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Abstract: The aim of this paper is to introduce a discrete mixture model from the point of view
of reliability and ordered statistics theoretically and practically for modeling extreme and outliers’
observations. The base distribution can be expressed as a mixture of gamma and Lindley models. A
wide range of the reported model structural properties are investigated. This includes the shape of the
probability mass function, hazard rate function, reversed hazard rate function, min-max models, mean
residual life, mean past life, moments, order statistics and L-moment statistics. These properties can
be formulated as closed forms. It is found that the proposed model can be used effectively to evaluate
over- and under-dispersed phenomena. Moreover, it can be applied to analyze asymmetric data under
extreme and outliers’ notes. To get the competent estimators for modeling observations, the maximum
likelihood approach is utilized under conditions of the Newton-Raphson numerical technique. A
simulation study is carried out to examine the bias and mean squared error of the estimators. Finally,
the flexibility of the discrete mixture model is explained by discussing three COVID-19 data sets.

Keywords: mixed distributions; discretization technique; failure analysis; simulation; Covid-19;
statistics and numerical data

1. Introduction

The data generated by the daily work environment are more complex in nature at present, and
therefore many lifetime models have been listed in the literature to analyze and evaluate these data.
Determining which probability distribution should be adopted to make inferences from the data under
study is a very important problem in statistics. For these reasons, great efforts have been spent over
the years in developing large categories of distributions along with relevant statistical methodologies.

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2023340


7860

See, for instance, El-Gohary et al. [1], Saboor et al. [2], Jia et al. [3], Fernandez [4], Alizadeh et al.
[5], Kumar et al. [6], and references cited therein. Nedjar and Zeghdoudi [7] proposed a mixture of
gamma(2, τ) and Lindley(ε) (MGL) distributions. The probability density function (PDF) of the MGL
distribution can be expressed as

g(x; ε, τ) =
τ2

ε(1 + τ)
([τε + ε − τ] x + 1) e−τx; x > 0, ε > 0, τ > 0. (1.1)

Unfortunately, Eq (1.1) is not a proper PDF. Messaadia and Zeghdoudi [8] corrected the parameter
space to be ε ≥ τ

1+τ and τ > 0, and consequently the modified PDF of the MGL model can be written
as

f (x; ε, τ) =
τ2

ε(1 + τ)
([τε + ε − τ] x + 1) e−τx; x > 0, ε ≥

τ

1 + τ
, τ > 0. (1.2)

The survival function (SF) corresponding to Eq (1.2) can be formulated as

S (x; ε, τ) =
(τx + 1)(τε + ε − τ) + τ

ε(1 + τ)
e−τx; x > 0, ε ≥

τ

1 + τ
, τ > 0. (1.3)

The quantile function (QF) is

QX(u) =


−

ε(1+τ)
τ[ε(1+τ)−τ] −

1
τ
W−1

(
ε(1+τ)(u−1)
ε(1+τ)−τ e−

ε(1+τ)
ε(1+τ)−τ

)
; ε > τ

1+τ

− ln(1−u)
τ

; ε = τ
1+τ ,

(1.4)

where W−1 denotes the negative branch of the Lambert W function, and − ln(1−u)
τ

is the QF of the
exponential model. Sometimes, survival trials produce data that are discrete in nature either because
of the limitations of the measuring instruments or their inherent characteristics. The study and
analysis of counting data plays an important role in many fields of applied sciences, such as
economics, engineering, marketing, medicine, and insurance. Counting datasets are often modeled
utilizing the Poisson model. However, the Poisson model cannot handle hyper-scattered datasets.
Therefore, it is reasonable to model such cases via an appropriate discrete distribution. Discretization
of a continuous distribution can be created by using several methods. The most widely utilized
technique is the survival discretization approach. For a given continuous random variable X with SF
S (x; ξ) = Pr(X > x), we can obtain the discretized version as

Pr(X = x) = S (x; ξ) − S (x + 1; ξ); x = 0, 1, 2, 3, .... (1.5)

For more details, Roy [9]. This technique has received a lot of attention in recent years. See, for
instance, Gómez-Déniz and Calderı́n-Ojeda [10], Bebbington et al. [11], Nekoukhou et al. [12],
Alamatsaz et al. [13], El-Morshedy et al. [14], Gillariose et al. [15], Singh et al. [16,17], Eliwa and El-
Morshedy [18], Altun et al. [19] and references cited therein. In this paper, a discrete distribution MGL
(DsMGL) will be discussed from the point of view of reliability and ordered statistics theoretically
and practically to analyze extreme and outliers’ notes. This is because in El-Morshedy et al. [20],
simple statistical characteristics and a regression model were presented only in a small whole sample
(outliers were not included). Further, the previous paper ignored the reliability, order statistics, and
L-moments measures which can be applied in the fields of biomedicine and engineering. Given the
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importance of reliability and structured statistical measures, the authors sought to discuss neglected
characteristics as well as model extreme and outliers’ observations. Thus, the motives for this study can
be summarized as follows: to formulate statistical characteristics as closed forms; to model dispersed-
positively-skewed real data under extreme and outliers’ observations; to provide a consistently better fit
than other discrete models known in the current statistical literature, especially over-dispersed models;
and to prove that the proposed model can be applied to discuss zero-inflated observations.

