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Abstract: Intrusion detection systems can detect potential attacks and raise alerts on time. However, 
dimensionality curses and zero-day attacks pose challenges to intrusion detection systems. From a data 
perspective, the dimensionality curse leads to the low efficiency of intrusion detection systems. From 
the attack perspective, the increasing number of zero-day attacks overwhelms the intrusion detection 
system. To address these problems, this paper proposes a novel detection framework based on light 
gradient boosting machine (LightGBM) and autoencoder. The recursive feature elimination (RFE) 
method is first used for dimensionality reduction in this framework. Then a focal loss (FL) function is 
introduced into the LightGBM classifier to boost the learning of difficult samples. Finally, a two-stage 
prediction step with LightGBM and autoencoder is performed. In the first stage, pre-decision is 
conducted with LightGBM. In the second stage, a residual is used to make a secondary decision for 
samples with a normal class. The experiments were performed on the NSL-KDD and UNSWNB15 
datasets, and compared with the classical method. It was found that the proposed method is superior 
to other methods and reduces the time overhead. In addition, the existing advanced methods were also 
compared in this study, and the results show that the proposed method is above 90% for accuracy, 
recall, and F1 score on both datasets. It is further concluded that our method is valid when compared 
with other advanced techniques. 
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1. Introduction 

Cyberattacks occurr frequently, causing serious impacts on people’s daily life. In 2017, the 
WannaCry ransomware event broke out globally, hitting at least 300,000 users and causing 8 billion 
USD  in damage [1]. In 2020, a cyberattack on Venezuela’s national grid trunk line caused widespread 
power outages across the country [2]. In 2021, the United States refined product pipeline operator 
Colonial Pipeline was forced to shut down its fuel network in the eastern seaboard states due to a 
ransomware attack [3]. With the frequent occurrence of cyberattacks, existing methods, such as 
firewalls, data encryption, and authentication cannot meet security requirements [4]. Therefore, 
intrusion detection systems have gained the attention of researchers. 

Intrusion detection systems play an important role in protecting critical information 
infrastructure [5]. According to detection techniques, they are categorized into signature-based 
intrusion detection systems (SIDS) and anomaly-based intrusion detection systems (AIDS) [6,7]. SIDS 
maintains an attack library that saves historical attack records. If the current traffic matches the record 
in the attack library, the traffic is judged to be attack class. AIDS analyzes historical traffic using 
statistical methods to learn a logical model. If the current traffic deviates from the normal traffic, the 
traffic is judged to be attack class. SIDS offers the advantages of fast detection and a low false alarm 
rate, but it cannot detect unknown attacks [8]. On the contrary, AIDS can detect unknown attacks and 
has a wide application prospect in the future. Figure 1 shows the block diagram of the intrusion 
detection system [9]. It consists of the following key components: (1) Information collection: network 
data, application logs, audit records, and other relevant information are collected from the network or 
hosts. The collected information will be used for intrusion analysis. (2) Analysis engine: modeling or 
behavior matching is performed based on the collected network information, which in turn forms the 
corresponding knowledge base. It will alert the network administrator if an intrusion is found. The 
intrusion process will also be part of the information collection. (3) Knowledge base: a list of historical 
behaviors or trained models are stored. The knowledge base can be used to analyze current traffic, but 
it needs to be updated regularly.  

Intrusion detection is considered a classification problem, which has prompted researchers to 
adopt machine learning techniques to improve the performance of intrusion detection systems. In 
recent years, machine learning techniques have been applied broadly in intrusion detection, and have 
shown encouraging results in many studies [10]. Machine learning techniques can be classified as 
shallow learning and deep learning [11]. Shallow learning methods, such as K-nearest neighbors [12], 
decision trees [13], support vector machines [14] and random forests [15], are widely used because of 
their strong explainability. Among deep learning, autoencoders [16], deep belief networks [17] and 
convolutional neural networks [18] have achieved great success in intrusion detection owing to their 
ability to extract features. In the future, finding suitable machine learning techniques for improving 
the performance of intrusion detection systems has become a hot topic for researchers. 

