
http://www.aimspress.com/journal/mbe

MBE, 20(4): 7273–7297.
DOI: 10.3934/mbe.2023315
Received: 07 November 2022
Revised: 12 January 2023
Accepted: 30 January 2023
Published: 13 February 2023

Research article

Sliding mode dynamics and optimal control for HIV model

Dan Shi1, Shuo Ma1,*and Qimin Zhang1,2,*

1 School of Mathematics and Information Science, North Minzu University, Yinchuan 750021, China
2 School of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China

* Correspondence: Email: shuoma@nun.edu.cn, zhangqimin64@sina.com.

Abstract: Considering the drug treatment strategy in both virus-to-cell and cell-to-cell transmissions,
this paper presents an HIV model with Filippov control. Given the threshold level Nt, when the total
number of infected cells is less or greater than threshold level Nt, the threshold dynamics of the model
are studied by using the Routh-Hurwitz Criterion. When the total number of infected cells is equal to
Nt, the sliding mode equations are obtained by Utkin equivalent control method, and the dynamics are
studied. In addition, the optimal control strategy is introduced for the case that the number of infected
cells is greater than Nt. By dynamic programming, the Hamilton-Jacobi-Bellman (HJB) equation is
constructed, and the optimal control is obtained. Numerical simulations are presented to illustrate the
validity of our results.
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1. Introduction

Human immunodeficiency virus (HIV) takes the most important CD4+T lymphocytes in the human
immune system as the main target, destroys people’s CD4+T and makes the body lose its immune
function [1]. HIV is a major problem facing the human race and poses a serious health threat to
human society. While there has been remarkable advancement in the development of antiretroviral
therapy (ART) and prevention strategies, currently there are still many people living with HIV [2].
From the National Health Commission of the People’s Republic of China, to the end of 2020, a total of
1.053 million people in China were infected with HIV, 351,000 deaths were reported, and the number
of infections is expected to increase to 1.6 million in 2022. Therefore, it is beneficial to study the
effective control measures and find the optimal control by using mathematical models.

Early HIV models were primarily devoted to the virus-to-cell infection [3–10]. With the
development of science and the improvement of medical standards, some studies show that virus can
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also spread by direct cell-to-cell transmission [11–15]. Thus, many researchers have begun working
on an HIV model incorporating virus-to-cell and cell-to-cell transmission [16–20]. For example, by
an HIV model, Wang et al. [16] showed the existence, positivity and boundedness of the model
solution. Lai et al. [19] demonstrated global threshold dynamics by the basic reproduction number.
For the control of acquired immune deficiency syndrome (AIDS), the main drug treatment is to
prevent new HIV infections by blocking the transformation of viral RNA into DNA in T cells and
reducing the number of viral particles [21]. With regard to AIDS control, there have already been
some results [22–24]. Liu et al. [22], Akbari et al. [23] and Guo et al. [24] proposed an optimal
control problem for an HIV infection model with cell-to-cell spread. However, these studies were
focused on optimal control given over the entire infection period T , which will increase the cost of
control measures. If threshold level Nt can be introduced, such that the control measures are not
implemented when the total number of infected cells in an infected person is at a relatively low level
(threshold level Nt), while otherwise effective measures are taken to suppress progression of viruses
and infected cells, the time and cost will be reduced. The idea has been widely used in
engineering [25, 26], but little research has been done in epidemic diseases.

In addition, for the case that the number of infected cells in the body exceeds the threshold level
(Nt), from the perspectives of epidemiology and economics, how to control the spread of virus is
a valuable question. As indicated by discussion above, in this paper, we analyze the sliding mode
dynamics and optimal control of the HIV model with virus-to-cell and cell-to-cell transmission. Here,
because the timing of controlling infected cells and viruses is uncertain, dynamic programming is
considered, which demonstrates that not only can infected cells and viruses be controlled in time, but
also the goal of minimizing the concentration of infected cells and viruses with a low cost of application
control can be achieved. The main novelties are summarized as follows:

• About the HIV model with cell-to-cell transmission, the majority of the existing results only
discussed dynamics, this article proposes a piecewise control function concerning threshold
policy and discusses sliding mode dynamics.
• Differently from previous works on optimal control over the time period [0,T ] for the HIV

model, in this paper, optimal control strategies for infected cells and viruses are achieved when
the total number of infected cells in the body exceeds the certain tolerance threshold level (Nt).
Moreover, our results generalize and improve some published results in the literature, such as
[23, 24].

The whole organization of this work is as follows. Section 2 describes the different components of
the HIV model, and it then further extends a new three-dimensional Filippov model with two control
measures. Section 3 investigates the sliding mode dynamics of the model and shows the existence of
a unique positive pseudo-equilibrium. In Section 4, the optimal control problem is discussed. We first
give the objective function and prove the uniqueness and existence of the viscosity solution of the HJB
equation, and we then obtain the optimal control through the Hamiltonian function. The theoretical
results are verified by numerical simulations in Section 5. Finally, conclusions and outlook for further
work are given in Section 6.
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2. Model and preliminary knowledge

Inspired by [17, 19], the classical HIV model with virus-to-cell and cell-to-cell transmission is

dx(t)
dt
= Λ − βx(t)v(t) − γx(t)y(t) − ax(t),

dy(t)
dt
= βx(t)v(t) + γx(t)y(t) − by(t),

dv(t)
dt
= ky(t) − cv(t),

(2.1)

where x(t) denotes the concentration of uninfected target cells at time t, y(t) is the concentration of
infected cells at time t, and v(t) denotes the concentration of virus particles at time t. Λ is the
recruitment rate of healthy target cells, β is the rate at which an uninfected cell becomes infected by
an infectious virus, γ represents the infection rate of productively infected cells, k shows the
generation rate of virus particles, a expresses the loss rate of infected cells, b represents the natural
death rate of uninfected cells, and c indicates the clearance rate of virions.