The article is organized as follows. In Section 2, the DsMGL distribution is proposed. Various
properties are derived in Sections 3 and 4. In Section 5, the DsMGL parameters are estimated by
utilizing the maximum likelihood approach. Simulation study is discussed in Section 6. In Section 7,
three real data sets are analyzed. Finally, some conclusions and future work are listed in Section 8.

2. Discrete analogue of MGL distribution

Recall Eq (1.3), and the SF of the DsMGL distribution can be expressed as

S (x; ε, δ) =
(1 − ln δx+1)(ε − ε ln δ + ln δ) − ln δ

ε(1 − ln δ)
δx+1; x ∈ N0, (2.1)

where ε ≥ − ln δ
1−ln δ , 0 < e−τ = δ < 1, and N0 = {0, 1, 2, 3, ...}. The corresponding PMF to Eq (2.1) can be

introduced as

Px(x; ε, δ) =
δx

1 − ln δ

{
1 − δ − ln δ [1 + x − δ(x + 2)] + (1 −

1
ε

)(ln δ)2 [x − δ(x + 1)]
}

; x ∈ N0. (2.2)

The CDF can be reported as

F(x; ε, δ) = 1 −
(1 − ln δx+1)(ε − ε ln δ + ln δ) − ln δ

ε(1 − ln δ)
δx+1; x ∈ N0. (2.3)

Figure 1 shows the PMF of the DsMGL model based on various values of the parameters ε and δ.
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Figure 1. The PMF for the DsMGL distribution.
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As can be noted, the PMF can take unimodal or decreasing form. Moreover, it can be used as a
statistical approach to model zero-inflated observations under positive skew.

3. Reliability analytics

In reliability theory, the forward iteration “remaining” time and the past time are two very important
measurements in the theory of renewal processes. Consider, for example, the lifetime of a wireless link
when a new packet arrives in wireless networks. Reliability studies model the remaining life of a
component. If something has survived that far, how long can it be expected to survive? This is the
question answered by mean residual life (MRL). In the discrete setting, the MRL, say Θi, is defined as

Θi = E (T − i|T ≥ i) =
1

1 − F(i − 1; ε, δ)

q∑
j=i+1

[
1 − F( j − 1; ε, δ)

]
; i ∈ N0, (3.1)

where N0 = {0, 1, 2, 3, ..., q} for 0 < q < ∞. Thus, for the DsMGL model, the MRL is given as

Θi = −δ
2(ε − 1)(δi − i − 1) ln δ − ε(δ(i + 1) − i − 2) ln δ + ε(δ − 1)

(δ − 1)2 {(1 − i ln δ)(ε − ε ln δ + ln δ) − ln δ}
; i ∈ N0. (3.2)

Furthermore, in the discrete setting, the mean past life (MPL), say Θ∗i , is defined as

Θ∗i = E (i − T |T < i) =
1

F(i − 1; ε, δ)

i∑
m=1

F(m − 1; ε, δ); i ∈ N0 − {0}. (3.3)

So, the MPL for the DsMGL model can be represented as

Θ∗i =
iεδi+2 ln δ − iεδi+1 ln δ + iεδ2(ln δ − 1) − 2iδi+2 ln δ + 2(i + 1)δi+1 ln δ − εδi+2(ln δ − 1)

(2iεδi ln δ − 2iδi ln δ − εδi ln δ + εδi + ε ln δ − ε)(δ − 1)2

+
εδ2(ln δ − 1) − 2δ ln δ + (1 − 2δ)iε ln δ + 2iεδ − εδi+1 + εδ − iε

(2iεδi ln δ − 2iδi ln δ − εδi ln δ + εδi + ε ln δ − ε)(δ − 1)2 . (3.4)

For i ∈ N0, we get Θ∗i ≤ i. The CDF of the DsMGL model can be recovered by the MPL as

F(k; ε, δ) = F(0; ε, δ)
k∏

i=1

[
Θ∗i

Θ∗i+1 − 1

]
; k ∈ N0 − {0}, (3.5)

where F(0; ε, δ) =
(

q∏
i=1

[
Θ∗i
Θ∗i+1−1

])−1

and 0 < q < ∞. Thus, the mean of the DsMGL model can be

expressed as
Mean = i − Θ∗i F(i − 1; ε, δ) + Θi [1 − F(i − 1; ε, δ)] ; i ∈ N0 − {0}. (3.6)

The reversed hazard rate function (RHRF) can be expressed as a function in MPL as

r(i; ε, δ) =
1 − Θ∗i+1 + Θ

∗
i

Θ∗i
; i ∈ N0 − {0}. (3.7)
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Further, the RHRF can be proposed as

r(x; ε, δ) =
1 − δ − ln δ [1 + x − δ(x + 2)] + (1 − 1

ε
)(ln δ)2 [x − δ(x + 1)]