Researchers have proposed many approaches to detect intrusions based on machine learning 
techniques. This paper reviews related work from the perspectives of anomaly analysis and feature 
analysis. In anomaly analysis, Chouhan et al. [19] developed an autoencoder-based residual learning 
technique to enhance the classification capability of convolutional neural networks. Andresini et al. [20] 
combined feature selection techniques and residual learning to improve the performance of intrusion 
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detection systems. The above residual thresholds need to be set manually, so Aygun et al. [21] 
developed a method to determine the thresholds adaptively. Yang et al. [22] developed a method that 
uses a modified conditional variation autoencoder to generate attack samples for balancing the data. 
Min et al. [23] developed a memory-enhanced autoencoder to improve the generalizability of the 
model. Autoencoders are also available for nonlinear dimensionality reduction [24,25]. In addition, to 
improve the performance of intrusion detection systems, some researchers have developed two-stage 
decision methods. Belouch et al. [26] introduced a two-stage classification model. In the first stage, a 
RepTree classifier is used to classify the traffic into normal and abnormal. In the second stage, a 
classifier is used to classify the anomalies detected in the first stage to identify the attack classes. Niyaz 
et al. [27] proposed an intrusion detection system based on two phases. The first stage uses a sparse 
autoencoder for feature extraction from the original data. The second stage feeds the processed features 
into SoftMaxRegression (SM) and self-taught learning (STL) classifiers for learning, respectively. 
Zhang et al. [28] applied machine-learning techniques to intrusion detection in in-vehicle networks 
and proposed a two-stage anomaly detection framework. 

In feature analysis, Gu et al. [29] used the marginal density ratio method for data enhancement to 
improve the performance of intrusion detection. Ieracitano et al. [30] used statistical analysis techniques 
to identify outliers and redundant data, and, thus, remove unnecessary features. Zhang et al. [31] 
developed a feature fusion technique to improve model classification performance. Tree-based 
methods are often used for feature selection. Kasongo et al. [32] used extreme gradient augmentation 
trees for feature selection followed by shallow methods for classification. Megantara and Ahmad [33] 
developed a hybrid feature analysis method. This method first uses a decision tree to select the 
important features. After that, local outlier factors are used to exclude outlier and anomalous features. 
Rashid et al. [34] used univariate techniques for feature analysis, and integrated methods for 
classification. Bioheuristics have also been used for feature selection, such as the commonly used 
particle swarm algorithm and genetic algorithm [35–37]. In addition, deep learning methods are often 
used for nonlinear feature dimensionality reduction. To address the problem that isolated points and 
noisy data can affect the model performance, Seo et al. [38] used a restricted Boltzmann machine to 
remove isolated points and noisy data from the dataset. Wuke et al. [39] proposed a combination of 
multilayer extreme learning machines and autoencoders to reduce the dimensionality of the data. The 
reduced-dimensional data are then trained by the extreme learning machine. Zhao et al. [40] proposed 
a method that used deep belief networks and least-squares vector machines. The method first uses a 
deep belief network for dimensionality reduction, and then uses a particle swarm algorithm to optimize 
the parameters of the least-squares vector machine. 

Although there is a lot of research focused on intrusion detection systems, there are still some 
issues that need to be addressed. One of the important issues is the dimensionality curse. The high-
dimensional data makes it difficult for intrusion detection systems to learn effective data 
representations, which affects their detection efficiency. Another problem is the increasing number of 
zero-day attacks [6]. Various attack methods are emerging, leaving network administrators with shorter 
response times. To address these issues, a two-stage anomaly detection framework based on LightGBM 
and autoencoder is proposed in this study. The framework can detect novel attacks while improving 
detection efficiency. LightGBM is an integrated approach that introduces an exclusive feature bundling 
algorithm and a gradient-based one-sided sampling algorithm. The exclusive feature bundling (EFB) 
algorithm reduces the number of features that are simultaneously zero, and the gradient-based one-
sided sampling (GOSS) method reduces the number of small gradient samples during model training. 
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As a result, the LightGBM algorithm has less time overhead. The focal loss function can increase the 
weight of difficult samples, which is beneficial to learn the attack samples that are difficult to classify. 
The autoencoder learns the implicit representation of the data at the encoding layer, and reconstructs 
the original data at the decoding layer. Exploiting the reconstruction error, the autoencoder can enhance 
anomaly detection. Therefore, our main innovation is to introduce the focal loss function into 
LightGBM instead of the Cross-entropy function in it to improve the detection of attack samples. In 
addition, the reconstruction error of the autoencoder is utilized to further enhance the detection of 
misclassified samples. For data processing, we use recursive feature elimination, which is a packet-
filtering feature selection method to select the best features based on the feature scores. Differently 
from existing methods, we use a two-stage decision step based on the reinforced LightGBM and 
Autoencoder. According to our survey, it is the first time the method is proposed. The proposed method 
has less time overhead and improves the performance of the intrusion detection system. 

