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Abstract: The competitive relationship is one of the important studies in population ecology. In this
paper, we investigate the dynamical behaviors of a two-species Lotka-Volterra competition system in
which intrinsic rates of increase are governed by the Ornstein-Uhlenbeck process. First, we prove the
existence and uniqueness of the global solution of the model. Second, the extinction of populations is
discussed. Moreover, a sufficient condition for the existence of the stationary distribution in the system
is obtained, and, further, the formulas for the mean and the covariance of the probability density func-
tion of the corresponding linearized system near the equilibrium point are obtained. Finally, numerical
simulations are applied to verify the theoretical results.
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1. Introduction

Competitive relationships between different species are common among populations of organisms.
Interspecific competition is a phenomenon in which two or more populations living together struggle
for ecological resources. For example, crops and weeds in the same field are two populations compet-
ing with each other, and there is also competition between cattle and sheep in the same grassland. As a
result, competition models are also important objects of study in mathematical biology. Mathematical
models of interspecific competition can effectively explain and predict populations’ changing rules and
development trends in the process of mutual competition.

In the 1920s, Volterra proposed the famous Lotka-Volterra model based on the predator-prey re-
lationship [1]. (Lotka had also proposed this model in his chemical reaction studies.) This model
has resulted in a breakthrough in population model study and piqued the interest of a wide range of
academics. After the predator-prey model, the Lotka-Volterra competition model was proposed and a
series of studies on competition models were obtained. We refer the reader to [2–8] and the references
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therein. Specifically, a classic two-species competition model can be expressed as follows.dN1(t) = N1(t)[r1 − b11N1(t) − b12N2(t)]dt,

dN2(t) = N2(t)[r2 − b21N1(t) − b22N2(t)]dt,
(1.1)

where Ni(t) (i = 1, 2) denotes the population size of the ith species at time t; ri is the intrinsic rate of
increase; bii denotes the intraspecific competition rate of the species. Since two populations compete
with each other, b12 denotes the effect of Population 2 on Population 1, and b21 denotes the effect of
Population 1 on Population 2. In general, b12 , b21. All parameters in Eq (1.1) are positive. Regarding
the equilibrium points of Eq (1.1), we have the following conclusions [9].

1) Equilibrium E0 = (0, 0) always exists.
2) Equilibrium E1 = ( r1

b11
, 0) always exists.

3) Equilibrium E2 = (0, r2
b22

) always exists.
4) Define α = b22r1−b12r2, β = −b21r1+b11r2 and γ = b11b22−b12b21. If the condition α > 0, β > 0

or α < 0, β < 0 holds, equilibrium E∗ = (N∗1 ,N
∗
2) = (α

γ
, β
γ
) always exists.

The discussion of Eq (1.1) does not consider the effects of environmental disturbances, while in
real life, the dynamic behaviors of biological populations are inevitably affected by environmental dis-
turbances such as air humidity and weather changes. Several scholars’ studies have proved this view.
Mode and Jacobson [10] found that the probability of population extinction is sensitive to environmen-
tal perturbations. DuBowy [11] found that seasonal shifts affect population growth and community
composition. And Mao et al. [12] showed that environmental noise can inhibit population size surges.
Therefore, the introduction of stochastic factors is essential.

There are mainly two ways to characterize environmental disturbances. One method is to directly
introduce environmental noises to a deterministic model, and it has been studied and used by many
scholars [13–18]. Another approach is to simulate random environmental perturbations through the
use of a stochastic process. Allen’s study [19] illustrated that a stochastic Ornstein-Uhlenbeck process
(also known as the mean-reverting process) possesses several advantages over linear functions of white
noise in terms of being able to modify parameters for environmental variability, which indicated that
the second way is a feasible and biologically meaningful approach. The study by Zhang and Yuan [20]
showed that the Ornstein-Uhlenbeck process is an effective and reasonable way to introduce environ-
mental noise into the continuous culture model of microorganisms. It was also found that the reversion
speed and volatility intensity have essential effects on the extinction and persistence of microorgan-
isms. Song and Zhang [21] proposed a new stochastic SVEIS model with the Ornstein-Uhlenbeck
process and studied this model’s stationary distribution and extinction. Yang et al. [22] introduced the
Ornstein-Uhlenbeck process into a food chain system to simulate stochastic perturbation, and some
valuable theoretical results were obtained. For the related study on the Ornstein-Uhlenbeck process,
readers can refer to [19–28]. Previous studies have shown that introducing the Ornstein-Uhlenbeck
process into the model is worth investigating in depth. However, as far as we know, no one has studied
a competition model with the Ornstein-Uhlenbeck process.

In fact, the growth rate and death rate of the population are easily disturbed by environmental
changes. Therefore, we consider a comparison of two methods to incorporate environmental variability
into the intrinsic rates of increase. There are some differences between the Ornstein-Uhlenbeck noise
and conventional Gaussian white noise, and these differences made us prefer to use the Ornstein-
Uhlenbeck process to model this environmental variability.
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1) The first approach is to introduce Gaussian white noise, specifically by making the following trans-
formation to r1 and r2:

r1 → r1(t) = θr1 + ξr1
dBr1(t)

dt
, r2 → r2(t) = θr2 + ξr2

dBr2(t)
dt
, (1.2)

where Br1(t) and Br2(t) are mutually independent Brownian motions. By directly integrating Eq (1.2),
the average per intrinsic rates of increase over an interval [0,T ] is equal to

r̄1 =
1
T

∫ T

0
r1(t)dt = θr1 + ξr1

Br1(T )
T

∼ N(θr1,
ξ2

r1

T
),

r̄2 =
1
T

∫ T

0
r2(t)dt = θr2 + ξr2

Br2(T )
T

∼ N(θr2,
ξ2

r2

T
).

That is, the variances of the average intrinsic rates of increase r̄1 and r̄2 over an interval of length T
both tend to infinity as T → 0.