ε(1 − ln δ) −
[
(1 − ln δx+1)(ε − ε ln δ + ln δ) − ln δ

]
δx+1 εδx; x ∈ N0. (3.8)

Figure 2 shows the RHRF plots for different values of the DsMGL parameters.
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Figure 2. The RHRF for the DsMGL model

Suppose W and H are two independent DsMGL random variables (RVs) with parameters (ε1, δ1)
and (ε2, δ2), respectively. Then, the RHRF of T = min(W,H) and L = max(W,H) can be formulated as

rT (x;Λ) = 1 −
1 −

{ (1−ln δx
1)(ε1−ε1 ln δ1+ln δ1)−ln δ1
ε1(1−ln δ1) δx

1

} { (1−ln δx
2)(ε2−ε2 ln δ2+ln δ2)−ln δ2
ε2(1−ln δ2) δx

2

}
1 −

{
(1−ln δx+1

1 )(ε1−ε1 ln δ1+ln δ1)−ln δ1
ε1(1−ln δ1) δx+1

1

} {
(1−ln δx+1

2 )(ε2−ε2 ln δ2+ln δ2)−ln δ2
ε2(1−ln δ2) δx+1

2

} , (3.9)

and

rL(x;Λ) =
1 − δ1 − ln δ1 [1 + x − δ1(x + 2)] + (1 − 1

ε1
)(ln δ1)2 [x − δ1(x + 1)]

ε1(1 − ln δ1) −
[
(1 − ln δx+1

1 )(ε1 − ε1 ln δ1 + ln δ1) − ln δ1

]
δx+1

1

ε1δ
x
1

+
1 − δ2 − ln δ2 [1 + x − δ2(x + 2)] + (1 − 1

ε2
)(ln δ2)2 [x − δ2(x + 1)]

ε2(1 − ln δ2) −
[
(1 − ln δx+1

2 )(ε2 − ε2 ln δ2 + ln δ2) − ln δ2

]
δx+1

2

ε2δ
x
2

−
1 − δ1 − ln δ1 [1 + x − δ1(x + 2)] + (1 − 1

ε1
)(ln δ1)2 [x − δ1(x + 1)]

ε1(1 − ln δ1) −
[
(1 − ln δx+1

1 )(ε1 − ε1 ln δ1 + ln δ1) − ln δ1

]
δx+1

1

ε1δ
x
1

×
1 − δ2 − ln δ2 [1 + x − δ2(x + 2)] + (1 − 1

ε2
)(ln δ2)2 [x − δ2(x + 1)]

ε2(1 − ln δ2) −
[
(1 − ln δx+1

2 )(ε2 − ε2 ln δ2 + ln δ2) − ln δ2

]
δx+1

2

ε2δ
x
2. (3.10)
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Since the RHRFs of the two RVs W and H are decreasing, then the RHRFs of T = min(W,H) and
L = max(W,H) are also decreasing. Another important measure in survival analysis theory is called
the hazard rate function (HRF). If X is a DsMGL random variable, then the HRF can be expressed as

h(x; ε, δ) = 1 −

[
(1 − ln δx+1)(ε − ε ln δ + ln δ) − ln δ

]
δ

(1 − ln δx)(ε − ε ln δ + ln δ) − ln δ
; x ∈ N0, (3.11)

where h(x; ε, δ) = Px(x;ε,δ)
S (x−1;ε,δ) . Figure 3 shows the HRF plots for different values of the DsMGL

parameters. It should be noted that the new paradigm can be used to discuss any phenomena of an
increasing unilateral form.
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Figure 3. The HRF for the DsMGL distribution.

Suppose W and H are two independent RVs with parameters DsMGL(ε1, δ2) and DsMGL(ε2, δ2),
respectively. Then, the HRF of T = min(W,H) can be formulated as

hT (x;Λ) =
Pr(min(W,H) = x)
Pr(min(W,H) ≥ x)

=
Pr(min(W,H) ≥ x) − Pr(min(W,H) ≥ x + 1)

Pr(min(W,H) ≥ x)

=
Pr(W ≥ x)Pr(H ≥ x) − Pr(W ≥ x + 1)Pr(H ≥ x + 1)

Pr(W ≥ x)Pr(V ≥ x)

=
Pr(W ≥ x)Pr(H = x) + Pr(W = x)Pr(H ≥ x) − Pr(W = x)Pr(H = x)

Pr(W ≥ x)Pr(H ≥ x)
,

where Λ = (ε1, ε2, δ1, δ2). Then,

hT (x;Λ) =

1 −

[
(1 − ln δx+1

1 )(ε1 − ε1 ln δ1 + ln δ1) − ln δ1

]
δ1

(1 − ln δx
1)(ε1 − ε1 ln δ1 + ln δ1) − ln δ1
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+