Based on the existing HIV models, we give the sliding control system to maintain the number
of viruses and infected cells below the threshold level. Research [27] has found that current drug
treatment consisting of five antiretroviral drugs can suppress viral replication to a low level or increase
the CD4+T cell, the two main types of HIV resistance: reverse transcriptase inhibitors (RTIs) and
protease inhibitors (PIs) [28, 29]. RTIs prevent new HIV infections by blocking the transformation
of viral RNA into DNA in T cells, and PIs reduce the number of viral particles produced by actively
infected T cells [21]. We represent by µ1 the RTIs control variable and by µ2 the PIs control variable.
The control system is given as follows:

dx(t)
dt
= Λ − βx(t)v(t) − γx(t)y(t) − ax(t),

dy(t)
dt
= βx(t)v(t) + γx(t)y(t) − by(t) − εµ1y(t),

dv(t)
dt
= ky(t) − cv(t) − εµ2v(t),

(2.2)

with

ε =

0, y(t) − Nt < 0,
1, y(t) − Nt > 0.

(2.3)

µ1 is the culling rate of infected cells, µ2 is the clearance rate of virus particles, and they are constants.
The critical level of the total number of infected cells is represented by Nt. For convenience, y(t) − Nt

is defined as ω(M) = y(t) − Nt with vector M = (x(t), y(t), v(t))⊤ ∈ R3
+ and R3

+ = {M = (x, y, v)|x ≥
0, y ≥ 0, v ≥ 0}.

Remark 2.1. When ε = 0, model (2.2) becomes model (2.1) and the control measures are taken when
ε = 1.
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3. The sliding mode dynamics of HIV model

In this section, according to system (2.2) with (2.3), we study the dynamics of the system. First, we
define G1 = {M ∈ R3

+|ω(M) < 0}, G2 = {M ∈ R3
+|ω(M) > 0}. Furthermore, we describe the manifold

Gs as Gs = {M ∈ R3
+|ω(M) = 0} and the normal vector perpendicular to Gs is shown as n = (0, 1, 0)⊤.

Then, we consider the following Filippov system:

Ṁ =

 f1(M), M ∈ G1,

f2(M), M ∈ G2,
(3.1)

where

f1(M) =


Λ − ax(t) − βx(t)v(t) − γx(t)y(t)
βx(t)v(t) + γx(t)y(t) − by(t)

ky(t) − cv(t)

 ,

f2(M) =


Λ − ax(t) − βx(t)v(t) − γx(t)y(t)
βx(t)v(t) + γx(t)y(t) − by(t) − µ1y(t)

ky(t) − cv(t) − µ2v(t)

 .
Based on this, we present the following definitions of various equilibriums and sliding domain.

Definition 3.1. [30] If f1(M∗) = 0 with ω(M∗) < 0, or f2(M∗) = 0 with ω(M∗) > 0, the point M∗ is
called a real equilibrium of system (3.1).

Definition 3.2. [30] If f1(M∗) = 0 with ω(M∗) > 0, or f2(M∗) = 0 with ω(M∗) < 0, the point M∗ is
called a virtual equilibrium of system (3.1).

Definition 3.3. [30] If it is an equilibrium of the sliding mode of system (3.1), the point M∗ is called
a pseudo-equilibrium.

Definition 3.4. [30] S is the sliding domain, if ⟨n, f1⟩ > 0 and ⟨n, f2⟩ < 0 on S ⊂ Gs.

3.1. Analysis in region G1

In this subsection, we calculate the basic reproduction number and analyze the stability of
equilibrium. The dynamics of system (3.1) in region G1 are indicated by

x′(t)
y′(t)
v′(t)

 =

Λ − ax(t) − βx(t)v(t) − γx(t)y(t)
βx(t)v(t) + γx(t)y(t) − by(t)

ky(t) − cv(t)

 . (3.2)

In subsystem (3.2), the disease-free equilibrium E0
1 =

(
Λ
a , 0, 0

)
and the endemic equilibrium E∗1 =

Mathematical Biosciences and Engineering Volume 20, Issue 4, 7273–7297.
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(x∗1, y
∗
1, v
∗
1) are given, where

x∗1 =
bc

kβ + cγ
,

y∗1 =
Λ(kβ + cγ) − acb

b(kβ + cγ)
,

v∗1 =
Λk(kβ + cγ) − ackb

bc(kβ + cγ)
,

R01 =
Λ(βk + cγ)

acb
.

Next, the following theorem about the local asymptotic stability of equilibria E0
1 and E∗1 are given.

Theorem 3.5. The disease-free equilibrium E0
1 is locally asymptotically stable if R01 < 1; the endemic

equilibrium E∗1 exists and is locally asymptotically stable if R01 > 1.

Proof. Using the next generation matrix, the basic reproduction number R01 of system (3.2) can be
deduced, and system (3.2) can be represented as

M′ = F(M) − V(M),

where

F(M) =


βx(t)v(t) + γx(t)y(t)

0
0

 ,V(M) =


by(t)

cv(t) − ky(t)
ax(t) + βx(t)v(t) + γx(t)y(t) − Λ

 .
The Jacobian matrix of F(M) and V(M) at the equilibrium point E0

1 is

DF(E0
1) =


γΛa βΛa 0
0 0 0
0 0 0

 ,DV(E0
1) =


b 0 0
−k c 0
γΛa βΛa a

 ,
where

F =
[
γΛa βΛa
0 0

]
,V =

[
b 0
−k c

]
.

Then, the generation matrix of system (3.2) is

FV−1 =

[
Λ(βk+cγ)

acb
βΛ

ac
0 0

]
.

So, the spectral radius of FV−1 is

ρ(FV−1) =
Λ(βk + cγ)

acb
,

where ρ is the spectral radius of a matrix. Therefore, the basic reproduction number of system (3.2) is

R01 =
Λ(βk + cγ)

acb
.
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For subsystem (3.2), The Jacobian matrix is

J1(x(t), y(t), v(t)) =


−a − βv(t) − γy(t) −γx(t) −βx(t)
βv(t) + γy(t) −b + γx(t) βx(t)

0 k −c

 .
If R01 < 1 , cb− cγΛ+kβΛ

a > 0, c+b− γΛa > 0 can be obtained, and (c+b− γΛa )2−4(cb− cγΛ+kβΛ
a ) > 0.

The characteristic equation at E0
1 is

(λ + a)[(λ + b −
γΛ

a
)(λ + c) −

kβΛ
a

] = 0,

which indicates that

λ1 = −a < 0,

λ2 =
−(c + b − γΛa ) +

√
(c + b − γΛa )2 − 4(cb − cγΛ+kβΛ

a )

2
< 0,

λ3 =
−(c + b − γΛa ) −

√
(c + b − γΛa )2 − 4(cb − cγΛ+kβΛ

a )

2
< 0.