Specifically operating the second method, i.e., we assume that r1 and r2 have a transformation of
the following form:

r1 → r1 + m1(t), r2 → r2 + m2(t). (1.3)

m1(t) and m2(t) are the Ornstein-Uhlenbeck processes which satisfy

dm1(t) = −θ1m1(t)dt + ξ1dB1(t),
dm2(t) = −θ2m2(t)dt + ξ2dB2(t),

(1.4)

where θi is the speed of reversion and ξi is the intensity of volatility of the process mi(t) (θi > 0, ξi >
0, i = 1, 2). B1(t) and B2(t) are mutually independent Brownian motions. After calculation, Eq (1.4)
can be solved exactly to yield

mi(t) = mi0e−θit +
∫ t

0
ξie−θi(t−s)dBi(s), (1.5)

where mi0 is the initial value of the process mi(t). From Eq (1.5), we obtain that mi(t) ∼ N(mi0e−θit,
θi

2

2ξi
(1− e−2θit)). It is not difficult to find that the process mi(t) follows the distribution N(0, θi

2

2ξi
) as t tends

to infinity. By directly integrating Eq (1.5), the average per intrinsic rates of increase over an interval
[0,T ] is equal to

r̄i = ri + m̄i = ri +
1
T

∫ T

0
mi(t)dt = ri +

1
T

∫ T

0

ξi
θi

(1 − e−θi(T−s))mi(t)dBi(s).

For small values of T , we have

Var(r̄i) =
ξ2

i T
3
+ o(T 2).

It is not difficult to find that, unlike the results for Gaussian white noise, the variance goes to 0 rather
than∞ as T → 0.
2) For a small time interval ∆t, an Ornstein-Uhlenbeck process X(t) has a correlation coefficient
ρ(X(t), X(t + ∆t)) = 1 − o(∆t) while ρ(X(t), X(t + ∆t)) = 0 for Gaussian white noise. So white noise
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processes are often used to model random perturbations with very small correlation periods. How-
ever, the environment of many biological systems can be considered as continuously varying due to a
large number of interacting variables. Therefore, the Ornstein-Uhlenbeck process is more suitable for
modeling the parameters in this paper.

Motivated by the above discussion, we consider using the Ornstein-Uhlenbeck process to simu-
late the stochastic process. The interspecific competition model with the Ornstein-Uhlenbeck process
studied in this paper is obtained by combining Eqs (1.1), (1.3) and (1.4):

dN1(t) = N1(t)[r1 + m1(t) − b11N1(t) − b12N2(t)]dt,

dN2(t) = N2(t)[r2 + m2(t) − b21N1(t) − b22N2(t)]dt,

dm1(t) = −θ1m1(t)dt + ξ1dB1(t),
dm2(t) = −θ2m2(t)dt + ξ2dB2(t).

(1.6)

Throughout this paper, we let (Ω, F, {Ft}t≥0, P) be a complete probability space with a filtration
{Ft}t≥0 satisfying the usual conditions (i.e., it is right continuous and increasing while F0 contains all
P-null sets). And we denote Rn

+ = {x ∈ Rn : xi > 0, 1 ≤ i ≤ n}, R+ = [0,+∞).
This paper is organized as follows. In the next section, we investigate the existence and uniqueness

of the global solution to the model (1.6). In Section 3, we discuss the cases of population extinction. In
Section 4, we obtain sufficient conditions for the existence of the stationary distribution; the expression
for the mean and covariance of the density function of the linearized system corresponding to the
stochastic model (1.6) around the original point are obtained in Section 5. In Section 6, the previous
theoretical results are verified by numerical simulations. Finally, a brief conclusion is given.

2. Existence and uniqueness of the global positive solution

Since N1(t) and N2(t) denote the number of individuals, they should be non-negative from the view-
point of biology. To study the long-term dynamical behaviors of the stochastic model (1.6) proposed
in this paper, we first need to consider whether the solution is global and non-negative, which is a
fundamental condition for the follow-up study. So in this section, we obtain the following theorem,
which guarantees the existence and uniqueness of the global positive solution for the model (1.6).
Theorem 1. For any given initial value (N1(0),N2(0),m1(0),m2(0)) ∈ R2

+ × R2, the model (1.6) has a
unique solution (N1(t),N2(t),m1(t),m2(t)) ∈ R2

+ × R2 for all t ≥ 0 with a probability of one.
Proof. Apparently, coefficients of the model (1.6) satisfy the local Lipschitz condition; so, for
any given initial value (N1(0),N2(0),m1(0),m2(0)) ∈ R2

+ × R2, there exists a unique solution
(N1(t),N2(t),m1(t),m2(t)) ∈ R2

+ × R2, t ∈ [0, ρe), where ρe is the explosion time. To prove the global
nature of the solution, we only need to prove that ρe = ∞ a.s. Let l0 > 0 be sufficiently large such
that N1(0),N2(0), em1(0) and em2(0) all lie within the interval [ 1

l0
, l0]. For each integer l > l0, define the

stopping time [29] as follows:

τl = inf
{

t ∈ (0, ρe) : min
{
N1(0),N2(0), em1(0), em2(0)

}
≤

1
l

or max
{
N1(0),N2(0), em1(0), em2(0)

}
≥ l

}
,

where inf ϕ = ∞. If we can show that τ∞ = ∞ a.s., then ρe = ∞ a.s., and, further, Theorem 1 is proved.
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Now, considering the contradiction, we assume that there exists a pair of constants T > 0 and
ε ∈ (0, 1) such that P(τ∞ ≤ T ) > ε. Hence there is an integer l1 ≥ l0 such that P(τl ≤ T ) ≥ ε, ∀l ≥ l1.
Define C2-function V : R2

+ × R2 → R+,

V(N1(t),N2(t),m1(t),m2(t)) = N1(t) − 1 − ln N1(t) + N2(t) − 1 − ln N2(t) +
m4

1(t)
4
+

m4
2(t)
4
.