In the literature [41], we use autoencoder to fit the sampled data and use the LightGBM classifier 
for multiclassification prediction. However, in this work, we utilize the autoencoder and a modified 
LightGBM model for anomaly detection. We modified the objective function of the LightGBM and 
designed a two-stage decision step. The main contributions of this paper are as follows: 

(1) To address the dimensionality curse, we propose to use a recursive feature elimination method 
based on LightGBM to reduce the dimensionality of the original data. The detection efficiency of the 
intrusion detection system is improved. 

(2) To address the problem that the standard LightGBM method cannot effectively detect difficult 
samples, the focal loss function is introduced into LightGBM. In addition, the improved LightGBM is 
combined with an autoencoder to effectively respond to zero-day attacks. 

(3) Finally, we have conducted experiments on the NSL-KDD and UNSWNB5 datasets. The 
experiments compare not only the classical methods, but also the current state-of-the-art methods. 

The remainder of this paper is structured as follows: Section 2 introduces the relevant theories. 
Section 3 presents our method. Section 4 provides the experimental results and discussion. Section 5 
presents the conclusions and future work of this paper. 

 

Figure 1. Block diagram of an intrusion detection system. 
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2. Related theories 

2.1. Light gradient boosting machine 

In 2017, the Microsoft team proposed the LightGBM model [42]. LightGBM has less time 
overhead compared to extreme gradient boosting (Xgboost). The Xgboost uses a pre-sorting algorithm 
when dividing the best partition nodes of the tree [43]. Since the presorting algorithm needs to traverse 
all the features, it leads to the inefficiency of the algorithm. In general, the time complexity of the 
Xgboost algorithm is proportional to the size of the data volume [44]. It means that the larger the data 
volume, the higher the computational overhead. The LightGBM algorithm bins the continuous features 
and divides different features into different bins, which reduces the computational overhead of the 
model. This process is called the histogram algorithm. In addition, to further improve the training 
efficiency of the model, LightGBM introduces the gradient-based one-sided sampling method and the 
mutually exclusive feature bundling algorithm. The details of the LightGBM are described in 
Algorithm 1. 

Gradient-based one-sided sampling method. The gradient is a vector that denotes the direction 
of the greatest change in the value of the function, and the maximum value in that direction is the value 
of the gradient. In machine learning, the size of the gradient of a sample during training indicates how 
much that sample contributes to the final model. Because a sample with a large gradient reflects that 
the model has room for convergence, it is beneficial to train the model. In contrast, a sample with a 
small gradient indicates that the sample is already well-trained and contributes less to the training 
model. Therefore, it is possible to keep all of the large gradient samples, and reduce the number of less 
gradient samples. This process is called the gradient-based one-sided sampling method. Specifically, 
the gradient information of each sample is calculated. For selection purposes, the gradients of all 
samples are sorted in descending order according to their absolute values. After that, the samples with 
large gradients are retained, and some samples with small gradients are randomly excluded. 

Assume the training set has 𝑛 samples, denoted as 𝑥 , … , 𝑥 . At each iteration, the negative 
gradient of the model output is denoted as 𝑔 , … , 𝑔 . For the gradient boosting decision tree, its 
information gain is calculated as follows. Let 𝑂 be the training set of the node on the decision tree, 
then the information gain of the split feature 𝑗 of the node at 𝑑 is calculated as: 

𝑉 | 𝑑
∑ ∈ :

|

∑ ∈ :

|

,                   (1) 

where 𝑛 ∑𝐼 𝑥 ∈ 𝑂 , 𝑛 | 𝑑 ∑𝐼 𝑥 ∈ 𝑂: 𝑥 𝑑  𝑎𝑛𝑑 𝑛 | 𝑑 ∑𝐼 𝑥 ∈ 𝑂: 𝑥 𝑑 . 

For the GOSS algorithm, the top a × 100% large gradient samples are selected to form set A. After 
that, b × 100% small gradient samples are selected from the remaining sets to form set B. To maintain 
the original sample distribution, all small gradient samples in set B need to be multiplied by a 
coefficient (1–a)/b. Therefore, the final information gain is calculated as follows: Let a and b be the 
sampling ratios of large gradient and small gradient instances, respectively. According to the sorted 
instance gradient values, the first a × 100% large gradient sample is selected, and then randomly selects 
b × 100% small gradient samples from the rest of the data. After many iterations, the final calculated 
information gain is: 
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𝑉 𝑑
∑ ∈ ∑ ∈ ∑ ∈ ∑ ∈

,             (2) 

where 𝐴 𝑥 ∈ 𝐴: 𝑥 𝑑 , 𝐴 𝑥 ∈ 𝐴: 𝑥 𝑑 , 𝐵 𝑥 ∈ 𝐵: 𝑥 𝑑 , 𝐵 𝑥 ∈ 𝐵: 𝑥
𝑑 . 