1 −

[
(1 − ln δx+1

2 )(ε2 − ε2 ln δ2 + ln δ2) − ln δ2

]
δ2

(1 − ln δx
2)(ε2 − ε2 ln δ2 + ln δ2) − ln δ2


−

1 −

[
(1 − ln δx+1

1 )(ε1 − ε1 ln δ1 + ln δ1) − ln δ1

]
δ1

(1 − ln δx
1)(ε1 − ε1 ln δ1 + ln δ1) − ln δ1


×

1 −

[
(1 − ln δx+1

2 )(ε2 − ε2 ln δ2 + ln δ2) − ln δ2

]
δ2

(1 − ln δx
2)(ε2 − ε2 ln δ2 + ln δ2) − ln δ2

 . (3.12)

Since the HRFs of the two RVs W and H are increasing, the HRF of T = min(W,H) is also increasing.
Similarly, the HRF of L = max(W,H) can be expressed as

hL(x;Λ) = 1 −
1 −

{
1 − (1−ln δx+1

1 )(ε1−ε1 ln δ1+ln δ1)−ln δ1
ε1(1−ln δ1) δx+1

1

} {
1 − (1−ln δx+1

2 )(ε2−ε2 ln δ2+ln δ2)−ln δ2
ε2(1−ln δ2) δx+1

2

}
1 −

{
1 − (1−ln δx

1)(ε1−ε1 ln δ1+ln δ1)−ln δ1
ε1(1−ln δ1) δx

1

} {
1 − (1−ln δx

2)(ε2−ε2 ln δ2+ln δ2)−ln δ2
ε2(1−ln δ2) δx

2

} . (3.13)

4. Some distributive properties

4.1. The DsMGL distribution for order statistics: PMF and moments

Assume X1:l, X2:l, ..., Xl:l are the corresponding order statistics (OS) of the random sample (RS)
X1, X2, ..., Xl from the DsMGL model. Then, the CDF of the ith OS is given as

Fi:l(x; ε, δ) =
l∑

b=i

(
l
b

)
[Fi(x; ε, δ]b [1 − Fi(x; ε, δ)]l−b

=

l∑
b=i

l−b∑
j=0

ϑ(l,b)
(m) Fi(x; ε, δ, b + j), (4.1)

where ϑ(l,b)
(m) = (−1) j

(
l
b

) (
l − b

j

)
. The corresponding PMF to Eq (4.1) can be listed as

fi:l(x; ε, δ) = Fi:l(x; ε, δ) − Fi:l(x − 1; ε, δ)

=

l∑
b=i

l−b∑
j=0

ϑ(l,b)
(m) fi(x; ε, δ, b + j), (4.2)

where fi(x; ε, δ, b + j) represents the PMF of the exponentiated DsMGL distribution with power
parameter b + j. So, the vth moments of Xi:l can be written as

E(Xv
i:l) =

∞∑
x=0

l∑
b=i

l−b∑
j=0

ϑ(l,b)
(m) xv fi(x; ε, δ, b + j). (4.3)

Hosking [21] has defined the L-moment (L-MT) to show the descriptive statistics for the probability
model. The L-MT of the DsMGL can be formulated as

Υo =
1
o

o−1∑
c=0

(−1)c

(
o − 1

c

)
E (Xo−c:o) . (4.4)
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Using Eq (4.4), L-MT of mean = Υ1, L-MT coefficient of variation = Υ2
Υ1

, L-MT coefficient of skewness
= Υ3
Υ2
, and L-MT coefficient of kurtosis = Υ4

Υ2
.

4.2. The original moments for data behavior scan

The shape of any probability model can be described by its different moments. Based on the first
four moments, the mean “E(X)”, variance “Var(X)”, index of dispersion “D(X)”, skewness “S k(X)”,
and kurtosis “Ku(X)” can be derived. Let X be a DsMGL random variable. Then, the probability
generating function (PGF), say Υ(z), can be formulated as

Υ(z) =
∞∑

x=0

zxPx(x; ε, δ)

=
1

1 − ln δ

∞∑
x=0

{
1 − δ − ln δ [1 + x − δ(x + 2)] + (1 −

1
ε

)(ln δ)2 [x − δ(x + 1)]
}

(zδ)x

=
−2δ(ε − 1)(z − 1) ln δ + ε

(
δ2z − 2δ + 1

)
ln δ − ε(δ − 1)(δz − 1)

ε(ln δ − 1)(δz − 1)2 , (4.5)

where the power series converges absolutely at least for all complex numbers z with |z| ≤ 1.
Equation (4.5) can be derived utilizing the Maple software program. Thus, the first four moments of
the DsMGL model can be listed as

E(X) = −δ
(ε − 1) ln δ2 + ε(δ − 2) ln δ − ε(δ − 1)

ε(ln δ − 1)(δ − 1)2 , (4.6)

E(X2) = δ
(3εδ + ε − 3δ − 1) ln δ2 + ε(δ2 − 3δ − 2) ln δ − εδ2 + ε

ε(ln δ − 1)(δ − 1)3 , (4.7)