Applying Itô’s formula to V, we get

dV = LVdt + m3
1ξ1dB1(t) + m3

2ξ2dB2(t), (2.1)

where
LV = (r1N1 + m1N1 − b11N2

1 − b12N1N2 − r1 − m1 + b11N1 + b12N2)
+ (r2N2 + m2N2 − b21N1N2 − b22N2

2 − r2 − m2 + b21N1 + b22N2)

− θ1m4
1 − θ2m4

2 +
3
2
ξ2

1m2
1 +

3
2
ξ2

2m2
2

≤ −b11N2
1 − b22N2

2 + (r1 + b11 + b21)N1 + (r2 + b12 + b22)N2 − m1 − m2 − r1

− r2 +
2
3

N
3
2
1 +

1
3
|m1|

3 +
2
3

N
3
2
2 +

1
3
|m2|

3
− θ1m4

1 − θ2m4
2 +

3
2
ξ2

1m2
1 +

3
2
ξ2

2m2
2

≤ sup
(m1,m2)∈R2

[− θ1m4
1 − θ2m4

2 +
1
3
|m1|

3 +
1
3
|m2|

3 +
3
2
ξ2

1m2
1 +

3
2
ξ2

2m2
2 − m1 − m2]

+ sup
(N1,N2)∈R2

+

[−b11N2
1 − b22N2

2 +
2
3

N
3
2
1 +

2
3

N
3
2
2 + (r1 + b11 + b21)N1 + (r2 + b12 + b22)N2]

− r1 − r2

≤ k1;

k1 is a positive constant that is independent of the initial value. Integrating both sides of Eq (2.1) from
0 to τl ∧ T and then taking expectations, we get

EV(N1(τl ∧ T ),N2(τl ∧ T ),m1(τl ∧ T ),m2(τl ∧ T ))
≤ V(N1(0),N2(0),m1(0),m2(0)) + k1E(τl ∧ T )
≤ V(N1(0),N2(0),m1(0),m2(0)) + k1T.

Let Ω̃ = {ϖ ∈ Ω : τl ≤ T }, where ϖ represents a sample point; then, we have P(Ω̃) ≥ ε, ε ∈ (0, 1);
thus,

V(N1(0),N2(0),m1(0),m2(0)) + k1T

≥ E[IΩ̃V(N1(τl ∧ T ),N2(τl ∧ T ),m1(τl ∧ T ),m2(τl ∧ T ))]

≥ ε[(l − 1 − ln l) ∧ (
1
l
− 1 + ln l) ∧

(ln l)4

4
],

where IΩ̃ is the indicator function of Ω̃. Let l→ ∞; we obtain

∞ > V(N1(0),N2(0),m1(0),m2(0)) + k1T = ∞,

which is a contradiction. This completes the proof of Theorem 1.
Theorem 2. For any given initial value (N1(0),N2(0),m1(0),m2(0)) ∈ R2

+×R2, the solution (N1(t),N2(t),
m1(t),m2(t)) of the model (1.6) has the property that for any p ≥ 1, there exists a constant k(p) such
that
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lim sup
t→∞

EN p
i ≤ k(p), i = 1, 2.

Moreover,

lim sup
t→∞

log Ni(t)
t

≤ 0, i = 1, 2 a.s.

Proof. Define a Lyapunov function as

V(N1(t),N2(t),m1(t),m2(t)) =
(N1(t) + N2(t))p

p
+

m4p
1 (t)
4p

+
m4p

2 (t)
4p
,

where p ≥ 1. Applying Itô’s formula to V, we get

LV = (N1 + N2)p−1[−b11N2
1 − b22N2

2 − (b12 + b21)N1N2 + r1N1 + r2N2 + m1N1 + m2N2]

−

2∑
i=1

θim
4p
i +

4p − 1
2

2∑
i=1

ξ2
i m4p−2

i

≤ (N1 + N2)p−1[−
1
2

min{b11, b22}(N1 + N2)2 +max{r1, r2}(N1 + N2) + (|m1| + |m2|)(N1 + N2)]

−

2∑
i=1

θim
4p
i +

4p − 1
2

2∑
i=1

ξ2
i m4p−2

i

≤ −
1
2

min{b11, b22}(N1 + N2)p+1 +max{r1, r2}(N1 + N2)p +
4p

2p + 1
(N1 + N2)1+ 1

2p

−

2∑
i=1

θim
4p
i +

4p − 1
2

2∑
i=1

ξ2
i m4p−2

i +
|m1|

2p+1

2p + 1
+
|m2|

2p+1

2p + 1

≤ −
1
4

min{b11, b22}(N1 + N2)p+1 −
1
2

2∑
i=1

θim
4p
i + k2 + k3,

where
k2 = sup

(N1,N2)∈R2
+

[−
1
4

min{b11, b22}(N1 + N2)p+1 +max{r1, r2}(N1 + N2)p +
4p

2p + 1
(N1 + N2)1+ 1

2p ] < +∞,

k3 = sup
(m1,m2)∈R2

[−
1
2

2∑
i=1

θim
4p
i +

4p − 1
2

2∑
i=1

ξ2
i m4p−2

i +
|m1|

2p+1

2p + 1
+
|m2|

2p+1

2p + 1
] < +∞.

For any constant δ which satisfies 0 < δ
4p <

θi
2 , i = 1, 2, we have

L(eδtV(N1,N2,m1,m2) = eδt(δV + LV)

≤ eδt(−
1
4

min{b11, b22}(N1 + N2)p+1 +
δ

p
(N1 + N2)p

−
1
2

2∑
i=1

θim
4p
i +

δ

4p

2∑
i=1

m4p
i + k2 + k3)

≤ k̄(p)eδt,

where

k̄(p) = −
1
4

min{b11, b22}(N1 + N2)p+1 +
δ

p
(N1 + N2)p −

1
2

2∑
i=1

θim
4p
i +

δ

4p

2∑
i=1

m4p
i + k2 + k3 < +∞.

Thus,
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E(eδtV) = V(N1(0),N2(0),m1(0),m2(0)) + E
∫ t

0
eδs(δV + LV)ds

≤ V(N1(0),N2(0),m1(0),m2(0)) + E
∫ t

0
eδsk̄(p)ds

≤ V(N1(0),N2(0),m1(0),m2(0)) +
k̄(p)
δ

(eδt − 1),

which implies

lim sup
t→∞

EV(N1,N2,m1,m2) ≤
k̄(p)
δ

:= k(p) a.s.

There exists a constant h(p) > 0 such that E[(N1(t) + N2(t))p] ≤ h(p), t ≥ 0 a.s. For convenience,
define N(t) = (N1(t) + N2(t))p = xp(t). Applying Itô’s formula to N(t) yields

LN = pxp−1[−b11N2
1 − b22N2

2 − (b12 + b21)N1N2 + (r1 + m1)N1 + (r2 + m2)N2]

≤ −
p
2

min{b11, b22}xp+1 + p max{r1, r2}xp +
4p2

2p + 1
x1+ 1

2p +
|m1|

2p+1 + |m2|
2p+1

2p + 1
.