Exclusive feature bundling. GOSS reduces the number of samples, while EFB reduces the 
dimensionality of the features. The dimensionality of the features is another important factor that 
affects the time overhead. EFB uses the mutually exclusive nature of the features to reduce its 
dimensionality. Specifically, the EFB algorithm solves this problem by constructing a graph with 
weights. The nodes of the graph are represented by the features of the samples, while the weights 
indicate the degree of feature mutual exclusion. Finally, it is transformed into a graph coloring problem 
and a greedy strategy is used to solve it. 

Algorithm 1: LightGBM   
Input: 
Training data: 𝐷 𝑥 , 𝑦 , 𝑥 , 𝑦 , … , 𝑥 , 𝑦 , 𝑥 ∈ 𝑥, 𝑥 ⊆ 𝑅, 𝑦 ∈ 1, 1 ; 
Loss function: 𝐿 𝑦, 𝜃 𝑥 ;  // 𝑦 is the true value and 𝜃 𝑥  is the predicted value 
Iterations: M; 
Big gradient data sampling ratio: 𝑎; 
Small gradient data sampling ratio: 𝑏; 
1: Exclusive Feature Bundling (EFB) techniques are used to combine mutually exclusive features of 
𝑥 , 𝑖 1, … , 𝑛  that are not simultaneously non-zero; 
2: Initialize the predicted values: 𝜃 𝑥 argmin ∑ 𝐿 𝑦 , 𝑐 ; 
3: For m=1 to M do: 

4:    Calculate gradient absolute values: 𝑔 , , 𝑖 1, … , 𝑛 ; 

5:    Resample dataset using gradient-based one-side sampling (GOSS): 
  topN 𝑎 len 𝐷 ; randN 𝑏 len 𝐷 ; 

sorted GetSortedIndices abs 𝑔 ; 
  𝐴 sorted 1: topN ;  𝐵 RandomPick sorted topN: len 𝐷 , randN ; 
  𝐷 𝐴 𝐵; 

6:    Calculate the information gains: 

𝑉 𝑑
∑ ∈ ∑ ∈ ∑ ∈ ∑ ∈

; 

7:    Get a new decision tree 𝜃 𝑥  𝑜𝑛 𝑠𝑒𝑡 𝐷 ;  

8:    Update 𝜃 𝑥 𝜃 𝑥 𝜃 𝑥 ′; 

9: End for 
10: Return 𝜃 𝑥 𝜃 𝑥 ;   

2.2. Focal loss 

The focal loss function is derived from the cross entropy loss function to boost the recognition of 
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difficult samples [45,46]. The cross-entropy loss function is a typical objective function that measures 
the closeness of true and observed distributions. A smaller cross-entropy shows a better classification 
result. The expression of the binary classification cross-entropy (BCE) loss function is shown below: 

BCE 𝑦𝑙𝑜𝑔𝑦 1 𝑦 𝑙𝑜𝑔 1 𝑦 ,                    (3) 

where 𝑦 and 𝑦 are the true label and the predicted label, respectively. 
The focal loss function adds modulation factor 1 𝑦  and 𝑦  to the cross-entropy function, 

which enables the model to assign greater learning weights to difficult samples. As such, 

FL 𝑦 1 𝑦 𝑙𝑜𝑔𝑦 1 𝑦 𝑦 𝑙𝑜𝑔 1 𝑦 ,                (4) 

where 𝛾 ∈ 0, 5  is the focal parameter. When 𝛾 0, it is the cross-entropy loss function. The effect 
of the value of 𝛾 on the loss is shown in Figure 2. 

In addition, the focus loss function introduces an alpha weighting factor. This factor is used to 
adjust the weighted losses of different categories. The final focal loss function is represented as: 

FL αy 1 𝑦 𝑙𝑜𝑔𝑦 1 α 1 𝑦 𝑦 𝑙𝑜𝑔 1 𝑦 ,                (5) 

where α ∈ 0,1 . 
When performing the binary classification task, the objective function of the LightGBM defaults 

to the binary cross-entropy loss function. As shown in Figure 2, the classification results with the focal 
loss function are better than the binary cross-entropy loss. In this paper, we adopt the focal loss function 
as the objective function in LightGBM to enhance the learning of difficult samples. 

