · ,Ys = A

(Cεµ )2,s
s B(Cε )2,s

s then the above can be rewritten as

{X1, X2, · · · , Xs} , {Y1,Y2, · · · ,Ys} .
4. With X1, Y1, the adversary can compute A1, B1 as following:

X
(Cεµ )2,1

1 = A
(Cεµ )1,1(Cεµ )2,1

1 B
(Cε )1,1(Cεµ )2,1

1 ,

Y
(Cεµ )1,1

1 = A
(Cεµ )2,1(Cεµ )1,1

1 B
(Cε )2,1(Cεµ )1,1

1 ,

then

X
(Cεµ )2,1

1

Y
(Cεµ )1,1

1

=
A

(Cεµ )1,1(Cεµ )2,1

1 B
(Cε )1,1(Cεµ )2,1

1

A
(Cεµ )2,1(Cεµ )1,1

1 B
(Cε )2,1(Cεµ )1,1

1

=
B

(Cε )1,1(Cεµ )2,1

1

B
(Cε )2,1(Cεµ )1,1

1

= B
(Cε )1,1(Cεµ )2,1−(Cε )2,1(Cεµ )1,1

1 .
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5. Due to the group order p is publicly known and thus the following holds. Let Z1 =
X

(Cεµ )2,1
1

Y
(Cεµ )1,1
1

then

B1 = Z((Cε )1,1(Cεµ )2,1−(Cε )2,1(Cεµ )1,1)−1 mod p
1 .

6. Similarly

X(Cε )2,1
1 = A

(Cεµ )1,1(Cε )2,1

1 B(Cε )1,1(Cε )2,1
1 ,

Y (Cε )1,1
1 = A

(Cεµ )2,1((Cε )1,1

1 B(Cε )2,1(Cε )1,1
1 ,

then

X(Cε )2,1
1

Y (Cε )1,1
1

=
A

(Cεµ )1,1(Cε )2,1

1 B(Cε )1,1(Cε )2,1
1

A
(Cεµ )2,1((Cε )1,1

1 B(Cε )2,1(Cε )1,1
1

= A
(Cεµ )1,1(Cε )2,1−(Cεµ )2,1(Cε )1,1

1 .

7. Due to the group order p is publicly known and thus the following holds. Let

W1 =
X(Cε )2,1

1

Y (Cε )1,1
1

,

then
A1 = W((Cε )2,1−(Cε )1,1)−1 mod p

1 .

8. By using the above same method, the adversary can compute A2, B2, · · · , · · · , As, Bs.

With A1, B1, A2, B2, · · · , · · · , As, Bs, the adversary can forge any data block’s authenticator as the
following.

1. First the adversary (the IS or the cloud) can obtain

Ti = (H3(name||i) ·
s∏

j=1

uci j

j )ktag(1 ≤ i ≤ n).

Note here ci j is public known to all.
2. With

Ti = (H3(name||i) ·
s∏

j=1

uci j

j )ktag ,

and A1, B1, A2, B2, · · · , · · · , As, Bs, the adversary can compute

Ti

Bci1
1 Bci2

2 Bci2
3 · · · Bci2

n
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=
(H3(name||i) ·∏s

j=1 uci j

j )ktag

Bci1
1 Bci2

2 Bci2
3 · · · Bci2

n

=
(H3(name||i) ·∏s

j=1 uci j

j )ktag

(uktag

1 )ci1(uktag

2 )ci2(uktag

3 )ci2 · · · (uktag
n )ci2

= (H3(name||i))ktag .

Then it forges any data block’s authenticator as following
3. Let ĉi j be the forged encrypted j-th sector of the i-th data block, then the adversary compute the

following:

(H3(name||i))ktag · (Bĉi1
1 Bĉi2

2 Bĉi2
3 · · · Bĉi2

n )

= (H3(name||i) ·
s∏

j=1

uĉi j

j )ktag ,

which is a valid authenticator for the any forged encrypted sector.
4. This means that the cloud can modify the outsouced encrypted data block and its corresponding

authenticator to be any other one, which obviously breaks the security of cloud auditing protocols.