Let θ > 0 be sufficiently small and satisfy nθ ≤ t ≤ (n + 1)θ, n = 1, 2, . . .. It follows that

E[ sup
nθ≤t≤(n+1)θ

xp(t)] = E[xp(nθ)] + I,

where

I = E[ sup
nθ≤t≤(n+1)θ

∣∣∣∣∣∣
∫ t

nθ
LNds

∣∣∣∣∣∣]
≤ p max {r1, r2} E

∫ (n+1)θ

nθ
xp(s)ds +

4p2

2p + 1
E

∫ (n+1)θ

nθ
x1+ 1

2p (s)ds

+
p

2p + 1
E

∫ (n+1)θ

nθ
(|m1|

2p+1(s) + |m2|
2p+1(s))

p
ds

≤ p max {r1, r2} θE[ sup
nθ≤t≤(n+1)θ

xp(t)] +
4p2

2p + 1
θE[ sup

nθ≤t≤(n+1)θ
x1+ 1

2p (t)]

+
p

2p + 1
θE[ sup

nθ≤t≤(n+1)θ
(|m1|

2p+1(t) + |m2|
2p+1(t))

p
].

Choose θ sufficiently small such that I < h(p); therefore,

E[ sup
nθ≤t≤(n+1)θ

xp(t)] < 2h(p).

Let ε be an arbitrary positive constant; then, based on Chebyshev’s inequality [30], it follows that

P{ sup
nθ≤t≤(n+1)θ

xp(t) > (nθ)1+ε} ≤
2h(p)
(nθ)1+ε , n = 1, 2, . . . .

There exists an integer-valued random variable n0(ω) such that for almost all ω ∈ Ω, when n ≥ n0, we
have

sup
nθ≤t≤(n+1)θ

xp(t) ≤ (nθ)1+ε.
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If n ≥ n0 and nθ ≤ t ≤ (n + 1)θ, we get

lim sup
t→∞

log xp(t)
log t

≤ lim sup
t→∞

(1 + ε) log(nθ)
log(nθ)

≤ 1 + ε a.s.

Let ε→ 0; we get

lim sup
t→∞

log xp(t)
log t

≤ 1 a.s.;

then

lim sup
t→∞

log x(t)
log t

≤
1
p

a.s.

Thus,

lim sup
t→∞

log x(t)
t
≤ lim sup

t→∞

log x(t)
log t

× lim sup
t→∞

log t
t
≤ 0,

and it follows that

lim sup
t→∞

log(Ni(t))
t

≤ 0, i = 1, 2 a.s.

3. Extinction of the model (1.6)

In this section, the extinction of populations is discussed. First, we give the following lemma needed
for the subsequent proof.
Lemma 1. [31] If f (t) is integrable, we define ⟨ f ⟩t =

1
t

∫ t

0
f (s)ds. Assume that z(t) ∈ C(Ω× [0,∞),R+).

1) If for all t > T, there are two positive constants T and δ0 satisfying

ln z(t) ≤ δt − δ0

∫ t

0
z(s)ds +

n∑
i=1

αiB(t) a.s.,

where αi and δ are constants, we get
lim sup

t→∞
⟨z⟩t ≤

δ

δ0
a.s., δ > 0;

lim
t→∞
⟨z⟩t = 0 a.s., δ < 0.

2) If for all t > T, there are three positive constants T , δ and δ0 satisfying

ln z(t) ≥ δt − δ0

∫ t

0
z(s)ds +

n∑
i=1

αiB(t) a.s.,

where αi denotes constants, we get lim inf
t→∞

⟨z⟩t ≥ δ
δ0

a.s.

Theorem 3. For any given initial value (N1(0),N2(0),m1(0),m2(0)) ∈ R2
+ × R2, the model (1.6) has the

following properties:
1) if α > 0 and β < 0, then

lim
t→∞

1
t

∫ t

0
N1(s)ds =

r1

b11
,lim
t→∞

1
t

∫ t

0
N2(s)ds = 0 a.s.,
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2) if α < 0 and β > 0, then

lim
t→∞

1
t

∫ t

0
N1(s)ds = 0,lim

t→∞

1
t

∫ t

0
N2(s)ds =

r2

b22
a.s.

Proof. 1) The discussion is divided into the following two cases.
Case 3.1 If α > 0, β < 0 and γ > 0, by Itô’s formula, we get

d(−
b21

b11
ln N1(t) + ln N2(t)) = [−

b21

b11
(r1 + m1(t) − b11N1(t) − b12N2(t))

+ (r2 + m2(t) − b21N1(t) − b22N2(t))]dt.

According to Theorem 2, let ε1 satisfy −β

b11
= b21r1−b11r2

b11
> ε1 > 0 and there exist T1 which is sufficiently

large such that b21
b11t ln N1(t)

N1(0) +
1
t ln N2(0) < ε1 holds for t > T1. It is easy to show that

1
t

ln N2(t) =
b21

b11t
ln

N1(t)
N1(0)

+
1
t

ln N2(0) +
−b21r1 + b11r2

b11
−

b11b22 − b12b21

b11
⟨N2⟩t −

b21

b11
⟨m1⟩t + ⟨m2⟩t

≤ ε1 +
−b21r1 + b11r2

b11
−

b21

b11
⟨m1⟩t + ⟨m2⟩t.

Taking the superior limit on both sides, we have

lim sup
t→∞

1
t

ln(N2(t)) ≤ ε1 +
−b21r1 + b11r2

b11
< 0.

Therefore, we have that lim
t→∞

N2(t) = 0 a.s. Considering the equation

1
t

ln
N1(t)
N1(0)

= r1 + ⟨m1⟩t − b11⟨N1⟩t − b12⟨N2⟩t,

according to Lemma 1, we have

lim
t→∞
⟨N1⟩t =

r1

b11
a.s.

Case 3.2 Similar to Case 3.1, if α > 0, β < 0 and γ > 0, by Itô’s formula, we get

d(− ln N1(t) +
b12

b22
ln N2(t)) = [−(r1 + m1t − b11N1t − b12N2t)

+
b12

b22
(r2 + m2t − b21N1t − b22N2t)]dt.