E(X3) = −δ
14

(
δ2 + 10

7 δ +
1
7

)
(ε − 1) ln δ + ε(δ + 2)(δ2 − 6δ − 1) ln δ − ε(δ − 1)(δ2 + 4δ + 1)

ε(ln δ − 1)(δ − 1)4 , (4.8)

and

E(X4) = δ
30

(
δ3 + 11

3 δ
2 + 5

3δ +
1

15

)
(ε − 1) ln δ + ε(δ4 − 5δ3 − 55δ2 − 35δ − 2) ln δ

ε(ln δ − 1)(δ − 1)5

−
δ4 + 10δ3 − 10δ − 1

(ln δ − 1)(δ − 1)5 . (4.9)

According to the previous moments “E(Xr); r = 1, 2, 3, 4”, the E(X), Var(X), S k(X), and Ku(X) can be
derived in closed forms. Table 1 reports some numerical results for the DsMGL model under different
values of the distribution parameters.
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Table 1. Some descriptive statistics under δ = 0.05 and various values of ε.

ε

Measure 1.1 1.4 1.7 2.1 4.2 8.4
E(X) 0.10548 0.12972 0.14540 0.15934 0.18897 0.20378
Var(X) 0.11102 0.13466 0.14933 0.16196 0.18750 0.19962
D(X) 1.05252 1.03809 1.02701 1.01641 0.99223 0.97955
S k(X) 3.31652 2.93747 2.73625 2.57885 2.29485 2.17274
Ku(X) 14.9956 12.2687 10.94861 9.97976 8.37673 7.74605

The DsMGL is capable of modeling positively skewed and leptokurtic datasets. Further, it is
appropriate for modeling under- (over-) dispersed phenomena where Var(X)

|E(X)| < (>)1 for some parameter
values.

5. Estimation of the DsMGL parameters

In this segment, the maximum likelihood estimates (MLEs) of the model parameters are determined.
Let X1, X2, ..., Xn be a RS of size n from the DsMGL distribution. The log-likelihood function (LL) can
be written as

LL(x; ε, δ) = ln δ
n∑

i=1

xi−n ln (1 − ln δ)+
n∑

i=1

ln
(
1 − δ − ln δ [1 + xi − δ(xi + 2)] + (1 −

1
ε

)(ln δ)2 [xi − δ(xi + 1)]
)
.

(5.1)
The MLEs of the parameters ε and δ, say ε̂ and δ̂, are derived by (̂ε, δ̂) = argmax(ε,δ) (L) or, in an
equivalent approach in our case, (̂ε, δ̂) = argmax(ε,δ) (LL). To provide more practicalities, the normal
equations can be formulated as

∂LL(x; ε, δ)
∂ε

=

n∑
i=1

(
ln δ
ε

)2
[xi − δ(xi + 1)]

1 − δ − ln δ [1 + xi − δ(xi + 2)] + (1 − 1
ε
)(ln δ)2 [xi − δ(xi + 1)]

(5.2)

and

∂LL(x; ε, δ)
∂δ

=
1
δ

n∑
i=1

xi +
n

δ (1 − ln δ)

+

n∑
i=1

(xi + 2) (ln δ + 1) − 1+xi
δ
− 1 + ln δ

(
1 − 1

ε

) (
2xi−2δ(xi+1)

δ
− (xi + 1) ln δ

)
1 − δ − ln δ [1 + xi − δ(xi + 2)] + (1 − 1

ε
)(ln δ)2 [xi − δ(xi + 1)]

. (5.3)

The two previous equations cannot be solved analytically; therefore, a mathematical package such as
the R program based on an iterative procedure such as the Newton-Raphson (numerical optimization
approach) can be used to obtain the estimators.

6. Simulation: Appreciative behavior of estimators

In this segment, Monte Carlo simulation was performed to prove the efficiency of the DsMGL model
utilizing the maximum likelihood approach. The performance of the MLE with respect to sample size
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n is tested. The evaluation is based on a simulation study:

1) Generate 10000 samples of size n = 10, 11, 12, ..., 60 from the DsMGL model based on four cases
as follows: case I: (δ = 0.1 and ε = 0.9), case II: (δ = 0.3 and ε = 0.9), case III: (δ = 0.5 and
ε = 0.9), and case IV: (δ = 0.7 and ε = 0.9).

2) Generate 10000 samples of size n = 30, 70, 140, 200, 300, 400, 600 from the DsMGL model based
on four cases as follows: case V: (δ = 0.5 and ε = 0.4), case VI: (δ = 0.5 and ε = 0.5), case VII:
(δ = 0.5 and ε = 1.5), and case VIII: (δ = 0.5 and ε = 2.0).

3) Compute the MLEs for the 10000 samples, say ε̂ j and δ̂ j for j = 1, 2, 3, ..., 1000.
4) Compute the biases, mean-squared errors (MSE), and mean relative errors (MRE).
5) The empirical results are shown in Figures 4–7 and Tables 2 and 3.
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Figure 4. The empirical results based on case I.
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Figure 5. The empirical results based on case II.
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Figure 6. The empirical results based on case III.
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Figure 7. The empirical results based on case IV.