5. The improved cloud auditing scheme with secure generation and updating of the
authenticators

First, we will review the core idea for updating the authenticator in [10]. Next, we will analyze why
this core idea is not secure. Finally, we will present an improved method.

• Now we review the core idea in [10]. In the original proposal, (H(i) · uCi)x is the authentica-
tor. Assume σi = (H(i) · uCi)x is the original authenticator and σi = (H(i) · uC′i )x is the new

corresponding authenticator. Denote M i = σ′i/σi =
(H(i)·uC′i )x

(H(i)·uCi )x = (u(C′i−Ci))x = (ux)(C′i−Ci). Thus,
σi · (ux)(C′i−Ci) = σ′i . The cloud can compute σ′i given σi and (ux)(C′i−Ci). However, the inverse of
(C′i − Ci) can be calculated by the adversary and thus it is not secure. For example, for C∗i , the
corresponding authenticator σ∗i = σi · (ux)(C′i−Ci)(C′i−Ci)−1·(C∗i −Ci) = σi(ux)(C∗i −Ci) can be forged. For
safety, a blind factor r is introduced. (ux)(r·C′i−Ci) is first computed and then uploaded by the user to
the storage cloud. New authenticator σ′i = σi · (ux)(r·C′i−Ci) whenever there are changes regarding
the data popularity.
• However, the attack above shows that their idea of using (ux)(r·C′i−Ci) instead of (ux)(C′i−Ci) is still

not secure. The reason is the following: if the cloud knows (ux)(r·C′i−Ci) for many such 1 ≤ i ≤ n, it
can compute (ux)r and (ux) easily. And thus it can forge any authenticator updates (ux)(r·C′any−Cany)

easily. Furthermore, it also can forge authenticator σi = (H(i) · uCany)x easily for any block Cany,
thus their core idea is not secure.
• We improve their core idea by modifying (ux)(r·C′i−Ci) to be ((ux)(ri·C′i−Ci), uri) for many such 1 ≤ i ≤

n, in this way, the cloud can not compute (ux)ri(1 ≤ i ≤ n) and (ux) easily. And thus it can not
forge authenticators any more.

Building upon the improved core idea, we have developed an improved cloud auditing scheme
which is outlined below:
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1. Setup: For the sake of comparison, it is worth noting that this algorithm is identical to the corre-
sponding algorithm presented in [10].

2. Join: This algorithm is the same as the corresponding algorithm in [10].
3. Upload: This algorithm is the same as the corresponding algorithm in [10].
4. AuthGen: With a ciphertext of file C = {c1, c2, · · · , cn} (specially C is Cεµ or Cε) and a secret key

ktag ← Z∗p, the key v ← gktag is computed and published by the user. For each ciphertext block
ci(1 ≤ i ≤ n), the authenticator Ti is generated by Ui and uploaded to the cloud.

(a) u1, u2, · · · , us are s generators of G1, which are chosen by Ui, r1, r2, · · · , rn ← Z∗p are also
randomly chosen by Ui.

(b) Let τ0 = name||n||vr1 ||vr2 || · · · ||vrn ||u1||u2|| · · · ||us. A signing key ssk ← Z∗p and the corre-
sponding verification key Pssk ← gssk are randomly generated by the user. The file tag is
τ← τ0||S S igssk(τ0).

(c) For each data block the authenticator is computed by Ui as

Ti =

H3 (name||i) ·
s∏

j=1

uci j

j


ktag

.

(d) {
u

ktag(r1(Cεµ )1,1−(Cε )1,1)
1 , u

ktag(r1(Cεµ )1,2−(Cε )1,2)
2 , · · · , uktag(r1(Cεµ )1,s−(Cε )1,s)

s

}
,

{
u

ktag(r2(Cεµ )2,1−(Cε )2,1)
1 , u

ktag(r2(Cεµ )2,2−(Cε )2,2)
2 , · · · , uktag(r2(Cεµ )2,s−(Cε )2,s)

s

}
,

· · · · · · · · · · · · · · · · · · ,
{
u

ktag(rn(Cεµ )n,1−(Cε )n,1)
1 , u

ktag(rn(Cεµ )n,2−(Cε )n,2)
2 , · · · , uktag(rn(Cεµ )n,s−(Cε )n,s)

s

}

are computed by Ui and sent to IS , we denote them as U pd.
(e) The file tag and {Ti}1≤i≤n are sent by Ui to the cloud.