Thus, the eigenvalues of J(E0
1) are negative when R01 < 1, so we can obtain that E0

1 is locally
asymptotically stable.

If R01 > 1, then γcΛ+kβΛ
acb > 1, and there exists the endemic equilibrium E∗1. Thus, the characteristic

equation at E∗1 is
λ3 + a1λ

2 + a2λ + a3 = 0,

where

a1 = a + c + b + βv∗1 + γy
∗
1 − γx∗1

= a + c + b + β
Λk(kβ + cγ) − ackb

bc(kβ + cγ)
+ γ
Λ(kβ + cγ) − acb

b(kβ + cγ)
− γ

bc
kβ + cγ

= c + a +
bkβ

kβ + cγ
> 0,

a2 = bc + ac + ab − (γc + kβ + aγ)x∗1 + (cβ + bβ)v∗1 + (cγ + bγ)y∗1

= bc + ac + ab − (γc + kβ + aγ)
bc

kβ + cγ
+ (cβ + bβ)

Λk(kβ + cγ) − ackb
bc(kβ + cγ)

+ (cγ + bγ)
Λ(kβ + cγ) − acb

b(kβ + cγ)

= ca +
akbβ

kβ + cγ
> 0,

a3 = acb − (acγ + akβ)x∗1 + bcβv∗1 + bcγy∗1

= acb − (acγ + akβ)
bc

kβ + cγ
+ bcβ

Λk(kβ + cγ) − ackb
bc(kβ + cγ)

+ bcγ
Λ(kβ + cγ) − acb

b(kβ + cγ)
= Λ(kβ + cγ) − acb > 0.
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Moreover, we can get

a1a2 − a3 = [a + c + b + βv∗1 + γy
∗
1 − γx∗1][bc + ac + ab − (γc + kβ + aγ)x∗1 + (cβ + bβ)v∗1

+ (cγ + bγ)y∗1] − [acb − (acγ + akβ)x∗1 + bcβv∗1 + bcγy∗1]

=
Λ(kβ + cγ) − acb

bc(kβ + cγ)
[bbkβ + akbβ + accγ + bckβ + cckβ + cccγ + cakβ + cacγ]

+ (cakβ + cacγ + abkβ)
bkβ + ckβ + ccγ + akβ + acγ

(kβ + cγ)2

+ 2kβγ(b + c)
Λ(kβ + cγ) − acb

bc(kβ + cγ)
·
Λ(kβ + cγ) − acb

b(kβ + cγ)

+
Λ(kβ + cγ) − acb

bc(kβ + cγ)
(ackβ + cacγ + akbβ)

> 0.

According to the Routh-Hurwitz Criterion, all eigenvalues of J(E∗1) have negative real parts. Hence,
this represents that E∗1 is locally asymptotic stable.

3.2. Analysis in region G2

In region G2, we give the dynamics of system (3.1):
x′(t)
y′(t)
v′(t)

 =

Λ − ax(t) − βx(t)v(t) − γx(t)y(t)
βx(t)v(t) + γx(t)y(t) − by(t) − µ1y(t)

ky(t) − cv(t) − µ2v(t)

 . (3.3)

In subsystem (3.3), the disease-free equilibrium E0
2 =

(
Λ
a , 0, 0

)
and the endemic equilibrium E∗2 =

(x∗2, y
∗
2, v
∗
2) are given, where

x∗2 =
(c + µ2)(b + µ1)
kβ + γ(c + µ2)

,

y∗2 =
Λ

b + µ1
−

a(c + µ2)
kβ + γ(c + µ2)

,

v∗2 =
kΛ

(c + µ2)(b + µ1)
−

ak
kβ + γ(c + µ2)

,

R02 =
Λ(kβ + γ(c + µ2))
a(c + µ2)(b + µ1)

.

Next, the following theorem about the local asymptotic stability of equilibria E0
2 and E∗2 are given.

Theorem 3.6. The disease-free equilibrium E0
2 is locally asymptotically stable if R02 < 1. The endemic

equilibrium E∗2 exists and is locally asymptotically stable if R02 > 1.

Proof. Using the next generation matrix, we deduce the basic reproduction number R02 of system (3.3):

R02 = ρ

[γΛa βΛa
0 0

] [
b + µ1 0
−k c + µ2

]−1
=
Λ(kβ + γ(c + µ2))
a(c + µ2)(b + µ1)

.
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For subsystem (3.3), the Jacobian matrix is

J2(x(t), y(t), v(t)) =


−a − βv(t) − γy(t) −γx(t) −βx(t)
βv(t) + γy(t) −b + γx(t) − µ1 βx(t)

0 k −c − µ2

 .
Let c+ µ2 = c1, b+ µ1 = b1. Similar to the proof of Theorem 3.5, if R02 < 1, then all eigenvalues of

J(E0
2) are negative, and thus the local asymptotic stability of E0

2 can also be concluded. Furthermore, all
eigenvalues of J(E∗2) have negative real parts, if R02 > 1, which shows that E∗2 is locally asymptotically
stable.

Remark 3.7. The basic reproduction number R02 is related to control variables µ1 and µ2, and when
µ1 = µ2 = 0, that is, the control measures are not implemented, we have R01 = R02.

3.3. Analysis in region Gs

In order to study the dynamics of sliding mode of system (3.1) in this subsection, we initially
examine the existence of the sliding mode. The manifold Gs is defined as y(t) = Nt, and we have

⟨n, f1⟩ =

〈
0
1
0

 ,

Λ − ax(t) − βx(t)v(t) − γx(t)y(t)
βx(t)v(t) + γx(t)y(t) − by(t)

ky(t) − cv(t)


〉

= βx(t)v(t) − bNt + γx(t)Nt

= σ1(x(t), v(t)),

(3.4)

and

⟨n, f2⟩ =

〈
0
1
0

 ,

Λ − ax(t) − βx(t)v(t) − γx(t)y(t)
βx(t)v(t) + γx(t)y(t) − by(t) − µ1y(t)

ky(t) − cv(t) − µ2v(t)


〉

= βx(t)v(t) − bNt + γx(t)Nt − µ1Nt

= σ2(x(t), v(t)),

(3.5)

which shows that σ2(x(t), v(t)) < σ1(x(t), v(t)). Because ⟨n, f1⟩ > 0 and ⟨n, f2⟩ < 0, we can obtain

⟨n, f1⟩ > 0, i f x(t) >
bNt

βv(t) + γNt
= H1(v(t)),

⟨n, f2⟩ < 0, i f x(t) <
bNt + µ1Nt

βv(t) + γNt
= H2(v(t)),

and
H2(v(t)) > H1(v(t)).