According to Theorem 2, let ε2 satisfy α
b22
= b22r1−b12r2

b22
> ε2 > 0 and there exist T2 which is sufficiently

large such that 1
t ln N1(t)

N1(0) +
b12
b22t ln N2(0) < ε2 holds for t > T2. It is easy to show that

b12

b22t
ln N2(t) =

1
t

ln
N1(t)
N1(0)

+
b12

b22t
ln N2(0) +

−b22r1 + b12r2

b22
+

b11b22 − b12b21

b11
⟨N1⟩t − ⟨m1⟩t +

b12

b22
⟨m2⟩t

≤ ε2 +
−b22r1 + b12r2

b22
− ⟨m1⟩t +

b12

b22
⟨m2⟩t.

Taking the superior limit on both sides, we have

lim sup
t→∞

b12

b22t
ln(N2(t)) ≤ ε2 +

−b22r1 + b12r2

b22
< 0.
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Therefore, we have lim
t→∞

N2(t) = 0 a.s. Furthermore, we have

lim
t→∞
⟨N1⟩t =

r1

b11
a.s.

2) The discussion is divided into the following two cases.
Case 3.3 If α < 0, β > 0 and γ > 0, by Itô’s formula, we get

d(
b22

b12
ln N1(t) − ln N2(t)) = [

b22

b12
(r1 + m1(t) − b11N1(t) − b12N2(t))

− (r2 + m2(t) − b21N1(t) − b22N2(t))]dt.

According to Theorem 2, let ε3 satisfy −αb12
= −b22r1+b12r2

b12
> ε3 > 0 and there exist T3 which is sufficiently

large such that b22
b12t ln N1(0) + 1

t ln N2(t)
N2(0) < ε3 holds for t > T3. It is easy to show that

b22

b12t
ln N1(t) =

b22

b12t
ln N1(0) +

1
t

ln
N2(t)
N2(0)

+
b22r1 − b12r2

b12
−

b11b22 − b12b21

b11
⟨N1⟩t +

b22

b12
⟨m1⟩t − ⟨m2⟩t

≤ ε3 +
b22r1 − b12r2

b12
+

b22

b12
⟨m1⟩t − ⟨m2⟩t.

Taking the superior limit on both sides, we have

lim sup
t→∞

b22

b12t
ln(N1(t)) ≤ ε3 +

b22r1 − b12r2

b12
< 0.

Therefore, we have that lim
t→∞

N1(t) = 0 a.s. Considering the equation

1
t

ln
N2(t)
N2(0)

= r2 + ⟨m2⟩t − b21⟨N1⟩t − b22⟨N2⟩t,

according to Lemma 1, we have

lim
t→∞
⟨N2⟩t =

r2

b22
a.s.

Case 3.4 Similar to Case 3.3, if α < 0, β > 0 and γ < 0, by Itô’s formula, we get

d(ln N1(t) −
b11

b21
ln N2(t)) = [(r1 + m1(t) − b11N1(t) − b12N2(t))

−
b11

b21
(r2 + m2(t) − b21N1(t) − b22N2(t))]dt.

According to Theorem 2, let ε4 satisfy β

b21
= −b21r1+b11r2

b21
> ε4 > 0 and there exist T4 which is sufficiently

large such that 1
t ln N1(0) + b11

b21t ln N2(t)
N2(0) < ε4 holds for t > T4. It is easy to show that

1
t

ln N1(t) =
1
t

ln N1(0) +
b11

b21t
ln

N2(t)
N2(0)

+
b21r1 − b11r2

b21
+

b11b22 − b12b21

b11
⟨N2⟩t + ⟨m1⟩t −

b11

b21
⟨m2⟩t

≤ ε4 +
b21r1 − b11r2

b21
+ ⟨m1⟩t −

b11

b21
⟨m2⟩t.

Taking the superior limit on both sides, we have

lim sup
t→∞

1
t

ln(N1(t)) ≤ ε4 +
b21r1 − b11r2

b21
< 0.

Therefore, we have that lim
t→∞

N1(t) = 0 a.s. Furthermore, we have

lim
t→∞
⟨N2⟩t =

r2

b22
a.s.
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4. Stationary distribution of the model (1.6)

In this section, a sufficient condition for the existence of the stationary distribution in the model (1.6)
is obtained. Before giving the theorem, we present the following lemma needed for the subsequent
proof.
Lemma 2. [32] X(t) is a homogeneous Markov process which is expressed as

dX(t) = b(X(t))dt +
k∑

r=1
σr(X(t))dBr(t).

Assume that b(X), σ1(X), · · · , σk(X)(t ≥ t0, x ∈ Rd) are continuous.
1) There is a constant B that satisfies

|b(X1) − b(X2)| +
k∑

r=1
|σ1(X1) − σ2(X2)| ≤ B |X1 − X2| , |b(X)| +

k∑
r=1
|σr(X)| ≤ B(1 + |X|).

2) A non-negative U(x) ∈ C2 in Rd that satisfies LU(x) ≤ −1 outside of some compact set exists.
If Conditions (1) and (2) hold, X(t) is a stationary Markov process.
Theorem 4. For any given initial value (N1(0),N2(0),m1(0),m2(0)) ∈ R2

+ × R2, suppose that the condi-
tion α > 0, β > 0 holds. If

w < min
{

(b11 −
b12 + b21

2
−
ξ1
2

)(N∗1)2, (b22 −
b12 + b21

2
−
ξ2
2

)(N∗2)2
}
,

where w = ξ1
2θ1
+
ξ2

2θ2
, then the model (1.6) has a stationary distribution.

Proof. For the model (1.6), Condition (1) of Lemma 2 holds. Thus, we only need to verify Condition
(2). Consider the following function:

V(N1(t),N2(t),m1(t),m2(t)) = (N1(t) − N∗1 − N∗1 ln
N1(t)
N∗1

) + (N2(t) − N∗2 − N∗2 ln
N2(t)
N∗2

)

+
1
θ1ξ1

m2
1(t) +

1
θ2ξ2

m2
2(t),

where N∗1 =
b22r1−b12r2

b11b22−b12b21
> 0 and N∗2 =

−b21r1+b11r2
b11b22−b12b21

> 0. For the sake of convenience, define

V1(t) = N1(t) − N∗1 − N∗1 ln
N1(t)
N∗1

, V2(t) = N2(t) − N∗2 − N∗2 ln
N2(t)
N∗2

, V3(t) =
1
θ1ξ1

m2
1(t) +

1
θ2ξ2

m2
2(t).

