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Abstract: Medical image segmentation of the liver is an important prerequisite for clinical diagnosis 
and evaluation of liver cancer. For automatic liver segmentation from Computed Tomography (CT) 
images, we proposed a Multi-scale Feature Extraction and Enhancement U-Net (mfeeU-Net), 
incorporating Res2Net blocks, Squeeze-and-Excitation (SE) blocks, and Edge Attention (EA) blocks. 
The Res2Net blocks which are conducive to extracting multi-scale features of the liver were used as 
the backbone of the encoder, while the SE blocks were also added to the encoder to enhance channel 
information. The EA blocks were introduced to skip connections between the encoder and the decoder, 
to facilitate the detection of blurred liver edges where the intensities of nearby organs are close to the 
liver. The proposed mfeeU-Net was trained and evaluated using a publicly available CT dataset of 
LiTS2017. The average dice similarity coefficient, intersection-over-union ratio, and sensitivity of the 
mfeeU-Net for liver segmentation were 95.32%, 91.67%, and 95.53%, respectively, and all these 
metrics were better than those of U-Net, Res-U-Net, and Attention U-Net. The experimental results 
demonstrate that the mfeeU-Net can compete with and even outperform recently proposed 
convolutional neural networks and effectively overcome challenges, such as discontinuous liver 
regions and fuzzy liver boundaries. 

Keywords: liver segmentation; U-Net; multi-scale; feature extraction and enhancement; Res2Net; 
squeeze-and-excitation; edge attention 
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1. Introduction 

According to a cancer statistical analysis conducted in the United States, it is estimated that the 
annual number of new cases of liver cancer reaches 42,230, ranking the sixth incidence among 
malignant tumors, and liver cancer causes 30,230 deaths annually, ranking the second mortality rate 
among malignant tumors [1]. Computed Tomography (CT) is a widely used medical imaging technique 
with the advantages of non-invasiveness and low cost. Liver CT images have been routinely used in 
the clinical diagnosis and staging of liver cancer, and liver segmentation based on CT images is 
essential for the planning of liver cancer treatments. 

Many segmentation methods, such as manual segmentation, semi-automatic segmentation, and 
automatic segmentation, have been developed to segment the liver from CT images. Manual 
segmentation is time-consuming and segmentation accuracy is highly dependent on the experience and 
professional knowledge of operators [2]. Most semi-automatic segmentation methods, such as the level 
set method [3], threshold insertion method [4], and region growing method [5], are based on the 
intensities and gradient information in CT images. As a result, under-segmentation or over-
segmentation may occur, when the intensities of a CT image are relatively uniform [6]. In addition, 
there are parameters to manually set in these methods, and different parameter settings can 
significantly influence segmentation performance. 

Automatic segmentation methods are mainly referred to as those methods that rely on neural 
networks. In recent years, CNNs have been widely implemented in semantic classification and 
segmentation tasks, where the outputs of CNNs can represent the classification probabilities of the 
input image at either image or pixel levels. As a milestone work, the fully convolutional network (FCN) 
was proposed by Long et al. [7]. The FCN can perform the segmentation of images with varying sizes 
by introducing deconvolution layers, which can upsample the feature map of the last convolution layer 
to the same size as the input image. The upsampled feature map represents the probability of whether 
a pixel of the input image belongs to a target object to segment. However, the segmentation using the 
FCN is not fine enough and less sensitive to image details.  

Based on the FCN, Ronneberger et al. [8] proposed the U-Net composed of an encoder and a 
decoder, both of which were connected via skip connections, effectively mitigating gradient 
vanishing in the training of deep CNNs. The U-Net has achieved great success in the field of medical 
image segmentation and inspired many researchers to continuously improve prediction accuracy. 
Zhang et al. [9] further introduced ResNet blocks into the U-Net to replace traditional convolution layers 
in the encoder, resulting in the Residual U-Net (Res-U-Net). The Res-U-Net can significantly reduce 
training time, as the number of parameters is approximately a quarter as many as the U-Net [10]. Because 
skip connections in the U-Net are a major cause of losing important feature information of images, 
Oktay et al. [11] incorporated Attention Gates into the U-Net to maintain important features and 
suppress irrelevant information in skip connections. Through the proposed Attention U-Net, they 
showed that Attention Gates can improve the performance of the U-Net without compromising 
computational efficiency. 