5. PopulartityChange: This algorithm is the same as the corresponding algorithm in [10] except

T ′i = Ti ·
s∏

j=1

u
ktag(ri(Cεµ )i, j−(Cε )i, j)
j .

Note here we use ri instead of r in the exponentiation.
6. ProofGen: With the {ci}1≤i≤n, {Ti}1≤i≤n as the input,

• the auditing challenge is generated by T PA as the following:
(a) The file tag gained by the TPA from the cloud and using the key Pssk it checks whether

the correctness of signature on τ0. TPA rejects and halts if the signature is not correct.
(b) Otherwise, filename name, n, vr1 , vr2 , · · · , · · · , vrn and {u1, u2, · · · , us} are recovered by

the TPA. Then c(1 ≤ c ≤ n) is chosen by him, which is the number of the challenged
blocks.

(c) k1 ← Z∗p, k1 ← Z∗p are randomly picked by the TPA.
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(d) The challenge chal = (c, k1, k2) is sent by the TPA to the cloud.
• The cloud computes lt = πk1(t), at = φk2(t)(1 ≤ t ≤ c) after receiving chal from the TPA. And

then the proof T =
∏c

t=1 T at
lt

, η j =
∑c

t=1 at · clt , j, 1 ≤ j ≤ s is computed.
• ProofVerify: With the proof P = (T, η) and the challenge massage chal = (c, k1, k2), TPA

computes lt = πk1(t), at = φk2(t)(1 ≤ t ≤ c) . Then the below verification equations are
checked

e (T, g) = e


c∏

t=1

H3 (name||lt)at

s∏

j=1

uη j

j

 , v
 ,

e(T, g) =

c∏

t=1

e

H3 (name||lt)at

s∏

j=1

uη j

j , v
rt

 .

If one of them passed, the proof is valid.

The reasons why this improved proposal can resist the attack above is explained as follows: From
the U pd, {

u
ktag(r1(Cεµ )1,1−(Cε )1,1)
1 , u

ktag(r1(Cεµ )1,2−(Cε )1,2)
2 , · · · , uktag(r1(Cεµ )1,s−(Cε )1,s)

s

}
,

{
u

ktag(r2(Cεµ )2,1−(Cε )2,1)
1 , u

ktag(r2(Cεµ )2,2−(Cε )2,2)
2 , · · · , uktag(r2(Cεµ )2,s−(Cε )2,s)

s

}
,

· · · · · · · · · · · · · · · · · · ,
{
u

ktag(rn(Cεµ )n,1−(Cε )n,1)
1 , u

ktag(rn(Cεµ )n,2−(Cε )n,2)
2 , · · · , uktag(rn(Cεµ )n,s−(Cε )n,s)

s

}
,

the adversary can not obtain the below values anymore
{
u

ktag(r(Cεµ )1,1−(Cε )1,1)
1 , u

ktag(r(Cεµ )1,2−(Cε )1,2)
2 , · · · , uktag(r(Cεµ )1,s−(Cε )1,s)

s

}
,

{
u

ktag(r(Cεµ )2,1−(Cε )2,1)
1 , u

ktag(r(Cεµ )2,2−(Cε )2,2)
2 , · · · , uktag(r(Cεµ )2,s−(Cε )2,s)

s

}
,

{
u

ktag(r(Cεµ )3,1−(Cε )3,1)
1 , u

ktag(r(Cεµ )3,2−(Cε )3,2)
2 , · · · , uktag(r(Cεµ )3,s−(Cε )3,s)

s

}
,

· · · · · · · · · ,{
u

ktag(r(Cεµ )n,1−(Cε )n,1)
1 , u

ktag(r(Cεµ )n,2−(Cε )n,2)
2 , · · · , uktag(r(Cεµ )n,s−(Cε )n,s)

s

}
,

it can only obtain
{
u

ktag(r1(Cεµ )1,1−(Cε )1,1)
1 , u

ktag(r1(Cεµ )1,2−(Cε )1,2)
2 , · · · , uktag(r1(Cεµ )1,s−(Cε )1,s)