It is obvious that H1(v(t)) is positive on the interval (0,Nt), and so is H2(v(t)). Then, the sliding
domain S ⊂ Gs is defined as follows:

S ≜ {(x(t), y(t), v(t)) ∈ Gs : H1(v(t)) < x(t) < H2(v(t)), y(t) = Nt}. (3.6)
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Moreover, in order to obtain sliding mode equations in the region S , we use the Utkin equivalent
control method, as used in [31]. First, according to ω(y(t)) = y(t) − Nt = 0 and dω/dt = 0,

dω
dt
=
∂ω

∂y(t)
dy(t)

dt
= βx(t)v(t) − by(t) + γx(t)y(t) − εµ1y(t)
= 0.

(3.7)

By solving Eq (3.7), the function about ε is obtained:

ε(v(t)) =
βx(t)v(t) − by(t) + γx(t)y(t)

µ1y(t)

=
βx(t)v(t) − bNt + γx(t)Nt

µ1Nt
.

(3.8)

Substitute Eq (3.8) into system (2.2), and the dynamics of sliding mode in S can be given by
differential equations as follows:

dx(t)
dt
= Λ − ax(t) − βx(t)v(t) − γx(t)Nt,

dy(t)
dt
= 0,

dv(t)
dt
=

kµ1N2
t − cµ1Ntv(t) + bµ2Ntv(t) − γµ2Ntx(t)v(t) − µ2βx(t)v2(t)

µ1Nt
.

(3.9)

Next, we exhibit the following proposition about the existence of equilibrium of sliding mode (3.9).

Proposition 3.8. The existence of a unique positive pseudo-equilibrium E∗s = ( Λ
a+βv∗+γNt

,Nt, v∗) of
sliding mode (3.9) is obtained if c−k

b <
µ2
µ1
< c

b and E∗s ∈ S .

Proof. Let dx(t)
dt = 0 and dv(t)

dt = 0. It obtains that

x(t) =
Λ

a + βv(t) + γNt
, (3.10)

and
kµ1N2

t − cµ1Ntv(t) + bµ2Ntv(t) − γµ2Ntx(t)v(t) − µ2βx(t)v2(t) = 0. (3.11)

After substituting Eq (3.10) into (3.11), we get the following equation of v(t):

τ1v2(t) + τ2v(t) + τ3 = 0, (3.12)

where

τ1 = βNt(bµ2 − cµ1) − µ2βΛ,

τ2 = abµ2Nt − caµ1Nt − γΛµ2Nt + bγµ2N2
t − cγµ1N2

t + kβµ1N2
t ,

τ3 = akµ1N2
t + kγµ1N3

t ,

∆ = τ2
2 − 4τ1τ3

= N2
t [abµ2 − caµ1 − γΛµ2 + bγµ2Nt − cγµ1Nt + kβµ1Nt]2

− 4(βNt(bµ2 − cµ1) − µ2βΛ)[akµ1N2
t + kγµ1N3

t ].
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If c−k
b <

µ2
µ1
< c

b , then τ1 < 0, τ3 > 0 and ∆ > 0 can be received. The Vieta Theorem shows

v∗1v∗2 =
τ3

τ1
< 0. (3.13)

Due to ∆ > 0, the existence of the root is proven, and there are two roots, one positive root and one
negative root from (3.13). We can conclude that Eq (3.12) has a unique positive root denoted by v∗.
Thus, the equilibrium point E∗s can be obtained from (3.10):

E∗s = (x∗, y∗, v∗) =
(

Λ

a + βv∗ + γNt
,Nt, v∗

)
.

Furthermore, E∗s is a unique pseudo-equilibrium if E∗s ∈ S ⊂ Gs holds.

Similar to the previous theorem, it is worth considering the local asymptotical stability of E∗s , and
then the following theorem is given.

Theorem 3.9. Under the same conditions of Proposition 3.8, E∗s is locally asymptotically stable on the
sliding domain S .

Proof. In system (3.9), the Jacobian matrix of the first two equations is

Js(x∗, v∗) =
(

J11 J12

J21 J22

)
. (3.14)

From Proposition 3.8, c−k
b <

µ2
µ1
< c

b , we set

P =
dx(t)

dt
= Λ − ax(t) − βx(t)v(t) − γx(t)Nt,

Q =
dv(t)

dt
=

kµ1N2
t − cµ1Ntv(t) + bµ2Ntv(t) − γµ2Ntx(t)v(t) − µ2βx(t)v2(t)

µ1Nt
,

(3.15)

and obtain

J11 =
∂P
∂x

∣∣∣∣∣
(x∗,v∗)

= −a − βv∗ − γNt < 0,

J12 =
∂P
∂v

∣∣∣∣∣
(x∗,v∗)

= −βx∗ < 0,

J21 =
∂Q
∂x

∣∣∣∣∣
(x∗,v∗)

=
−γµ2v∗Nt − µ2β(v∗)2

µ1Nt
< 0,

J22 =
∂Q
∂v

∣∣∣∣∣
(x∗,v∗)

=
−cµ1Nt + bµ2Nt − γµ2Ntx∗ − 2µ2βx∗v∗

µ1Nt
< 0.

(3.16)

Thus, we get
J11 · J22 − J12 · J21 > 0, (3.17)
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since J11 + J22 < 0, and we can obtain that

J11 · J22 − J12 · J21

= [−a − βv∗ − γNt] ·
−cµ1Nt + bµ2Nt − γµ2Ntx∗ − 2µ2βx∗v∗

µ1Nt
− (−βx∗) ·

−γµ2v∗Nt − µ2β(v∗)2

µ1Nt

=
(a + βv∗ + γNt) · (cµ1Nt − bµ2Nt) + (a + γNt)γµ2Ntx∗ + (a + βv∗ + γNt)µ2βx∗v∗

µ1Nt
> 0.

(3.18)

Therefore, all eigenvalues of (3.14) have negative real parts. That E∗s is locally asymptotically
stable can be obtained easily.