Many scholars have conducted extensive research using U-Net on liver segmentation. For 
example, Li et al. [12] applied the attention mechanism to the U-Net++ [13] and proposed the Attention 
U-Net++. The network introduced an attention gate between the nested convolutional blocks, so that the 
features extracted at different levels can be merged with a task-related selection. Kushnure et al. [14] 
proposed a multi-scale approach (MS-U-Net) to improve the receptive field of convolution operations 
in U-Net encoder-decoder stages that extract multi-scale (global and local) features at a more granular 
level. They also recalibrated channel-wise responses of the aggregated multi-scale features to enhance 
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the high-level feature description ability of the network. Based on the U-Net framework, Wang et al. [15] 
proposed the EAR-U-Net, in which they applied the EfficientNetB4 as the encoder, introduced the 
attention gate in the skip connection, replaced the traditional convolution of the decoder with a residual 
block. This network can extract feature information effectively, while it eliminates irrelevant feature 
responses and prevents gradient vanishing effectively. Lv et al. [16] proposed a new 2.5D lightweight 
network named RIU-Net with the U-Net framework, which leverages the techniques from the residual 
and Inception networks and employs a hybrid loss function combining the binary cross-entropy (BCE) 
and Dice losses to speed up the convergence and improve accuracy. Wang et al. [17] proposed a 3D 
UNet called MAD-UNet for automatic liver segmentation from CT. They introduced multi-scale 
attention and deep supervision mechanisms, and replaced the ordinary skip connections with the long-
short skip connections (LSSC) to preserve more edge detail. Fan et al. [18] noticed that the U-Net 
network tends to fuse semantically dissimilar feature maps via simple skip connections between the 
encoder and decoder path, resulting in semantic gaps between feature maps. Therefore, they proposed 
a Multi-Scale Nested U-Net (MSN-Net) to obtain semantically similar feature maps and alleviate the 
semantic gaps caused by simple skip connections, and showed that the MSN-Net can effectively 
improve liver segmentation accuracy. Lv et al. [19] proposed an improved ResU-Net framework 
(iResU-Net) for automatic liver CT segmentation. By employing a new loss function and data 
augmentation strategy, the accuracy of liver segmentation was improved in terms of two public datasets 
LiTS17 and SLiver07. Araújo et al. [20] proposed a cascade network model for liver segmentation by 
combining deep convolutional neural network models and image processing techniques. They 
demonstrated that liver segmentation, even when lesions are present in CT images, can be efficiently 
performed using their approach. Although automatic segmentation can significantly reduce human 
labor, contemporary automatic segmentation is not ideal in the face of challenging scenarios. For 
example, in liver CT slices, segmentation regions of the liver may be discontinuous, and the boundaries 
of the liver may be blurred due to low contrast to its surrounding tissues. Therefore, it is of great 
significance to improve the accuracy and robustness of neural network algorithms for liver disease 
diagnosis and treatments. 

A deep CNN can extract feature maps with different levels, which contain different information 
about the object to segment [21]. The low-level feature maps extracted by the shallow layers of the 
network contain texture information and minor details of the image, such as the boundaries of organs. 
The high-level feature maps built on top of low-level features by the deep layers of the network can 
represent the shape and location information of organs [22]. To promote multi-scale feature extraction 
in liver segmentation, this paper proposes a new CNN model, mfeeU-Net, based on the architecture of 
U-Net [8], including multiple new modules. Firstly, the Res2Net block [23] was used as the backbone of 
the encoder to extract multi-scale features of the liver. Secondly, the Squeeze-and-Excitation block [24] 
was introduced to strengthen important channel information. Finally, the Edge Attention block was 
proposed to facilitate the detection of liver boundaries which are often obscure due to low contrast. 