Using Itô’s formula, we get

LV1 = (N1 − N∗1)(r1 + m1 − b11N1 − b12N2)
= (N1 − N∗1)(b11N∗1 + b12N∗2 + m1 − b11N1 − b12N2)

≤ −(b11 −
ξ1
2

)(N1 − N∗1)2
− b12(N1 − N∗1)(N2 − N∗2) +

m2
1

2ξ1

≤ −(b11 −
b12

2
−
ξ1
2

)(N1 − N∗1)2
+

b12

2
(N2 − N∗2)2

+
m2

1

2ξ1
,

LV2 ≤ −(b22 −
b21

2
−
ξ2
2

)(N2 − N∗2)2
+

b21

2
(N2 − N∗2)2

+
m2

2

2ξ2
,

LV3 = −
1
ξ1

m2
1 −

1
ξ2

m2
2 +
ξ1

2θ1
+
ξ2

2θ2
.
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Therefore,

LV ≤ −(b11 −
b12 + b21

2
−
ξ1
2

)(N1 − N∗1)2
− (b22 −

b12 + b21

2
−
ξ2
2

)(N2 − N∗2)2
−

1
2ξ1

m2
1 −

1
2ξ2

m2
2 + w,

where w = ξ1
2θ1
+
ξ2

2θ2
. If

w < min
{

(b11 −
b12 + b21

2
−
ξ1
2

)(N∗1)2, (b22 −
b12 + b21

2
−
ξ2
2

)(N∗2)2
}

holds, then the ellipsoid −(b11−
b12+b21

2 −
ξ1
2 )(N1 − N∗1)2− (b22−

b12+b21
2 −

ξ2
2 )(N2 − N∗2)2− 1

2ξ1
m2

1−
1

2ξ2
m2

2+w
lies entirely in R2

+
× R2. We can take U to be a neighborhood of the ellipsoid with Ū ⊆ R2

+ × R2 where
Ū represents the compact closure of U. Model (1.6) is known to satisfy Condition (1) of Lemma 2,
and we have just proved that Condition (2) is true. Hence, the model (1.6) has a stationary distribution
according to Lemma 2.

5. Density function of the model (1.6)

In this section, the formulas for the mean and the covariance of the probability density function of
the corresponding linearized system near the equilibrium point are obtained. For the model (1.6), the
equilibrium is E∗ = (N∗1 ,N

∗
2 , 0, 0). Let ui = Ni − N∗i , i = 1, 2; the corresponding linearized model of the

model (1.6) is 
du1 = (−a11u1 − a12u2 + N∗1m1)dt,

du2 = (−a21u1 − a22u2 + N∗2m2)dt,

dm1(t) = −θ1m1(t)dt + ξ1dB1(t),
dm2(t) = −θ2m2(t)dt + ξ2dB2(t),

(5.1)

where a11 = b11N∗1 > 0, a12 = b12N∗1 > 0, a21 = b21N∗2 > 0 and a22 = b22N∗2 > 0.
Theorem 5. For any given initial value (N1(0),N2(0),m1(0),m2(0)) ∈ R2

+ × R2, if the conditions of
Theorem 4 hold, then the model (5.1) has a stationary distribution around the original point. The
mean vector is (0, 0, 0, 0), and the covariance matrix has the following form:

Σ=α2
1(I3I2I1)−1Σ01[(I3I2I1)−1]T

+ α2
2(J3J2J1)−1Σ02[(J3J2J1)−1]T

,

where
p1 = a11 + a22, p2 = a11a22 − a21a12, α1 = a21ξ1N∗1 , α2 = a12ξ2N∗2 , η1=2θ21 p1 + 2θ1 p2

1 + 2p1 p2,
η2=2θ22 p1 + 2θ1 p2

1 + 2p1 p2,

I1 =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

, I2 =


1 0 0 0
0 −a21 −a22 0
0 0 1 0
0 0 0 1

, I3 =


−a21N∗1 −p1 −p2 −a22N∗2

0 1 0 0
0 0 1 0
0 0 0 1

,

J1 =


0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

, J2 =


1 0 0 0
0 −a12 −a11 0
0 0 1 0
0 0 0 1

, J3 =


−a12N∗2 −p1 −p2 −a11N∗1

0 1 0 0
0 0 1 0
0 0 0 1

,
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Σ01 =


θ1 p1+p2
η1

0 − 1
η1

0
0 1

η1
0 0

− 1
η1

0 θ1+p1
θ1 p2η1

0
0 0 0 0

, Σ02 =


θ2 p1+p2
η2

0 − 1
η2

0
0 1

η2
0 0

− 1
η2

0 θ2+p1
θ2 p2η2

0
0 0 0 0

 .
Proof. Let X = (u1, u2,m1,m2)T , B(t) = (0, 0, B1(t), B2(t))T and

A =


−a11 −a12 N∗1 0
−a21 −a22 0 N∗2

0 0 −θ1 0
0 0 0 −θ2

, H =


0 0 0 0
0 0 0 0
0 0 ξ1 0
0 0 0 ξ2

 ;

then the model (5.1) is transformed into dX = AX(t)dt + HdB(t). Then we get

H2 + AΣ + ΣAT = 0. (5.2)

Since B1(t) and B2(t) are mutually independent, Equation (5.2) can be equivalently transformed into
the following algebraic sub-equations:

H2
i + AΣi + ΣiAT = 0, i = 1, 2,

where H2
1 = diag(0, 0, ξ2

1, 0), H2
2 = diag(0, 0, 0, ξ2

2) and Σ = Σ1 + Σ2. Let B =
(
−a11 −a12

−a21 −a22

)
; the

characteristic polynomial of matrix B is

ϕB(λ) = λ2 + (a11 + a22)λ + a11a22 − a12a21,

where p1 = a11 + a22 > 0, p2 = a11a22 − a12a21 > 0 and p1 p2 = (a11 + a22)(a11a22 − a12a21) > 0.
According to the Routh-Hurwitz criterion [33], matrix B has all negative real-part eigenvalues. Next,
we prove Theorem 5 in two cases.