 

Figure 2. The effect of 𝛾 on the focal loss function [45]. 

2.3. Autoencoder 

Autoencoders are neural networks composed of multiple layers of neurons. Essentially, it is a 
multilayer perceptron that uses a feed-forward algorithm [19,47]. The difference is that the 
autoencoder has the same number of neurons in the input and output layers, which facilitates the 
reconstruction of the data. In general, an autoencoder consists of input layer, encoder, middle layer, 
decoder, and output layer [24]. The encoder, middle layer, and decoder are also called hidden layers. 
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Its structure is shown in Figure 3. The size of the input and output layers is determined by the 
dimensionality of the dataset. The encoder is used to compress the dataset, and the decoder is used to 
reconstruct the dataset. The middle layer is a compressed representation of the dataset, and its size is less 
than the dimensionality of the dataset. In the encoder module, for input 𝑥, a compressed representation 
of the dataset 𝑦 is obtained after mapping. Iits mathematical expression is shown in Eq (6). In the 
decoder module, the data 𝑥  is reconstructed using different weights 𝑤  and biases 𝑏 . This process 
is the opposite of the encoder, and its mathematical expression is shown in Eq (7). Usually, we use an 
activation function 𝑓 that is nonlinear, since it can fit arbitrary functions. In addition, the autoencoder 
needs to define an objective function to measure the similarity of 𝑥 and 𝑥 . When 𝑥 and 𝑥  are close, 
it means that the autoencoder is well trained. In this study, we use the mean square error (MSE) 
function to define the loss of the autoencoder, which is one of the functions that are used the most. As 
such, 

𝑦 𝑓 𝑤𝑥 𝑏 ,                              (6) 

𝑥 𝑓 𝑤 𝑦 𝑏 ,                             (7) 

where 𝑤 is the weight coefficient of the encoder layer and 𝑏 is the bias vector. 𝑤  and 𝑏  are the 
weight coefficients and bias vectors of the decoder layer, respectively. These parameters are updated 
by the backpropagation of the network. Thus, 

MSE ∑ 𝑥 𝑥 ,                            (8) 

where 𝑚 denotes the number of samples. 
To avoid overfitting, adding regularization to the objective function is a common strategy. In this 

paper, we use L  regularization to impose restrictions on the weight coefficient to give them better 
generalization. Autoencoders that use regularization are called sparse autoencoders [48]. In addition, 
they can be further classified into shallow sparse autoencoders and deep sparse autoencoders, based 
on the number of hidden layers. The difference between them is shown in Figure 4. In the figure, 𝑥 ∈
𝑅   is the input data. 𝑦 ∈ 𝑅   is the output of the middle layer. ℎ ∈ 𝑅   is the vector of the 𝑙 th 
hidden layer, and 𝑥 ∈ 𝑅  is the output vector in the sparse autoencoder. A shallow sparse autoencoder 
consists of three layers, i.e., an input layer, a single hidden layer (middle layer) and an output layer [41]. 
The deep sparse autoencoder consists of multiple hidden layers stacked on top of each other. It can 
learn more important implicit information from the original data than the shallow sparse autoencoder. 
In this study, we use a deep sparse autoencoder for our work. As such, 

𝐿 𝛼‖𝜔‖,                                 (9) 

where α‖𝑤‖ denotes the L  regularization, which refers to the sum of absolute values of all weight 
parameters 𝜔. α is the penalty factor. 

According to the above theory, the original data 𝑥 and the reconstructed data 𝑥′ are very similar 
when an autoencoder is trained successfully. Their differences are also called reconstruction errors. In 
intrusion detection, there is a vast difference between normal samples and attack samples in the dataset. 
When an autoencoder trained with normal samples is used to reconstruct the attack samples, their 
reconstruction error will be larger than the reconstructed normal samples. Therefore, we use the 
reconstruction error to perform anomaly detection. Suppose the normal sample is 𝑥 , and the attack 
sample is 𝑥 . We use only the normal sample 𝑥  to train the autoencoder. Let the reconstructed 
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normal sample be 𝑥  and the reconstructed attack sample be 𝑥 . Then we can find 𝑥 𝑥 𝑥
𝑥 . Let the current sample be noted as 𝑥∗ and after autoencoder reconstruction as 𝑥∗. Assume that 
𝑥 𝑥  is less than a certain threshold 𝑐. When c 𝑥∗ 𝑥∗, the sample can be judged as an attack 
sample. 