2. Methods 

2.1. Model architecture 

The architecture of the mfeeU-Net is shown in Figure 1. With a U-shaped architecture, the input 
feature map is gradually encoded by a series of downsamplings and decoded by a series of upsamplings. 
A prediction map is an output as the probabilities corresponding to liver pixels. Different from the 
traditional U-Net, three new modules were introduced to the mfeeU-Net for liver segmentation from 
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CT images. Considering the difficulty in extracting features of livers with diverse shapes and sizes, we 
used Res2Net blocks as the backbone of the downsampling path, while we also introduced ResNet 
blocks as the backbone of the upsampling path (Figure 1). To better extract channel information, we 
introduce the Squeeze-and-Excitation block into each Res2Net. Additionally, we proposed a new 
module called the Edge Attention block to fuse low-level features about boundary information and 
high-level features about position information from the encoder to the decoder through skip 
connections. Details of the Res2Net, Squeeze-and-Excitation, and Edge Attention blocks are 
described as follows. 

  

Figure 1. The diagram of the mfeeU-Net architecture. 

2.2. Res2Net block 

Although the learning ability of a CNN is improved as the increasing number of layers, training of 
a deep CNN often suffers gradient vanishing or gradient explosion [25]. This problem was well resolved 
by the ResNet blocks proposed by He et al. [10], in which input features were concatenated with output 
features by skip connections. To more effectively extract multi-scale features, Szegedy et al. [26] 
proposed the Inception network, which includes multiple convolutions with different kernel sizes. In this 
study, we introduced Res2Net which combined the ResNet and the Inception structure [23], to replace 
the convolutional layers in the downsampling path of the traditional U-Net. The structure of Res2Net 
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is shown in Figure 2. The Res2Net enables multi-scale feature extraction by learning the features of 
an input feature map through multiple branches, as formulated below: 
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where Xi and Yi are the input and output maps, respectively, on each branch denoted by i. Ki represent 
convolutions with different kernel sizes on each branch. In this work, we adopted four branches in the 
Res2Net block, i.e., s = 4. 

 

Figure 2. The diagram of a Res2Net block. 

2.3. Squeeze and excitation block 

After passing each Res2Net block (Figure 2), we set a Squeeze-and-Excitation (SE) block to 
further extract channel information of feature maps [24]. The structure of the SE block is presented in 
Figure 3. The SE block includes squeeze and excitation operations. First, an input feature map with a 
size of W × H × C was squeezed to a tensor with a size of 1 × 1 × C by global average pooling. Then, 
the 1 × 1 × C tensor was excited by a two-layer fully connected network. Finally, the excited 1 × 1 × C 
tensor as weights was multiplied with each channel of the input feature map, resulting in an output 
feature map with the same size as the input feature map. 
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Figure 3. The diagram of an SE Block. 

2.4. Edge attention block 

 

Figure 4. The diagram of an EA Block. 

In most previous works [27–29], attention mechanisms for learning edge features were not 
specifically developed for liver segmentation using deep CNNs. During deep learning, low-level 
features contain spatial information (e.g., edges), while high-level features contain semantic 



7790 

Mathematical Biosciences and Engineering  Volume 20, Issue 5, 7784–7801. 

information (e.g., target locations) [30]. It is anticipated that both the low-level and high-level features 
are useful to identify the edges of the target object to segment. Therefore, we proposed an Edge Attention 
(EA) block to improve the detection of liver features at different levels. As shown in Figure 4, both the 
downsampling feature map from the encoder and the upsampling feature map from the decoder were 
fed to an EA block. Then, both the feature maps were linearly combined and activated by a ReLU 
function. The activated feature map was further processed by an upsampling operation and a 
convolution with sigmoid activation, to obtain a feature map of alpha. In each EA block, the loss between 
the alpha map and the ground-truth label map was minimized by gradient descent (see Section 2.5 Deep 
supervision). Furthermore, the alpha feature map was activated by “1-sigmoid” to obtain another 
feature map of psi. The psi feature map as pixel-by-pixel weights was multiplied with the input 
downsampling feature map to obtain the output feature map containing enhanced edge information of 
the liver. 