Case 5.1 Consider the equation
H2

1 + AΣ1 + Σ1AT = 0. (5.3)

Let A1 = I1AI−1
1 , where I1 =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

; we have

A1 =


−θ1 0 0 0
N∗1 −a11 −a12 0
0 −a21 −a22 N∗2
0 0 0 −θ2

.

Next, let A2 = I2A1I−1
2 , where I2 =


1 0 0 0
0 −a21 −a22 0
0 0 1 0
0 0 0 1

; we therefore have
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A2 =


−θ1 0 0 0
−a21N∗1 −p1 −p2 −a22N∗2

0 1 0 N∗2
0 0 0 −θ2

.

Let A3 = I3A2I−1
3 , where I3 =


−a21N∗1 −p1 −p2 −a22N∗2

0 1 0 0
0 0 1 0
0 0 0 1

; thus,

A3 =


−θ1 − p1 −θ1 p1 − p2 −θ1 p2 (θ2 − θ1)a22N∗2 − p2N∗2

1 0 0 0
0 1 0 N∗2
0 0 0 −θ2

.
Equation (5.3) is transformed into

(I3I2I1)H2
1(I3I2I1)T + A3(I3I2I1)Σ1(I3I2I1)T + (I3I2I1)Σ1(I3I2I1)T AT

3 = 0.

Denote Σ01=
1
α2

1
(I3I2I1)Σ1(I3I2I1)T , where α1 = a21ξ1N∗1; we can get

Σ01 =


θ1 p1+p2
η1

0 − 1
η1

0
0 1

η1
0 0

− 1
η1

0 θ1+p1
θ1 p2η1

0
0 0 0 0

 ,
where η1=2θ21 p1 + 2θ1 p2

1 + 2p1 p2.
Σ01 is a positive semi-definite matrix, and Σ1=α

2
1(I3I2I1)−1Σ01[(I3I2I1)−1]T is also a positive semi-

definite matrix.
Case 5.2 Consider the equation

H2
2 + AΣ2 + Σ2AT = 0. (5.4)

Let B1 = J1AJ−1
1 , where J1 =


0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

; we have

B1 =


−θ2 0 0 0
N∗2 −a22 −a21 0
0 −a12 −a11 N∗1
0 0 0 −θ1

.

Next, let B2 = J2B1J−1
2 , where J2 =


1 0 0 0
0 −a12 −a11 0
0 0 1 0
0 0 0 1

; we therefore have
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B2 =


−θ2 0 0 0
−a12N∗2 −p1 −p2 −a11N∗1

0 1 0 N∗1
0 0 0 −θ1

.

Let B3 = J3B2J−1
3 , where J3 =


−a12N∗2 −p1 −p2 −a11N∗1

0 1 0 0
0 0 1 0
0 0 0 1

; thus,

B3 =


−θ2 − p1 −θ2 p1 − p2 −θ2 p2 (θ1 − θ2)a11N∗1 − p2N∗1

1 0 0 0
0 1 0 N∗1
0 0 0 −θ1

.
Equation (5.4) is transformed into

(J3J2J1)H2
2(J3J2J1)T + B3(J3J2J1)Σ2(J3J2J1)T + (J3J2J1)Σ2(J3J2J1)T BT

3 = 0.

Denote Σ02=
1
α2

2
(J3J2J1)Σ2(J3J2J1)T , where α2 = a12ξ2N∗2; we can get

Σ02 =


θ2 p1+p2
η2

0 − 1
η2

0
0 1

η2
0 0

− 1
η2

0 θ2+p1
θ2 p2η2

0
0 0 0 0

 ,
where η2=2θ22 p1 + 2θ1 p2

1 + 2p1 p2.
Σ02 is a positive semi-definite matrix, and Σ2=α

2
2(J3J2J1)−1Σ02[(J3J2J1)−1]T is also a positive semi-

definite matrix. The proof is complete.

6. Numerical simulations

This section gives examples of numerical simulations to verify the previous results. Specifically,
we will verify the following results:

1) The effect of the change of ξi in the Ornstein-Uhlenbeck process.
2) When the conditions of Theorems 3 or 4 are satisfied, observe whether the images resulting from

numerical simulation agree with the theory.
3) Compare and observe the images of the deterministic and stochastic models.
The corresponding discrete model of the model (1.6) is

Nk+1
1
= Nk

1
+ Nk

1
[r1 + mk

1
− b11Nk

1
− b12Nk

2]∆t,

Nk+1
2 = Nk

2
+ Nk

2[r2 + mk
2 − b21Nk

1
− b22Nk

2]∆t,

mk+1
1
= mk

1
− θ1mk

1
∆t + ξ1

√
∆tνk +

ξ2
1

2
(ν2

k
− 1)∆t,

mk+1
2 = mk

2 − θ2mk
2∆t + ξ2

√
∆tlk +

ξ2
2

2
(l2

k
− 1)∆t,

(6.1)
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where ∆t > 0 is the time increment and νk and lk are the mutually independent Gaussian random
variables with distribution N(0, 1) for k = 1, 2, . . . , n. Nk

1 ,N
k
2 , mk

1 and mk
2 denote the corresponding

values of the kth iteration of the model (6.1).

And the corresponding discrete model of the deterministic model (1.1) is

Nk+1
1
= Nk

1
+ Nk

1
[r1 − b11Nk

1
− b12Nk

2]∆t,

Nk+1
2 = Nk

2
+ Nk

2[r2 − b21Nk
1
− b22Nk

2]∆t,
(6.2)

where ∆t > 0 is the time increment and Nk
1 and Nk

2 denote the corresponding values of the kth iteration
of the model (6.2).
1) We will verify the correctness of Theorem 4 and consider the effect of the change of ξi in the
Ornstein-Uhlenbeck process.
Example 1. Let r1 = 0.4, r2 = 0.5, b11 = 0.5, b12 = 0.4, b21 = 0.45, b22 = 0.6, θ1 = θ2 = 0.5,N1(0) =
0.5,N2(0) = 0.5,M1(0) = 0.001 and M2(0) = 0.001. If ξ1 = ξ2 = 0.001, then α = 0.04 > 0,
β = 0.07 > 0 and w = 0.002 < min{0.0083, 0.0594}. The corresponding image can be seen in Figure
1.
Example 2. Similarly, let r1 = 0.4, r2 = 0.5, b11 = 0.5, b12 = 0.4, b21 = 0.45, b22 = 0.6, θ1 = θ2 =
0.5,N1(0) = 0.5,N2(0) = 0.5,M1(0) = 0.001 and M2(0) = 0.001. If ξ1 = 0.005 and ξ2 = 0.001, then
α = 0.04 > 0, β = 0.07 > 0 and w = 0.006 < min {0.0081, 0.0594}. The corresponding image can be
seen in Figure 2.
Example 3. Similarly, let r1 = 0.4, r2 = 0.5, b11 = 0.5, b12 = 0.4, b21 = 0.45, b22 = 0.6, θ1 =
θ2 = 0.5,N1(0) = 0.5,N2(0) = 0.5,M1(0) = 0.001 and M2(0) = 0.001. If ξ1 = ξ2 = 0.005, then
α = 0.04 > 0, β = 0.07 > 0 and w = 0.01 > min{0.0081, 0.0587}. The corresponding image can be
seen in Figure 3.