Table 2. The empirical simulation results for schemes V and VI.

Scheme V Scheme VI
Parameter n Bias MSE MRE Bias MSE MRE
δ 30 0.10056591 0.09006876 0.06336994 0.11632194 0.08963175 0.08223158

70 0.09865782 0.08830367 0.04163261 0.10223666 0.06202190 0.08063179
140 0.04369310 0.08200239 0.04001453 0.09220169 0.06101429 0.07312016
200 0.02299658 0.07703927 0.03192237 0.08139327 0.04002236 0.06350036
300 0.02126971 0.06005479 0.02101206 0.08023636 0.03237014 0.05519738
400 0.01733369 0.04079031 0.00700269 0.05193079 0.01112539 0.04980373
600 0.00234104 0.00201034 0.00023694 0.00292733 0.00026456 0.00015654

ε 30 0.09369110 0.07793171 0.06131304 0.05969637 0.04320158 0.05336947
70 0.08567341 0.07122367 0.05510375 0.05223691 0.03201392 0.05102125

140 0.07011036 0.06379035 0.05022693 0.04112566 0.03036549 0.04020024
200 0.04105604 0.05380086 0.04500102 0.03233697 0.02002137 0.03102236
300 0.03367101 0.04522564 0.04103979 0.03102973 0.01122024 0.01909439
400 0.02098200 0.03474369 0.03139064 0.01018674 0.00889001 0.00306970
600 0.00523689 0.00236844 0.00053671 0.00235659 0.00059458 0.00002518
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Table 3. The empirical simulation results for schemes VII and VIII.

Scheme VII Scheme VIII
Parameter n Bias MSE MRE Bias MSE MRE
δ 30 0.025687193 0.01466875 0.01399737 0.06696575 0.08763274 0.06353187

70 0.022658763 0.01136219 0.10145190 0.06132640 0.06923671 0.06123671
140 0.019365811 0.00855157 0.00500215 0.05426598 0.05110123 0.05922014
200 0.015330240 0.00431502 0.00362307 0.05120134 0.04320139 0.04623665
300 0.013695875 0.00400236 0.00306981 0.05026971 0.03915618 0.04010656
400 0.008532179 0.00100153 0.00168892 0.04902790 0.03101569 0.03410973
600 0.001036942 0.00010265 0.00023296 0.00265235 0.00021691 0.00139237

ε 30 0.108067988 0.01123177 0.08307104 0.07437669 0.07782736 0.09069587
70 0.103365789 0.00998796 0.08223676 0.06722364 0.05220104 0.08133658

140 0.089445810 0.00912348 0.07911671 0.04749836 0.03002336 0.06310263
200 0.071002158 0.00722369 0.06600163 0.03229659 0.01024787 0.05154031
300 0.053210199 0.00426971 0.03697274 0.03193261 0.01010915 0.03974904
400 0.009571377 0.00379104 0.00409265 0.02410124 0.00580048 0.02122360
600 0.000531041 0.00022165 0.00023291 0.00124304 0.00083190 0.00212642

According to Figures 4–7 and Tables 2 and 3, the magnitude of bias, MSE, and MRE always
decrease to zero as n grows (consistency property). Thus, the MLE approach can be utilized
effectively for the parameter’s estimation.

7. Data modeling

In this section, we demonstrate the resilience of the DsMGL distribution in modeling COVID-19
data. Fitted models are compared using some criteria, namely, the −LL, Akaike-information-criterion
(AIC), modified-AIC (MAIC), Hannan-Quinn-information-criterion (HQIC), Bayesian-information-
criterion (BIC), and Kolmogorov-Smirnov (K-S) test with its corresponding P-value. We will compare
the flexibility of the DsMGL model with some of the competitive models such as discrete Lindley
(DsL), discrete Burr-Hatke (DsBH), new discrete distribution with one parameter (NDsIP) (see, Eliwa
and El-Morshedy, 2022), discrete Rayleigh (DsR), discrete Pareto (DsPa), discrete Burr type XII (DsB-
XII), and modified negative binomial (NeBi) models.

7.1. Data set I: COVID-19 in Hong Kong

The data is listed in (https://www.worldometers.info/coronavirus/country/china-hong-kong-sar/ ) and
represents the daily new cases in Hong Kong for COVID-19 from Feb. 15, 2020, to Oct. 25, 2020. The
initial shape/form of this data is reported in Figure 8 using non-parametric (N-P) methods like strip,
box, violin and QQ plots. It is noted that there are extreme and outliers’ observations.
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Figure 8. The N-P plots for COVID-19 data in Hong Kong.

The MLEs with their corresponding standard error (SE), confidence interval (C. I) for the
parameter(s) and goodness-of-fit test (G-O-F-T) for COVID-19 data in Hong Kong, are listed in
Tables 4 and 5.

Table 4. The MLEs with their corresponding SE and C. I for COVID-19 data in Hong Kong.