2.5. Deep supervision 

Previous work has demonstrated that the convergence speed and recognition ability in image 
classification can be improved by supervising the training of hidden layers in a deep CNN [31]. 
Therefore, we introduced deep supervision into each EA block of the mfeeU-Net (Figure 4). 
Specifically, we used the nearest neighbor interpolation algorithm to upscale the low-level features 
and exert a sigmoid function on the upscaled features to obtain a feature map of alpha with the same 
dimension as the ground-truth label map. In the meantime, the alpha feature map was trained to match 
to the ground-truth label map by minimizing their difference. In this way, weights of hidden layers in 
the mfeeU-Net were effectively trained with a lower risk of gradient vanishing. 

The loss function for deep supervision consists of a binary cross-entropy (BCE) loss and a soft 
dice loss, as shown below,  

𝐿𝑜𝑠𝑠 𝐿𝑜𝑠𝑠 𝐴, 𝐵 𝐿𝑜𝑠𝑠 𝐴, 𝐵  (2)

where A and B represent the predicted probability map and ground-truth label map, respectively. The 
BCE and Dice losses are defined below: 

𝐿𝑜𝑠𝑠 𝐴, 𝐵 𝐵log 𝐴 1 𝐵 log 1 𝐴  (3)

𝐿𝑜𝑠𝑠 𝐴, 𝐵 1
2 ∑ 𝐵 𝐴, 𝜖

∑ 𝐵, ∑ 𝐴, 𝜖
 (4)

In Eq (4), 𝜖 is a small number that is introduced to avoid an undefined faction. 

3. Experimental setup 

3.1. CT dataset 

In this experiment, a publicly available CT dataset of LiTS2017 [32] was adopted for model 
training and testing. This dataset contains abdominal CT scans of 131 patients with doctor-manually 
annotated ground-truth liver labels. The number of slices in each CT volume ranges from 75 to 987 
with a spacing ranging from 0.45 to 6.0 mm, and the resolution of each CT slice is 512 × 512 pixels, 
with a pixel size from 0.55 to 1.0 mm. In data preprocessing, the Hounsfield unit values of CT images 
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were set between -200 and 200 to exclude irrelevant details, and histogram equalization was used to 
enhance the contrast of the CT image. Figure 5 presents representative CT slices and annotated liver 
labels. In particular, there are two main challenges to segment the liver, including blurred liver edges 
(Figure 5(a)) and discontinuous liver regions (Figure 5(b)). 

  

Figure 5. Representative CT slices with blurred liver edges (a) and discontinuous liver 
regions (b), as well as a sequence of CT slices with ground-truth liver labels (red). 

3.2. Model training 

In total, 131 CT volumes from the LiTS2017 dataset after pre-processing were chosen for CNN 
model training and testing. 22,880 paired slices and labels from 111 CT volumes were randomly 
selected as the training set, and 2599 paired slices and labels from the remaining 20 CT volumes 
were selected as the test set. During training, a 10-fold cross-validation scheme was adopted. 22,880 
paired slices and labels in the training set were randomly divided into ten groups. In each iteration, 
one group was used for cross-validation, and the remaining nine groups were used for model training 
until the 10-fold cross-validation using each group was completed. 

CNN models were developed and implemented using the TensorFlow deep learning framework. 
The Adam optimizer was used to optimize model weights using a learning rate of 1 × 10-4. Model 
training was performed on a desktop with the hardware configuration of Intel(R) Xeon(R) E5-2678 
V3, Nvidia GeForce RTX 3090, and 64 G Memory. 

3.3. Evaluation metrics 

To evaluate the segmentation performance of the mfeeU-Net proposed in this work, four 
commonly used evaluation metrics, including dice similarity coefficient (Dice) [33], intersection-over-
union ratio (IOU) [18], sensitivity (SEN) [34] and relative value difference (RVD) [35] were adopted. 
These metrics are formulated below: 

2 A B
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A B





 (5)
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where A is the image with the predicted liver mask and B is the image with the ground-truth liver label. 
The Dice, IOU, and SEN have a range between 0 and 1, and a larger metric indicates better 
performance. The RVD is unbounded, and the best performance corresponds to RVD = 0. 

4. Experimental results 

4.1. Training performance 

The training performance of the mfeeU-Net was compared with three well-established CNNs, 
including the U-Net, Res-U-Net, and Attention U-Net. Figure 6 depicts the learning curves of different 
models in terms of the losses (Eq (2)) on the training set and cross-validation set, respectively. It can 
be seen that the loss curves of the mfeeU-Net were decreased more rapidly on both the training and 
cross-validation sets during 100 epochs of training, suggesting better convergence and generalizability 
of the mfeeU-Net. 