 

Figure 3. The structure of the autoencoder. 

 

Figure 4. Shallow sparse autoencoder and deep sparse autoencoder. 

3. Proposed method 

3.1. Method design 

Figure 5 shows the flow chart of the proposed method. It consists of four parts including data 
preprocessing, feature selection, model training and classification decision. The details are described 
below. 
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Data pre-processing. In the data preprocessing, since the model cannot handle non-numerical 
features, the training and test sets are first numerized. Sparse coding is helpful to enrich the data 
features. In addition to the category features, other non-numerical features are sparsely coded by the 
one-hot coding method in this paper. For example, the non-numeric feature “Protocol” has three values 
[TCP, UDP, ICMP], which can be coded as [100, 010, 001]. For the numerical features, the variation 
range of the values is different, which is not conducive to the training of the model. Therefore, in order 
to reduce the convergence time of the model, the normalization method is needed. In this paper, the 
maximum-minimum normalization method is used to scale the values in the range of [0, 1]. The 
maximum-minimum normalization method is represented as follows: 

𝑥 ,                           (10) 

where 𝑥  and 𝑥  denote the max and min values of feature 𝑥, respectively. 
Feature selection. In the feature selection, the recursive feature elimination method is adopted 

for feature selection. The recursive feature elimination method is a wrapper method that selects features 
based on the performance of the classification algorithm. Essentially, the recursive feature elimination 
method is a greedy algorithm. The recursive deletion is performed based on the ranking score of the 
features. The method needs to iterate through all the features and remove those that have little impact 
on the model performance until the desired number of features is satisfied. 

Model training. In the model training, we use the process described in Algorithm 1 to build the 
model. First, the iteration number of the model is set. According to the number of iterations, several 
different decision trees are trained. Each decision tree is built relying on the performance of the 
previous decision tree. After several iterations, an integrated model consisting of several weak decision 
trees is obtained. In particular, we use the focal loss function instead of the default cross-entropy loss 
function in the definition of the objective function. 

Classification decision. In the classification decision, there are two decision phases. In the first 
decision phase, the LightGBM with the introduction of the focal loss function is used for pre-
classification. In the second decision stage, secondary classification is performed using a sparse 
autoencoder for samples predicted as normal in the first decision stage. Generally, if the sample is 
judged to be abnormal, it is finally predicted to be attack. On the contrary, if the sample is judged as 
normal, then it will finally be predicted as normal. The two-stage classification decision step enables 
the intrusion detection system to improve the accuracy, and the ability to detect unknown attacks. 
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Figure 5. Flow chart of the proposed method. 

3.2. Dataset description and preprocessing 

Description. The NSL-KDD dataset is an improved version of the KDDCup99 dataset [49]. The 
KDDCup99 dataset is derived from the MIT Lincoln laboratory’s intrusion detection evaluation project, 
which is data collected from nine weeks of network connectivity and system audits. According to 
Tavallaee et al. [49], the training and testing sets in the KDDCup99 dataset contain 78% and 75% of 
redundant data, respectively. To address the redundancy problem in the KDDcup99 dataset, Tavallaee 
extracted the NSL-KDD dataset without redundant data from the KDDCUp99 dataset. The improved 
NSL-KDD dataset has the following advantages: (1) There are no duplicate records in the training and 
test sets, which makes the classifier not affected by duplicate records. (2) The number of records in the 
training and test sets are reasonable, and they do not require high performance of the computer. As 
shown in Table 1, the NSL-KDD dataset consists of 42 features. The values of each feature are divided 
into numerical and non-numerical types. Among them, the values of three features including protocols, 
services and flags are non-numeric types, and the rest is numeric types. The NSL-KDD dataset contains 
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four attack categories, namely Dos, Probe, user-to-root (U2R) and root-to-local (R2L). All these attack 
categories are considered anomalies. The size of the NSL-KDD dataset is shown in Figure 6. The 
training set and test set contain 125,973 and 22,544 records, respectively. Among them, the proportion 
of normal samples and attack samples in the training set are 53.46% and 46.54%, respectively. In the 
test set, the proportion of normal samples and attack samples are 43.08% and 56.92%, respectively. It 
is important to note that the attack samples are composed of a variety of different attack types. In the 
test set, an additional 18 attacks are contained, which means that the test set has different attack 
patterns [21]. Therefore, it can be used to simulate the detection of zero-day attacks. 