Remark 3.10. The sliding domain S represents the region between the two lines associated with
x(t), v(t) belonging to the plane y = Nt, and the local asymptotical stability of pseudo-equilibrium E∗s
in sliding domain S is related to the control variables, which needs to satisfy the condition of the
parameters.

4. Optimal control problem

In order to reduce the number of infected cells and viruses, while keeping the cost to apply the
control at the minimum level at any time, we show an optimal control problem on the basis of system
(2.2). In this section, any time refers to when the number of infected cells is greater than threshold
level Nt, that is, when ε = 1 in system (2.2). If the control variable in system (2.2) is a time dependent
variable, how do we find the optimal control? Thus, we represent by u1(t) the RTIs control variable
and by u2(t) the PIs control variable. First, we have u(t) = (u1(t), u2(t))⊤ ∈ V[s,T ] = {u(·) : [s,T ] →
U | u1(t) and u2(t) are measurable : 0 ≤ u1(t) ≤ 1, 0 ≤ u2(t) ≤ 1}, where U is a metric space and
convex, T > 0, and the control problem of the model is given by

dx(t)
dt
= Λ − βx(t)v(t) − γx(t)y(t) − ax(t),

dy(t)
dt
= βx(t)v(t) + γx(t)y(t) − by(t) − u1(t)y(t), t > 0,

dv(t)
dt
= ky(t) − cv(t) − u2(t)v(t).

(4.1)

Let (s,M) ∈ [0,T ) × R3, and we consider the following control system over [s,T ]:
dM(t)

dt
= b(t,M(t), u(t)), t ∈ [s,T ],

M(s) = M0,
(4.2)

where M(t) = (x(t), y(t), v(t))⊤ ∈ R3. Next, we construct the following objective functional:

J(u1(t), u2(t)) =
∫ T

s
(A1u2

1(t) + A2u2
2(t) + A3y(t) + A4v(t))dt + h(M(T )), (4.3)

where Ai (i = 1, 2, 3, 4) are weights to make the terms of the integrand keep balance. The term∫ T

s
(A1u2

1(t) + A2u2
2(t))dt gives the total cost of using the control strategy, h(M(T )) is the penalty
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function corresponding to the terminal state, and
∫ T

s
(A3y(t) + A4v(t))dt represents the total number of

infected cells and viruses over the time period T . It is important to find an optimal control pair
(u∗1(t), u∗2(t)), t ∈ [s,T ] such that

J(u∗1(t), u∗2(t)) = min
u1(t),u2(t)∈V[s,T ]

J(u1(t), u2(t)). (4.4)

Further, the value function is as follows:
V(s,M0) = inf

u1(t),u2(t)∈V[s,T ] J(s,M0;u1(t),u2(t))
, ∀(s,M0) ∈ [0,T ) × R3,

V(T,M0) = h(M0), ∀M0 ∈ R
3.

(4.5)

Before further study, we give the following assumption.

Assumption 1. (U, d̃) is a separable metric space.

Then, we would like to study V(·, ·) in great detail and present the following results called Bellman’s
principle of optimality by [32].

Theorem 4.1. Let 1 hold, and U is convex. Then, for any (s,M0) ∈ [0,T ) × R3, we have

V(s,M0) = inf
u1(t),u2(t)∈V[s,T ]

{

∫ ŝ

s
(A1u2

1(t) + A2u2
2(t) + A3y(t)

+ A4v(t))dt + V(ŝ,M(ŝ; s,M0, u(·)))}, ∀0 ≤ s ≤ ŝ ≤ T.
(4.6)

Proof. Let us define

V̄(s,M0) = {
∫ ŝ

s
(A1u2

1(t) + A2u2
2(t) + A3y(t) + A4v(t))dt + V(ŝ,M(ŝ; s,M0, u(·)))}. (4.7)

By (4.6), we obtain

V̄(s,M0) ≤ J(s,M0; u(t)) =
∫ ŝ

s
(A1u2

1(t) + A2u2
2(t) + A3y(t) + A4v(t))dt

+ J(ŝ,M(ŝ); u(·))), ∀u(t) ∈ V[s,T ].
(4.8)

Therefore, we take the infimum over u(t) ∈ V[s,T ] and get

V(s,M0) ≤ V̄(s,M0), (4.9)

and there exists a uε(t) ∈ V[s,T ] for ∀ε > 0 such that

V(s,M0) + ε ≥ J(s,M0; uε(t)) ≥
∫ ŝ

s
(A1u2

1(t) + A2u2
2(t) + A3y(t) + A4v(t))dt + J(ŝ,Mε(ŝ)) ≥ V̄(s,M0),

(4.10)
where Mε(·) = M(·; s,M0, uε(·)). Combining (4.9) and (4.10), (4.6) is obvious. This completes the
proof.

Mathematical Biosciences and Engineering Volume 20, Issue 4, 7273–7297.



7285

(4.6) is called the dynamic programming equation, and the equation is difficult to handle. Thus, we
construct the Hamilton-Jacobi-Bellman (HJB) equation as follows.

Theorem 4.2. Let 1 hold, and U is convex. Suppose V ∈ C1([0,T ] × R3). Then, V(s,M0) is a solution
to the following terminal value problem of a first-order partial differential equation:

0 = −Vt + sup
u(t)∈U

H(t,M, u(t),−VM), (t,M) ∈ [0,T ] × R3,

V |t=T = h(M), M ∈ R3,
(4.11)

where
H(t,M, u(t),−VM) = −Vx(Λ − ax(t) − βx(t)v(t) − γx(t)y(t)) − Vy(βx(t)v(t) + γx(t)y(t) − by(t)
− u1(t)y(t)) − Vv(ky(t) − cv(t) − u2(t)v(t)) − A1u2

1(t) − A2u2
2(t) − A3y(t) − A4v(t).

(4.12)

We call (4.11) the Hamilton-Jacobi-Bellman (HJB) equation associated with (4.5).