    

Figure 6. Learning curves of different models in terms of the losses on the training set 
(left) and cross-validation set (right) during 100 epochs of training. 

4.2. Segmentation performance 

The segmentation performance of the proposed mfeeU-Net on the test set (that was not used in 
model training) was compared with the U-Net, Res-U-Net, and Attention U-Net. As shown in Figure 7, 
the average Dice, IOU, and SEN of the mfeeU-Net for liver segmentation were 95.32%, 91.67%, 
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and 95.53%, respectively, and all these metrics were better than those of U-Net, Res-U-Net, and 
Attention U-Net. Furthermore, the RVD of the mfeeU-Net was 0.0026, that is closer to 0, also indicating 
better performance than other models. Compared with U-Net, the mfeeU-Net has remarkably improved 
the average Dice, IOU, and Sensitivity by 4.96%, 5.36%, and 7.57%, respectively. 

  

 

Figure 7. Comparisons of DICE, IOU, SEN, and RVD of four models. In each boxplot, (a) 
U-Net, (b) Res-U-Net, (c) Attention U-Net, and (d) mfeeU-Net. The green triangle in each 
box represents the average of the evaluation metric, and the red line in each box represents 
the median of the evaluation metric. In particular, the averages of each metric are presented. 

Figure 8 visually compares the ground-truth 2D segmentation with prediction results using the 
proposed mfeeU-Net and other three classic models, in terms of the two challenging segmentation 
scenarios of blurred liver edges and discontinuous liver regions. It can be seen that the mfeeU-Net can 
provide more appropriate segmentation in detail. In contrast, the Attention U-Net, Res-U-Net, and U-
Net led to over-segmentation in the scenario of blurred liver edges, but under-segmentation in the 
scenario of discontinuous liver regions. 

Figure 9 further visually presents 3D liver models, which were reconstructed by assembling slices 
of 2D segmentation predicted by different CNN models. In this case, it can be observed that the 
reconstructed 3D liver model using the mfeeU-Net is more consistent with the ground-truth 3D liver 
model. Although the main portions of these reconstructed 3D liver models using the Attention U-Net, 
Res-U-Net, and U-Net can match the ground-truth 3D liver model, it is obvious that there are redundant 
parts predicted by these classic CNN models. 
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Figure 8. Visualization of 2D liver segmentation results in terms of challenging cases using 
the mfeeU-Net, Attention U-Net, Res-U-Net and U-Net, respectively. Rows 1: the scenario of 
blurred liver edges. Rows 2: the scenario of discontinuous liver regions. In particular, zoom-
in views below each plot present detailed differences in the predictions using different models. 

 

Figure 9. Visualization of 3D liver segmentation results using the mfeeU-Net, Attention 
U-Net, Res-U-Net and U-Net, respectively. Rows 1: the anterior view of the liver. Rows 2: 
the posterior view of the liver. In particular, zoom-in views below each plot present detailed 
differences in the predictions using different models. 
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4.3. Comparison with recently proposed methods 

In order to further verify the robustness and effectiveness of the mfeeU-Net, we further compared 
its segmentation performance with several recently proposed semantic segmentation models. The results 
of these models including MSN-Net [18], EAR-U-Net [15], iResU-Net [19], and Araújo et al [20] were 
collected directly from the publications. As shown in Table 1, in terms of the DICE, IOU, SEN, and RVD 
metrics, the mfeeU-Net can compete with and even outperform these recently proposed models. 

Table 1. Comparison of the segmentation performance of the mfeeU-Net with state-of-
the-art methods. All experiments were performed on the LiTS17 dataset. 