Figures 1 and 2 show that if the conditions of Theorem 4 hold, the two species of the model (1.6)
can coexist in the long term. By comparing Figures 1–3, we find that when other parameters and initial
values remain the same, the intensity of the fluctuations in the plot increases if ξi, i.e., is the intensity
of the volatility of the process increases.
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(a) (b)

(c) (d)
Figure 1. Sample paths for the solution of the model (6.1) and the corresponding frequency
histogram with the parameters ξ1 = ξ2 = 0.001. Other parameters are given in Example 1.

(a) (b)

(c) (d)
Figure 2. Sample paths for the solution of the model (6.1) and the corresponding frequency
histogram with the parameters ξ1 = 0.005 and ξ2 = 0.001. Other parameters are given in
Example 2.
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(a) (b)

(c) (d)
Figure 3. Sample paths for the solution of the model (6.1) and the corresponding frequency
histogram with the parameters ξ1 = ξ2 = 0.005. Other parameters are given in Example 3.

2) There are two examples of extinction.
Example 4. Let r1 = 0.4, r2 = 0.5, b11 = 0.5, b12 = 0.4, b21 = 0.7, b22 = 0.6, θ1 = θ2 = 0.5,
ξ1 = ξ2 = 0.01, N1(0) = 0.5, N2(0) = 0.5, M1(0) = 0.001 and M2(0) = 0.001; then, α = 0.04 > 0 and
β = −0.03 < 0.

By Theorem 3, Population 2 will go extinct eventually and

lim
t→∞

1
t

∫ t

0
N1(s)ds = 0.8.

The corresponding image can be seen in Figure 4.
Example 5. Let r1 = 0.4, r2 = 0.5, b11 = 0.5, b12 = 0.5, b21 = 0.61, b22 = 0.6, θ1 = θ2 = 0.5,
ξ1 = ξ2 = 0.01, N1(0) = 0.5, N2(0) = 0.5, M1(0) = 0.001 and M2(0) = 0.001; then, α = −0.01 < 0 and
β = 0.01 > 0.

By Theorem 3, Population 1 will go extinct eventually and

lim
t→∞

1
t

∫ t

0
N2(s)ds = 0.8333.

The corresponding image can be seen in Figure 5.

From Figures 4 and 5, it is not difficult to find that the result is in line with Theorem 3.
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(a) (b)

(c) (d)
Figure 4. Sample paths for the solution of the model (6.1) when taking parameters as in
Example 4 as well as the corresponding frequency histogram. The data are α = 0.04 > 0 and
β = −0.03 < 0. Population 2 goes to extinct.

(a) (b)

(c) (d)
Figure 5. Sample paths for the solution of the model (6.1) when taking parameters as in
Example 4 as well as the corresponding frequency histogram. The data are α = −0.01 < 0
and β = 0.01 > 0. Population 1 goes to extinct.
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3) We consider the comparison of the deterministic model (1.1) and the stochastic model (1.6).
Example 6. Consider the discrete models (6.1) and (6.2), take the parameters as r1 = 0.4, r2 = 0.5,
b11 = 0.5, b12 = 0.4, b21 = 0.45, b22 = 0.6, θ1 = θ2 = 0.5 and ξ1 = ξ2 = 0.0006 and set the initial values
as N1(0) = 0.5, N2(0) = 0.5, M1(0) = 0.001 and M2(0) = 0.001. The corresponding image can be seen
in Figure 6.

It is not difficult to find that when the intensity of the volatility of the Ornstein-Uhlenbeck process
is relatively small, the trends of the stochastic and deterministic model populations are similar.

(a) (b)
Figure 6. Sample paths for the solution of the discrete system (6.1) and (6.2) when taking
the parameters as in Example 6. The blue lines represent the solution of the system (6.1)
with N1(t) in (a) and N2(t) in (b) respectively, while the red lines represent the solution of the
system (6.2).

7. Conclusions

Competition models are an important medium for us to study the extinction and survival of com-
peting species in ecosystems, and they have theoretical support for the study of ecosystem balance.
This paper studies the dynamical behaviors of two population competition models with the Ornstein-
Uhlenbeck process. The existence and uniqueness of the system solution have been verified, the cases
of population extinction have been discussed and sufficient conditions for the stationary distribution
of the system have been obtained. Specifically, if α > 0 and β < 0 or α < 0 and β > 0, then one
population goes extinct while the other survives. Otherwise, if α > 0, β > 0 and the parameters θi and
ξi of the Ornstein-Uhlenbeck process meet certain conditions, then the model (1.6) exists as a stable
distribution, which means that the two populations coexist in this case.

In addition to proving the existence and uniqueness of global positive solutions and obtaining suffi-
cient conditions for population extinction and stationary distribution, the innovation of this paper is that
we further obtained the results of the mathematical analysis of the density function of the stochastic
model (1.6), which is challenging work. Finally, the numerical simulations with examples have been
provided to verify the theoretical results of extinction and stationary distribution. It is also proved that
the stochastic and the corresponding deterministic models have similar properties when the intensity
of the volatility of the Ornstein-Uhlenbeck process is relatively small.

Previously, although using the Ornstein-Uhlenbeck process to model stochastic processes is an
effective way to introduce environmental noise into stochastic models, there are fewer related studies.
Moreover, no one has studied the dynamical behaviors of stochastic competition models with Ornstein-
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Uhlenbeck processes, so this paper has some reference significance for studying stochastic competition
models.
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