Proof. Fix a u ∈ U. Let M(t) be the state trajectory corresponding to the control u(t) ≡ u. According
to (4.6) with ŝ ↓ s, we get

0 ≥ −
V(ŝ,M(ŝ)) − V(s,M0)

ŝ − s
−

1
ŝ − s

∫ ŝ

s
(A1u2

1(t) + A2u2
2(t) + A3y(t) + A4v(t))dt

→ −Vt(s,M0) − (Vx(Λ − ax(t) − βx(t)v(t) − γx(t)y(t)) + Vy(βx(t)v(t) + γx(t)y(t) − by(t) − u1(t)y(t))
+ Vv(ky(t) − cv(t) − u2(t)v(t))) − (A1u2

1(t) + A2u2
2(t) + A3y(t) + A4v(t)), ∀u ∈ U,

(4.13)
which results in

0 ≥ − Vt(s,M0) + sup
u∈U
{−Vx(Λ − ax(t) − βx(t)v(t) − γx(t)y(t)) − Vy(βx(t)v(t) + γx(t)y(t) − by(t)

− u1(t)y(t)) − Vv(ky(t) − cv(t) − u2(t)v(t)) − A1u2
1(t) − A2u2

2(t) − A3y(t) − A4v(t)}.
(4.14)

For any ε > 0, 0 ≤ s ≤ ŝ ≤ T with ŝ − s > 0 small enough, there exists a u = uε,ŝ(·) ∈ V[s,T ] such
that

V(s,M0) + ε(ŝ − s) ≥
∫ ŝ

s
(A1u2

1(t) + A2u2
2(t) + A3y(t) + A4v(t))dt + V(ŝ,M(ŝ)), (4.15)

so it follows that

−ε ≤ −
V(ŝ,M(ŝ)) − V(s,M0)

ŝ − s
−

1
ŝ − s

∫ ŝ

s
(A1u2

1(t) + A2u2
2(t) + A3y(t) + A4v(t))dt

=
1

ŝ − s

∫ ŝ

s
{−Vt(t,M) − [Vx(Λ − ax(t) − βx(t)v(t) − γx(t)y(t)) + Vy(βx(t)v(t) + γx(t)y(t)

− by(t) − u1(t)y(t)) + Vv(ky(t) − cv(t) − u2(t)v(t))] − [A1u2
1(t) + A2u2

2(t) + A3y(t) + A4v(t)]}dt

≤
1

ŝ − s

∫ ŝ

s
{−Vt(t,M) + sup

u∈U
{−Vx(Λ − ax(t) − βx(t)v(t) − γx(t)y(t)) − Vy(βx(t)v(t) + γx(t)y(t)

− by(t) − u1(t)y(t)) − Vv(ky(t) − cv(t) − u2(t)v(t)) − A1u2
1(t) − A2u2

2(t) − A3y(t) − A4v(t)}}dt

→ −Vt(s,M0) + sup
u∈U
{−Vx(Λ − ax(t) − βx(t)v(t) − γx(t)y(t)) − Vy(βx(t)v(t) + γx(t)y(t) − by(t)

− u1(t)y(t)) − Vv(ky(t) − cv(t) − u2(t)v(t)) − A1u2
1(t) − A2u2

2(t) − A3y(t) − A4v(t)}.
(4.16)

Combining (4.14) and (4.16), we complete the proof.
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For further study, the definition of viscosity solution of (4.11) by [32] is given.

Definition 4.3. A function V ∈ C[0,T ] × R3) is called a viscosity subsolution (or supersolution) of
(4.11) if

V(T,M) ≤ h(M), (V(T,M) ≥ h(M)) ∀M ∈ R3, (4.17)

and for any φ ∈ C1([0,T ] × R), whenever V − φ attains a local maximum(or minimum) at (t,M) ∈
[0,T ] × R3, we have

−φt(t,M) + sup
u(t)∈U

H(t,M, u(t),−φM(T,M)) ≤ 0, (−φt(t,M) + sup
u(t)∈U

H(t,M, u(t),−φM(T,M)) ≥ 0).

(4.18)
In this case that V is both a viscosity subsolution and supersolution of (4.11), it is a viscosity

solution of (4.11).

If we get the value function V by solving the HJB equation, then an optimal pair could be
constructed. Thus, the characterization of the value function of the viscosity solution to the HJB
equation is given below.

Theorem 4.4. Let 1 hold, and U is convex. Then, the value function V(·, ·) satisfies

|V(s,M0) − V(s̄, M̄0)| ≤ K|s − s̄|, ∀(s,M0), (s̄, M̄0) ∈ [0,T ] × R3, (4.19)

for some K > 0. Moreover, V is the only viscosity solution of (4.11) in the class C([0,T ] × R3).

Proof. We have

|V(s,M0) − V(s̄, M̄0)| = | inf
u1,u2∈V[s,T ]

∫ T

s
[A1u2

1(t) + A2u2
2(t) + A3y(t) + A4v(t)]dt

− inf
u1,u2∈V[s,T ]

∫ T

s̄
[A1u2

1(t) + A2u2
2(t) + A3y(t) + A4v(t)]dt|

≤ |

∫ s̄

s
[A1u2

1(t) + A2u2
2(t) + A3y(t) + A4v(t)]dt|

≤ K|s − s̄|,

(4.20)

where K = max{A1u2
1(t) + A2u2

2(t) + A3y(t) + A4v(t)} > 0. Then, similar to [32, Theorem 2.5], the value
function V clearly satisfies the condition and is the only viscosity solution of (4.11).

Next, in order to discuss the existence of the optimal control pair, we define H(t,M, u(t), p) as the
Hamiltonian as follows:

H(t,M, u(t), p) = (Λ − ax(t) − βx(t)v(t) − γx(t)y(t))p1 + (βx(t)v(t) + γx(t)y(t) − by(t)
− u1(t)y(t))p2 + (ky(t) − cv(t) − u2(t)v(t))p3 + A1u2

1(t) + A2u2
2(t) + A3y(t) + A4v(t).

(4.21)

Theorem 4.5. There exists an optimal control pair
(
u∗1(t), u∗2(t)

)
and a corresponding optimal state

(x∗(t), y∗(t), v∗(t)) such that

J
(
u∗1(t), u∗2(t)

)
= min

u1(t),u2(t)∈U
J (u1(t), u2(t)) . (4.22)
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Proof. Note that both the control variables and state variables are nonnegative, and the objective
functional (4.3) is convex with respect to the control variables. The convexity and closure of the
control set U are obtained according to the definition of it. Furthermore, the optimal control is
bounded. Therefore, we conclude that there exists an optimal control u∗1(t), u∗2(t) for
J
(
u∗1(t), u∗2(t)

)
= minu1(t),u2(t)∈U J (u1(t), u2(t)).