Method DICE IOU SEN RVD 
MSN-Net (2021) 0.9424 0.9075 - - 
EAR-U-Net (2021) 0.9595 - - 0.0050
iResU-Net (2022) 0.9428 - - -0.0025
Araújo et al (2022) 0.9564 - 0.9545 -0.0041
mfeeU-Net 0.9533 0.9168 0.9553 0.0026 

4.4. Ablation study 

  

Figure 10. Comparisons of DICE, IOU, SEN, and RVD of different models in the ablation 
study. In each boxplot, (a) U-Net, (b) U-Net + Res2Net, (c) U-Net + Res2Net + SE, (d) U-
Net + Res2Net + EA, and (e) mfeeU-Net. The green triangle in each box represents the 
average of the evaluation metric, and the red line in each box represents the median of the 
evaluation metric. In particular, the averages of each metric are presented. 
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To demonstrate the efficacy of each introduced module in the proposed mfeeU-Net, we performed 
an ablation study on the test set (that was not used in model training). Here, the Res2Net block, SE 
block, and EA block were individually added to the U-Net as the baseline, resulting in five different 
models: 1) U-Net, 2) U-Net + Res2Net, 3) U-Net + Res2Net + SE, 4) U-Net + Res2Net + EA, and 5) 
mfeeU-Net (i.e., U-Net + Res2Net + SE + EA). As shown in Figure 10, after introducing the Res2Net 
and SE / EA blocks to the U-Net, all metrics improved distinctly. Particularly, it is noted that the 
performance of U-Net + Res2Net + SE was similar to that of U-Net + Res2Net + EA. However, after 
introducing all the modules of Res2Net, SE, and EA blocks simultaneously, the resulting mfeeU-Net 
achieved the best segmentation performance. This ablation study clearly suggests that each module in 
the mfeeU-Net is indispensable in the improvement of liver segmentation performance. 

The 2D masks of the liver segmented using different CNN models defined in the ablation study 
were visualized, as shown in Figure 11. In general, the 2D segmentation results using the proposed 
mfeeU-Net outperform other models missing Res2Net, SE, and/or EA blocks. Most importantly, it 
appears that the proposed mfeeU-Net can well tackle the challenges such as blurred liver edges 
(Figure 11, rows 1 and 2) and discontinuous liver regions (Figure 11, rows 3 and 4). In contrast, it is 
obvious that the U-Net (the last column in Figure 11) resulted in over-segmentation for the scenarios 
of blurred liver edges (Figure 11, rows 1 and 2), as well as under-segmentation for the scenarios of 
discontinuous liver regions (Figure 11, rows 3 and 4). 

 

Figure 11. 2D liver segmentation on CT slices of a CT volume using different models 
defined in the ablation study. Rows 1 and 2 represent the scenarios of blurred liver edges. 
Rows 3 and 4 represent the scenarios of discontinuous liver regions. 
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Furthermore, we demonstrate that 3D liver models can be more accurately reconstructed by 
integrating 2D masks (Figure 11) predicted by the mfeeU-Net than other reduced models, as shown in 
Figure 12. It can be clearly seen that the reconstructed 3D liver model using the mfeeU-Net better 
matches to the ground-truth 3D liver model. However, larger discrepancy with respect to the ground-
truth 3D liver model occurs, as more modules such as Res2Net, EA, and SE blocks are removed from 
the mfeeU-Net. 

 

Figure 12. 3D reconstruction of a liver using 2D masks predicted using different models 
defined in the ablation study. (Rows 1 and 2 present the 3D liver model in the anterior and 
posterior views, respectively). 

5. Discussion 

Liver segmentation is an important prerequisite for the diagnosis and surgical planning of liver 
cancer [36]. However, there are two major challenges causing high uncertainties of liver segmentation 
from CT images using deep learning. The shapes and sizes of the liver in a CT slice sequence constantly 
change with discontinuous regions, and the CT intensities of the liver may be very close to the 
surrounding tissues or nearby organs [20]. In this work, we proposed and implemented the mfeeU-Net 
to tackle both challenges. Specifically, we introduced Res2Net and Squeeze-and-Excitation blocks for 
multi-scale feature extraction to improve the segmentation of discontinuous liver regions in a CT slice. 
Meanwhile, we proposed the Edge Attention block to enhance the detection of blurred liver boundaries.  