The UNSWNB15 dataset was created by the Australian Center for Cyber Security in 2015 using 
the IXIA tool [50]. The dataset contains a total of 2 million records that were saved in four different 
CSV files [51]. To facilitate the use of the dataset, the UNSWNB15 dataset was divided into a training 
set and a test set, named UNSWNB15Train and UNSWNB15Test, respectively. As shown in Table 1, 
a total of 49 features are included in the dataset. Among them, three features containing protocol, 
service and state are non-numeric types, and the rest are numeric types. Different from the NSL-KDD 
dataset, the UNSWNB15 dataset includes nine new attack types: Backdoor, Shellcode, Reconnaissance, 
Worms, Fuzzers, DOS and Generic. In this paper, we used the UNSWNB15Train and UNSWNB15Test 
datasets for our experiments. The information on this dataset is shown in Figure 6. Specifically, the 
training set and test set contain 175,341 and 82,332 samples, respectively. In the training set, the 
proportion of normal samples and attack samples are 31.94% and 68.06%, respectively. In the test set, 
the proportion of normal samples and attack samples are 44.94% and 55.06%, respectively. 

Preprocessing. The NSL-KDD dataset sample contained 41-dimensional features. Because the 
model cannot handle symbolic data, it is necessary to convert the characteristics of symbolic types into 
numeric kinds. In addition, the data are encoded with the one-hot method. Specifically, the protocol 
feature contains three values, represented by three numbers containing 0 and 1. The service features 
have 70 values, so they are represented by 70 numbers consisting of 0 and 1. The flag feature has 11 
values, so it is represented by 11 numbers containing 0 and 1. After one-hot encoding, the dimension 
of the NSL-KDD dataset is expanded to 122. Similarly, the UNSWNB15 dataset is processed in the 
same way. Finally, the dimensionality of the UNSWNB15 dataset becomes 196. 

 

Figure 6. Statistics on the two datasets. 
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Table 1. Dataset feature. 

Dataset Feature name Size 
NSL-KDD duration, protocols_types, services, flag, src_bytes, dst_bytes, 

land, wrong_fragment, urgent, hot num_failed_logins, 
logged_in, num_compromised, root_shell, su_attempted, 
num_root, num_shells, num_access_files, 
num_outbound_cmds, is_hot_login, Is_guest_login, count, 
srv_count, serror_rate, srv_serror_rate, rerror_rate, 
srv_rerror_rate, same_srv_rate, diff_srv_rate, 
srv_diff_host_rate, dst_host_count, dst_host_srv_count, 
dst_host_same_srv_rate, dst_host_diff_srv_rate, 
dst_host_same_src_port_rate, dst_host_srv_diff_host_rate, 
dst_host_serror_rate, dst_host_srv_serror_rate, 
dst_host_rerror_rate, dst_host_srv_rerror_rate, label. 

42 

UNSWNB15 srcip, sport, dstip, dsport, protocol, state, dur, sbytes, dbytes, 
sttl, dttl, sloss, dloss, service, sload, dload, skts, dpkts, swin, 
dwin, stcpb, dtcpb, smeansz, dmeansz, trans_depth, 
res_bdy_len, sjit, djit, stime, ltime, sintpkt, dintpkt, tcprtt, 
synack, ackdat, is_sm_ips_ports, ct_state_ttl, 
ct_flw_http_mthd, is_ftp_login, ct_ftp_cmd, ct_srv_src, 
ct_srv_dst, ct_dst_ltm, ct_src_ ltm, ct_src_dport_ltm, 
ct_dst_sport_ltm, ct_dst_src_ltm, attack_type, label. 

49 

3.3. Feature selection and reconstruction 

In this study, the recursive feature elimination method was used to reduce the data dimensionality. 
The recursive feature elimination method selects features based on feature importance [52]. First, all 
the original features are trained using the LightGBM classifier to obtain the weight coefficients of each 
feature. After that, the features with the smallest weight coefficients are selected and removed from 
the original feature set to obtain a new subset of features. Finally, the new feature subset is trained 
again using the LightGBM classifier to obtain the weight coefficients. This process is repeated until 
the required number of features is obtained. Algorithm 2 describes this process. According to the results 
in Section 4.3.1, we select 40 and 60 features for the NSL-KDD and UNSWNB15 datasets, respectively. 