The HJB equation and the value function have been discussed. Further, we figure out the optimal
control as follows.

Theorem 4.6. Let u∗1(t), u∗2(t) be optimal control variables, and x∗(t), y∗(t), v∗(t) are corresponding
optimal state variables. There exists adjoint process p(t) = (p1(t), p2(t), p3(t))⊤, satisfying the
following adjoint equation:

dp1(t) = −
[
(−a − βv(t) − γy(t))p1(t) + (βv(t) + γy(t))p2(t)

]
dt

dp2(t) = −
[
(−γx(t))p1(t) + (γx(t) − b − u1(t)) p2(t) + kp3(t) + A3

]
dt

dp3(t) = −
[
(−βx)p1(t) + (βx)p2(t) + (−c − u2(t)) p3(t) + A4

]
dt

pi(T ) = 0, i = 1, 2, 3.

(4.23)

Furthermore, the optimal control is given as follows:

u∗i (t) = min {max {Bi, 0} , 1} , i = 1, 2, (4.24)

where B1 =
y∗(t)p2(t)

2A1
, B2 =

v∗(t)p3(t)
2A2

.

Proof. Because the Hamiltonian function H is given. Moreover, by using the optimal condition, and
we obtain u∗1(t) and u∗2(t)

∂H
∂u1
= 0,
∂H
∂u2
= 0. (4.25)

Hence,

u∗1(t) =
y∗(t)p2(t)

2A1
, u∗2(t) =

v∗(t)p3(t)
2A2

. (4.26)

So, B1 =
y∗(t)p2(t)

2A1
, B2 =

v∗(t)p3(t)
2A2

are taken, and the optimal control u∗1(t), u∗2(t) follows:

u∗1(t) =


0, if y∗(t)p2(t)

2A1
< 0,

y∗(t)p2(t)
2A1
, if 0 ≤ y∗(t)p2(t)

2A1
≤ 1,

1, if y∗(t)p2(t)
2A1

> 1,
u∗2(t) =


0, if v∗(t)p3(t)

2A2
< 0,

v∗(t)p3(t)
2A2
, if 0 ≤ v∗(t)p3(t)

2A2
≤ 1,

1, if v∗(t)p3(t)
2A2

> 1.
(4.27)

Thus, the optimal value can be obtained.

Remark 4.7. In practical problems, when the parameters are known, the optimal control u∗1(t) and u∗2(t)
can be calculated by using computer programming for Eqs (4.1), (4.23) and (4.27), that is, the dosage
intensity of RTIs and PIs at each time can be calculated. If patients are treated in such a proportion,
an optimal control strategy to minimize the costs and the number of viruses and infected cells can be
obtained.
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5. Numerical simulations

In this section, several numerical simulations are presented to prove and verify the above theoretical
results by MATLAB software.

5.1. Numerical simulations of sliding mode

In this subsection, numerical simulations are performed to illustrate the theoretical results. We
discuss the dynamics behavior of system (3.1). Since the choice of the threshold level Nt is different,
system (3.1) will show various dynamics. There are three cases to consider. First, we discretize system
(3.1) as follows: 

x( j + 1) = x( j) + ∆t(Λ − ax( j) − βx( j)v( j) − γx( j)y( j)),
y( j + 1) = y( j) + ∆t(βx( j)v( j) + γx( j)y( j) − by( j) − εµ1y( j)),
v( j + 1) = v( j) + ∆t(ky( j) − cv( j) − εµ2v( j)).

(5.1)

In Table 1, all parameter values are exhibited. Some values are collected from different papers
[6, 17], and others are assumed.

Table 1. Parameter values of numerical experiments for model (2.2).

Parameter Value Source of data
Λ 10 [17]
a 0.01 [17]
β 0.00034 Assumed
γ 0.0001 Assumed
b 0.26 [6]
k 11 [6]
c 0.1 [6]
µ1 0.3 Assumed
µ2 0.1 Assumed

Case 1: E∗1 is a real equilibrium, and E∗2 is a virtual equilibrium.
This situation is established. Suppose that the following conditions are satisfied:

y∗1 < Nt and y∗2 < Nt. (5.2)

In this case, both equilibriums are located on the same side of the plane Nt, namely, the region G1.
Thus, when (5.2) is satisfied, we obtain that E∗1 can achieve stability. In Figure 1 E∗1 ∈ G1 achieves
stability with Nt = 60, and the possible trajectories of this figure are shown: A trajectory that starts in
region G1 will converge to E∗1 as t → +∞ with hitting and sliding down on the sliding domain S ⊂ Gs;
a trajectory of the initial point in region G2 will cross the manifold Gs, then enter region G1 and finally
converge to E∗1; a trajectory that begins in region G1 or G2 will hit and slide to the boundary of the
sliding domain S ⊂ Gs before moving towards E∗1.
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Figure 1. E∗1 ∈ G1 achieves stability with Nt = 60.

Case 2: E∗2 is a real equilibrium, and E∗1 is a virtual equilibrium.
This situation is established. Suppose that the following conditions are satisfied:

y∗1 > Nt and y∗2 > Nt. (5.3)

In this case, both equilibriums are located on the same side of the plane Nt, namely, the region G2.
Thus, when (5.3) is satisfied, we obtain that E∗2 can achieve stability. In Figure 2 E∗2 ∈ G2 achieves
stability with Nt = 15, and the possible trajectories of this figure are shown: A trajectory with initial
condition in region G2 will converge to E∗2 as t → +∞ with hitting and sliding up on the sliding domain
S ⊂ Gs; a trajectory with initial point in region G1 will pass through the manifold Gs from G1 to G2;
a trajectory that starts in region G1 or G2 will hit and slide up on the boundary of the sliding domain
S ⊂ Gs before moving towards E∗2.
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Figure 2. E∗2 ∈ G2 achieves stability with Nt = 15.