ε δ

Model MLE SE C. I MLE SE C. I
DsMGL 0.8887 0.0242 [0.8390, 0.9361] 0.1062 0.0373 [0.0355, 0.1786]
DsL 0.8052 0.0200 [0.7660, 0.8451] − − −

NDsIP 0.9110 0.0151 [0.8820, 0.9390] − − −

DsR 0.9951 0.1361 [0.7280, 1.000] − − −

DsB-XII 0.8173 0.0740 [0.6722, 0.9622] 3.2981 1.4272 [0.5013, 6.0962]
DsPa 0.5592 0.0531 [0.4515, 0.6603] − − −

DsBH 0.9954 0.0132 [0.9695, 1.000] − − −

NeBi 0.9203 0.0221 [0.8772, 0.9634] 0.6859 0.1023 [0.4854, 0.8864]

Mathematical Biosciences and Engineering Volume 20, Issue 5, 7859–7881.



7872

Table 5. The G-O-F-T for COVID-19 data in Hong Kong.

Model
Statistic DsMGL DsL NDsIP DsR DsB-XII DsPa DsBH NeBi
−LL 118.951 127.120 121.353 161.193 118.992 124.333 130.953 119.237
AIC 241.892 256.234 244.717 324.384 241.980 250.662 263.902 242.473
MAIC 242.233 256.343 244.824 324.493 242.325 250.777 264.014 242.816
BIC 245.178 257.877 246.352 326.024 245.263 252.302 265.543 245.748
HQIC 243.065 256.825 245.295 324.963 243.157 251.254 264.484 243.638
K-S 0.157 0.246 0.186 0.761 0.277 0.367 0.565 0.167
P-value 0.305 0.020 0.146 ≤ 0.001 0.006 ≤ 0.001 ≤ 0.001 0.285

The DsMGL model is the best among all the discussed models, because it has the lowest value
among −LL, AIC, MAIC, BIC, HQIC and K-S. Moreover, the DsMGL model has the highest P-value
among all tested distributions. Figures 9 and 10 show the estimated CDF and P-P plots for all reported
models from which the distribution adequacy of the DsMGL model can be noted clearly. Thus, the
COVID-19 data in Hong Kong plausibly came from the DsMGL model.
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Figure 9. The estimated CDFs for COVID-19 data in Hong Kong.
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Figure 10. The P-P plots for COVID-19 data in Hong Kong.

Table 6 lists some descriptive statistics (DEST) for COVID-19 data in Hong Kong utilizing the
DsMGL model.

Table 6. Some DEST for COVID-19 data in Hong Kong.

E(X) Var(X) D(X) S k(X) Ku(X)
0.1843 0.2096 1.1374 2.7779 12.1489

The data reported here suffer from excessive dispersion “D(X) > 1”. Moreover, it is moderately
right skewed “S k(X) > 0” and leptokurtic “Ku(X) > 3”.

7.2. Data set II: COVID-19 in Iraq

The data is reported in (https://www.worldometers.info/coronavirus/country/iraq/) and represents
the daily new cases in Iraq for COVID-19 from Feb. 15, 2020, to 25 Oct. 25, 2020. In Figure 11, the
N-P plots are sketched. It is noted that there is an extreme observation.
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Figure 11. The N-P plots for COVID-19 data in Iraq.

The MLEs with their corresponding SE, C. I for the parameter(s) and G-O-F-T for COVID-19 data
in Iraq, are listed in Tables 7 and 8.

Table 7. The MLEs with their corresponding SE and C. I for COVID-19 data in Iraq.

ε δ

Model MLE SE C. I MLE SE C. I
DsMGL 0.863 0.078 [0.709, 1.015] 0.129 0.144 [0, 0.411]
DsL 0.768 0.024 [0.721, 0.815] − − −

NDsIP 0.895 0.015 [0.865, 0.926] − − −

DsR 0.989 0.0142 [0.710, 1] − − −

DsB-XII 0.531 0.087 [0.361, 0.701] 1.009 0.253 [0.513, 1.506]
DsPa 0.528 0.056 [0.419, 0.637] − − −

DsBH 0.989 0.019 [0.953, 1] − − −

NeBi 0.928 0.053 [0.824, 1.032] 0.486 0.141 [0.209, 0.762]

Mathematical Biosciences and Engineering Volume 20, Issue 5, 7859–7881.



7875

Table 8. The G-O-F-T for COVID-19 data in Iraq.

Model
Statistic DsMGL DsL NDsIP DsR DsB-XII DsPa DsBH NeBi
−LL 107.731 114.313 109.230 138.243 112.394 112.393 116.527 109.426
AIC 219.464 230.635 220.452 278.495 228.771 226.775 235.054 222.852
MAIC 219.812 230.747 220.573 278.603 229.123 226.893 235.163 223.205
BIC 222.683 232.244 222.707 280.092 231.993 228.387 236.664 226.074
HQIC 220.595 231.195 221.025 279.051 229.914 227.343 235.623 223.988
K-S 0.214 0.279 0.2423 0.736 0.355 0.357 0.505 0.251
P-value 0.068 0.006 0.026 ≤ 0.0001 0.0002 0.0002 ≤ 0.0001 0.029

The DsMGL model is the best among all the studied models. Figures 12 and 13 show the estimated
CDFs and P-P plots for COVID-19 data in Iraq.
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Figure 12. The estimated CDFs for COVID-19 data in Iraq.
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Figure 13. The P-P plots for COVID-19 data in Iraq.