s

}
,

{
u

ktag(r2(Cεµ )2,1−(Cε )2,1)
1 , u

ktag(r2(Cεµ )2,2−(Cε )2,2)
2 , · · · , uktag(r2(Cεµ )2,s−(Cε )2,s)

s

}
,

{
u

ktag(r3(Cεµ )3,1−(Cε )3,1)
1 , u

ktag(r3(Cεµ )3,2−(Cε )3,2)
2 , · · · , uktag(r3(Cεµ )3,s−(Cε )3,s)

s

}
,

· · · · · · · · ·
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{
u

ktag(rn(Cεµ )n,1−(Cε )n,1)
1 , u

ktag(rn(Cεµ )n,2−(Cε )n,2)
2 , · · · , uktag(rn(Cεµ )n,s−(Cε )n,s)

s

}
,

from these values, the adversary can not compute ur1ktag

1 , uktag

1 , ur2ktag

2 , uktag

2 , · · · , · · · , · · · , urnktag
n , Bs = uktag

2
anymore. Thus the above attack can not work anymore.

6. Conclusion

In 2019, Hou et al. proposed an auditing scheme. However, in this paper, we demonstrate that their
proposal is not secure. The main reason for this is that the core idea of their updated authenticator
algorithm is vulnerable. Specifically, if the cloud storage server obtains many values of (ux)(r·C′i−Ci)

for 1 ≤ i ≤ n, it can easily compute (ux)r and (ux), which allows it to forge an authenticator σi =

(H(i) · uCany)x for any block Cany. This attack is a generalization of attacks on many cloud storage
auditing protocols based on the discrete logarithm hard problem, as shown in [31,32]. It highlights the
need for caution when designing cloud storage auditing protocols using cryptographic techniques, as
these schemes have rich algebraic structure that may result in vulnerabilities.

To address these shortcomings, we have developed an improved cloud storage auditing scheme
based on Hou et al.’s proposal. Our updated authenticator algorithm now uses (ux)(ri·C′i−Ci) for 1 ≤ i ≤ n,
which makes it impossible for the adversary to compute (ux)r and (ux). We have also analyzed why
our improved scheme is secure. We hope that our work will help future researchers avoid similar
shortcomings in their own cloud storage auditing schemes.

Acknowledgments

This work is supported by the Key Research and Development Program of Xianyang City(No.
L2022ZDYFSF061), Scientific Research Funding of Xianyang Vocational & Technical College on
“Research on Key Technologies for Secure Outsouced Cloud Storage”(Grant No.2021KJB03).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. J. Nowaková, M. Pokorný, Intelligent controller design by the artificial intelligence methods,
Sensors, 20 (2020), 4454. https://doi.org/10.3390/s20164454

2. M. Pawlicki, R. Kozik, M. Choras, A survey on neural networks for (cyber-) secu-
rity and (cyber-) security of neural networks, Neurocomputing, 500 (2022), 1075–1087.
https://doi.org/10.1016/j.neucom.2022.06.002

3. H. Xu, M. Guo, N. Nedjah, J. Zhang, P. Li, Vehicle and Pedestrian Detection Algorithm Based
on Lightweight YOLOv3-Promote and Semi-Precision Acceleration, IEEE Trans. Intell. Transp.
Syst., 23 (2022), 19760–19771. https://doi.org/10.1109/TITS.2021.3137253

4. B. Furht, A. Escalante, Handbook of Cloud Computing, Springer, 2010.
https://doi.org/10.1007/978-1-4419-6524-0

Mathematical Biosciences and Engineering Volume 20, Issue 5, 7905–7921.

http://dx.doi.org/https://doi.org/10.3390/s20164454
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2022.06.002
http://dx.doi.org/https://doi.org/10.1109/TITS.2021.3137253
http://dx.doi.org/https://doi.org/10.1007/978-1-4419-6524-0


7919

5. G. Fenza, V. Loia, G. Nota, Patterns for visual management in industry 4.0, Sensors, 21 (2021),
6440. https://doi.org/10.3390/s21196440
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