Case 3: Both E∗1 and E∗2 are virtual equilibria.
This situation is established. Suppose that the following conditions are satisfied:

y∗1 > Nt and y∗2 < Nt. (5.4)

For this case, we can find that E∗1 and E∗2 belong to regions G2 and G1, respectively. If E∗S ∈ S ⊂ Gs,
it is a pseudo-equilibrium. Thus, when (5.4) is satisfied, we obtain that E∗s is stable when it exists.
Figure 3 E∗s ∈ S achieves stability with Nt = 25, and the possible trajectories of this figure are shown:
A trajectory with initial condition in region G1 will converge to E∗s as t → +∞; a trajectory that begins
in region G2 will cross the manifold Gs, then enter region G1 and finally converge to E∗s ; a trajectory
with initial condition in region G1 or G2 will hit and slide down on S ⊂ Gs before converging to E∗s .
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Figure 3. E∗s ∈ S achieves stability with Nt = 25.

5.2. Numerical simulations of the optimal control

In this subsection, we also discretize the optimal control system (4.1) as
x( j + 1) = x( j) + ∆t(Λ − ax( j) − βx( j)v( j) − γx( j)y( j)),
y( j + 1) = y( j) + ∆t(βx( j)v( j) + γx( j)y( j) − by( j) − u1( j)y( j)),
v( j + 1) = v( j) + ∆t(ky( j) − cv( j) − u2( j)v( j)).

(5.5)

The parameter values Λ, a, b, β, γ, k and c are chosen as shown in Table 1, and A1 = 20, A2 =

50, A3 = 0.1, A4 = 0.1. Then, we compare the effects of different control intensities by the following
figures. The cost of control strategies must be considered, and the cost of each measure is different,
so we want to know the change under only one control strategy compared with two control strategies.
Thus, we make simulations under only u1(t) (see Figure 4) or u2(t) (see Figure 5) and optimal control
(see Figure 6).

When initial value (x0, y0, v0) = (50, 150, 800), Figure 4 illustrates that if the control strategy is
only applied to infected cells (u2(t) = 0), the concentration of infected cells and viruses will decrease.
Meanwhile, the number of infected cells and viruses decreased with the increase of u1(t) intensity.
Figure 5 shows that if the control strategy is only applied to viruses (u1(t) = 0), the density of infected
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cells and viruses will also decrease, and the number of infected cells and viruses decreased with the
increase of u2(t) intensity.
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Figure 4. The states of x(t), y(t) and v(t) when u1 = 0, 0.3, 0.6 and u2 = 0, 0, 0.
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Figure 5. The states of x(t), y(t) and v(t) when u1 = 0, 0, 0 and u2 = 0, 0.3, 0.6.

The expressions of optimal control u∗1(t) and u∗2(t) are obtained through calculation (in Eq (4.27)),
and then we obtain the optimal control states of uninfected cells, infected cells and viruses in Figure
6, which shows that the concentration of infected cells and viruses decreases to some extent after the
control is applied, and the combination of multi-drug works better than a single-drug approach. Figure
7 shows the values of control variables u1(t) and u2(t) in each time. Eventually, the concentration
of infected cells and viruses and control intensity gradually decrease and stabilize. Thus, the control
strategies in our model have significant influence on the spread of HIV.

Mathematical Biosciences and Engineering Volume 20, Issue 4, 7273–7297.



7293

0 0.5 1 1.5 2 2.5 3

t(days) 104

0

50

100

150

200

250

300

350

400

x(
t)

u
1
=0,u

2
=0

u
1
=0.3,u

2
=0

u
1
=0,u

2
=0.3

With Optimal Control

(a)

0 0.5 1 1.5 2 2.5 3

t(days) 104

0

50

100

150

y(
t)

u
1
=0,u

2
=0

u
1
=0.3,u

2
=0

u
1
=0,u

2
=0.3

With Optimal Control

(b)

0 0.5 1 1.5 2 2.5 3

t(days) 104

0

1000

2000

3000

4000

5000

6000

7000

v(
t)

u
1
=0,u

2
=0

u
1
=0.3,u

2
=0

u
1
=0,u

2
=0.3

With Optimal Control

(c)

Figure 6. The paths of x(t), y(t) and v(t) with and without optimal control.
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Figure 7. The path of the two controls.

6. Conclusions and discussion

In this paper, we have proposed an HIV model with cell-to-cell transmission and analyzed the
sliding mode dynamics of the model and optimal control problem. First, we extended a novel Filippov
model (3.1), which indicates that corresponding control measures (i.e., antiretroviral drugs RTIs and
PIs) are triggered once the total number of infected cells reaches the threshold level Nt, where RTIs
prevent new HIV infections by blocking the transformation of viral RNA into DNA in T cells, and PIs
reduce the number of viral particles produced by actively infected T cells [21]. Further, the sliding
domain and sliding mode dynamics of system (2.2) have been examined. In addition, the simulation
results show that the model solution is either near a real equilibrium point or near a pseudo-equilibrium
point according to the different threshold levels. It is worth mentioning that some parameters can
be simulated through actual data, and the basic reproduction number can be calculated to judge the
stability. In addition, the number of viruses and infected cells can reduce to a previously desired level
when the threshold level is chosen properly. Because different patients have different initial viral loads,
an individualized therapy is suggested, which shows that the choice of a treatment strategy for a given
patient should depend on HIV viruses and infected cells and proposed threshold level.
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Moreover, the cost of treatment is beyond the reach of many infected patients. Therefore, we
have introduced an optimal therapy to minimize the cost of treatment and reduce the viral load and
the number of infected cells. Then, the efficacies of RTIs and PIs and their combinations have been
measured. In addition, we have discussed an efficient numerical method based on optimal control to
determine the best treatment strategy for HIV infection. Our results indicate that with the increase of
treatment intensity, the number of infected cells and viruses decreases, while the density of CD4+T
increases. Due to the multiple transmission routes of HIV, the combined use of multiple drugs is better
than the use of a single drug. From a biological point of view, it can be concluded that optimal control
is adopted when the number of infected cells in the patient is higher than threshold level Nt, and at this
time, the economic cost can be considered to select the optimal control measures. Control measures
are not necessary when the concentration of infected cells is low. Optimal control path is shown in
Figure 7.

The results of this paper have practical implications for controlling HIV transmission. However, our
work is only a preliminary exploration of the impact of some control measures on HIV transmission,
which can be improved in many aspects. The number of viruses in the infected person varies with
age, so it is interesting and challenging to consider the sliding mode control of HIV model with age
structure. We can also refer to the methods in the literature [33, 34] to study the fractional-order HIV
model. These issues will be the focus of our future research.
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