From Figures 13 and 14, the data set plausibly came from the DsMGL model. Table 9 lists some
information for COVID-19 data in Iraq based on the DsMGL model.

Table 9. Some DEST for COVID-19 data in Iraq.

E(X) Var(X) D(X) S k(X) Ku(X)
0.2252 0.2640 1.1724 2.6089 11.2663

The data listed here suffer from excessive dispersion. Furthermore, it is moderately right skewed
and leptokurtic.

7.3. Data set III: COVID-19 in Saudi Arabia

The data is reported in (https://en.wikipedia.org/wiki/2020 coronavirus pandemic in Saudi Arabia)
and represents the daily new cases in Saudi Arabia for COVID-19 from March 1, 2020, to Sep. 13,
2021. In Figure 14, the N-P plots are reported. It is found that there are extreme observations.
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Figure 14. The N-P plots for COVID-19 data in Saudi Arabia.

The MLEs with their corresponding SE, C. I for the parameter(s) and G-O-F-T for COVID-19 data
in Saudi Arabia are reported in Tables 10 and 11.

Table 10. The MLEs with their corresponding SE and C. I for COVID-19 data in Saudi
Arabia.

ε δ

Model MLE SE C. I MLE SE C. I
DsMGL 0.891 0.0003 0.884, 0.897] 0.302 0.023 [0.300, 0.305]
DsL 0.896 0.003 [0.889, 0.902] − − −

NDsIP 0.956 0.002 [0.953, 0.959] − − −

DsR 0.998 0.001 [0.995, 1] − − −

DsB-XII 0.909 0.028 [0.854, 0.964] 4.067 1.300 [1.519, 6.616]
DsPa 0.688 0.012 [0.665, 0.711] − − −

DsBH 0.998 0.002 [0.994, 1.002] − − −

NeBi 0.521 0.125 [0.276, 0.766] 0.745 0.045 [0.657, 0.833]
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Table 11. The G-O-F-T for COVID-19 data in Saudi Arabia.

Model
Statistic DsMGL DsL NDsIP DsR DsB-XII DsPa DsBH NeBi
−LL 1844.941 1849.332 1879.599 1894.439 2244.195 2301.366 2641.779 1847.236
AIC 3693.882 3693.881 3761.199 3792.878 4492.393 4604.732 5285.559 3698.472
MAIC 3693.904 3693.904 3761.207 3792.902 4492.415 4604.741 5285.567 3698.496
BIC 3702.285 3702.285 3765.401 3801.283 4500.796 4608.934 5289.761 3706.877
HQIC 3697.183 3697.180 3762.849 3796.178 4495.691 4606.382 5287.209 3701.772
K-S 0.071 0.079 0.169 0.241 0.415 0.439 0.787 0.075
P-value 0.139 0.129 0.023 0.004 0 0 0 0.134

According to Table 10, the DsMGL model is the best among all the tested models. Figures 15
and 16 show the estimated CDFs and P-P plots for COVID-19 data in Saudi Arabia. It is found that
the data set plausibly came from DsMGL model.
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Figure 15. The estimated CDFs for COVID-19 data in Saudi Arabia.
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Figure 16. The P-P plots for COVID-19 data in Saudi Arabia.

Table 12 lists some DEST around COVID-19 data in Saudi Arabia by utilizing the DsMGL model.

Table 12. Some DEST for COVID-19 data in Saudi Arabia.

E(X) Var(X) D(X) S k(X) Ku(X)
16.777 150.421 8.966 1.006 3.212

The data presented here suffer from excessive dispersion. Moreover, it is moderately right skewed
and leptokurtic.

8. Conclusions remarks and future works

In this article, we have developed a new two parameter discrete model, named as discrete mixture
gamma-Lindley (DsMGL) distribution. Various important distributional characteristics of the
DsMGL distribution have been discussed. One of the important virtues of this newly developed model
is that it can not only discuss over-dispersed, under-dispersed, positively skewed, and leptokurtic data
sets, but it can also be applied for modeling increasing failure time data (due to its increasing HRF).
The unknown parameters of the DsMGL model have been discussed under a method of maximum
likelihood (ML) estimation. A detailed MCMC evaluation has been conducted to measure the
behavior of the estimators. This numerical study shows that the ML estimation measures work
satisfactorily. Finally, the modeling flexibility of the DsMGL distribution has been explored via three
real data sets on COVID-19. For future work, the authors will utilize the DsMGL model to generate a
bivariate extension distribution based on a shock models approach for modeling bivariate data.
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Moreover, the first-order integer-valued regression model and autoregressive process will be studied
in detail.
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