Our ablation study demonstrated that enriched feature and channel information through multi-scale 
feature extraction combined with channel attention are beneficial to the improvement of segmentation 
performance. For example, as shown in our ablation study, after the Res2Net and Squeeze-and-Excitation 
blocks were introduced into the U-Net, the Dice and IOU increased from 90.37% and 86.32% to 93.38% 
and 89.44%, respectively (Figure 10). Furthermore, the Edge Attention block located on each skip 
connection in hidden layers with different network depths can promote the extraction of edge 
information from low-level and high-level feature maps. For example, after Res2Net and Edge 
Attention blocks were introduced into U-Net, the Dice and IOU increased from 91.31% and 87.67% 
to 94.24% and 89.86%, respectively (Figure 10). In general, each module including the Res2Net, 
Squeeze-and-Excitation, and Edge Attention blocks is essential, as the best segmentation performance 
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was achieved using the complete model with all modules, compared to other reduced CNN models 
(Figure 10). Correspondingly, the mfeeU-Net enabled more accurate 2D segmentation and 3D 
reconstruction than other reduced CNN models (Figures 11 and 12).  

In this experiment, we also compared the training and segmentation performance of the proposed 
mfeeU-Net with three well-established CNN models, including U-Net, Res-U-Net, and Attention U-
Net. In terms of training performance, the loss curve of the mfeeU-Net was decreased more rapidly on 
both the training and cross-validation sets during 100 epochs of training, highlighting better 
convergence and generalizability of the mfeeU-Net (Figure 6). For segmentation performance on the 
test set, all metrics of the mfeeU-Net are superior to other CNN models (Figure 7). Meanwhile, as seen 
from the visual results of 2D segmentation and reconstructed 3D models in Figures 8 and 9, the mfeeU-
Net performs better than other classic models in terms of liver segmentation details and challenging 
segmentation scenarios, such as blurred liver edges and discontinuous liver regions. Because other 
CNN models lack mechanisms of multi-scale feature extraction or edge attention introduced in the 
mfeeU-Net, it further emphasizes that each module including the Res2Net, Squeeze-and-Excitation, 
and Edge Attention blocks are necessary, and they need to be simultaneously included in a CNN model 
for improving segmentation performance. 

In this work, we adopted a publicly available CT dataset of LiTS2017 for model training and 
testing. As there were a small number of abdominal CT scans available in LiTS2017, the dataset 
may not be sufficient to train a 3D convolutional neural network for direct 3D reconstruction. 
Therefore, we adopted 2D segmentation predictions and developed the mfeeU-Net based on the 2D 
U-Net architecture. In this way, the size of training data can be significantly expanded, to avoid 
overfitting and better generalize the trained model. For example, a CT volume with an average 
dimension of 512 × 512 × 120 in LiTS2017 includes 120 CT slices with an image size of 512 × 512. 
Moreover, by predicting the 2D segmentation of livers on each CT slice, the resulting liver masks can 
be assembled to create 3D liver models, as demonstrated in Figures 9 and 12. However, we 
acknowledge that the 3D context in a CT volume cannot be directly leveraged in 2D segmentation [37]. 
Future work should further investigate whether 3D CNN models can achieve excellent performance 
for the 3D reconstruction of livers. In addition, more comprehensive tests of 2D liver segmentation 
using the mfeeU-Net are required for clinical applications. 

6. Conclusions 

In this work, a novel CNN architecture, mfeeU-Net, is proposed for liver CT image segmentation. 
To extract the multi-scale features of the liver in CT images more effectively, we used Res2Net blocks 
as the backbone of the encoder, while we introduced the Squeeze-and-Excitation blocks to strengthen 
the channel information and eliminate the influence of irrelevant information. Furthermore, we 
incorporated a new Edge Attention block to improve the detection of blurred liver boundaries due to 
the low contrast of the liver with surrounding tissues. Compared with well-established CNN models, 
the mfeeU-Net can provide more accurate 2D segmentation with better performance metrics. Our 
ablation study also shows that all introduced modules including the Res2Net, Squeeze-and-Excitation, 
and Edge Attention blocks are effective to achieve superior segmentation performance. Therefore, the 
mfeeU-Net is promising to assist in clinical diagnosis and decision-making for liver cancer treatments, 
whereas more rigorous tests using a larger CT dataset are necessary. 
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