The sparse autoencoder is used for the second stage of prediction. First, the autoencoder is trained 
on the normal class samples from the training set. Then, the trained model is reconstructed from the 
test set. In this study, the sparse autoencoder is composed of 7 hidden layers. Among them, the 
structures of the encoder are 64 and 32, denoting the number of nodes in each layer. The size of the 
middle layer is 16. Since the encoder and decoder are symmetric structures, the structures of the 
decoder are 32 and 64, respectively. The sizes of the input and output layers are 122 for the NSL-KDD 
dataset, and 196 for the UNSWNB15 dataset. In particular, the Relu function is used as an activation 
function between neurons. 

Algorithm 2: RFE 
Input:  
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Original feature set S 1,2,3, … , D    // D denotes the features in the sample 
Expected number of features: N 

Output:  
Feature ordering set R  
Start: Initialize feature weights 𝑤 1 𝑖 1, … , 𝑑  // d denotes the dimensionality of the features 
in the original dataset 
1: if len(S) N, do:          
2:    Train the current feature set S with the LightGBM classifier  
3:    Calculate the feature weight coefficients in set S 
4:    Find the feature with the smallest weight coefficient: r argmin 𝑤  j 1, … , d    
5:    Update feature ordering set: R [r, 𝑅  
6:    Remove less important features: S 𝑆 r   
7:    d=d-1 
8:    until len(S)=N 
9: end if    

4. Results and discussion 

4.1. Experiment setup 

The experiment was conducted on a Dell host, and was configured as follows: 32 G RAM, Intel 
Core i7-9700 CPU, and Radeon Rx 550x. To speed up the training of the model, we used the GPU on 
a Linux server to train the autoencoder. We used tensorflow with version 2.2.0 as the backend. 
Furthermore, sklearn and keras were used to process the dataset. The native lgb [53] library was used 
to build the model. In the experiments, we set the number of iterations as 200, and the random seed as 
42. In addition, for the NSL-KDD dataset, we set α = 0.1 and 𝛾 = 0.9. For the UNSWNB15 dataset, 
we set α = 0.2 and 𝛾 = 5. 

4.2. Evaluating metrics 

In this paper, we used accuracy, precision, recall and F1 score to evaluate the performance of the 
model. The accuracy represents the proportion of instances that are correctly predicted to account for 
all instances. The precision represents the proportion of correctly predicted attack instances to all 
predicted attack instances. The recall represents the proportion of attack instances that were correctly 
predicted by the classifier. The F1 score is a metric of balancing precision and recall. The formula of 
each metric is determined by Eqs (11)–(14). 

Accuracy ,                           (11) 

Precision ,                                 (12) 

Recall ,                                    (13) 

F1 score 2/ ,                     (14) 
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where TP represents the number of attack instances that are correctly predicted. TN represents the 
number of correctly predicted normal instances. FP represents the number of normal instances that 
are mispredicted. FN represents the number of attack instances that are mispredicted. 

4.3. Performance 

4.3.1. Feature dimensionality reduction 

In order to find the appropriate number of features, different numbers of features were used for 
comparison. Figures 7 and 8 show the accuracy of the two datasets for the different number of features. 
As can be seen from Figure 7, the highest accuracy is obtained on the NSL-KDD dataset when the 
number of features is 40. However, for the UNSWNB15 dataset, the number of features is 60. 
Therefore, we set the number of features to 40 and 60 for the NSL-KDD and UNSWNB15 datasets, 
respectively. 

 

Figure 7. The number of features for the NSL-KDD dataset. 

 

Figure 8. The number of features for the UNSWNB15 dataset. 
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4.3.2. Evaluation on different metrics 

Figure 9 shows the performance of the proposed method on each metric. On the NSL-KDD dataset, 
the proposed method achieves 92.57%, 89.93%, 97.91% and 93.75% in accuracy, precision, recall and 
F1 score, respectively. Among them, recall is the best, which indicates that the proposed method can 
detect almost all attack classes. The confusion matrix on the NSL-KDD dataset is given in Table 2. It can 
be seen that only 267 attack classes are not recognized by the proposed method. For the UNSWNB15 
dataset, the proposed method achieves 92.71%, 93.43%, 93.32% and 93.38% in terms of accuracy, 
precision, recall and F1 score, respectively. It can be concluded that the performance of all metrics on 
this dataset is more balanced. Table 3 shows the confusion matrix on the UNSWNB15 dataset. 

Table 4 shows the time overhead (the sum of training time and prediction time for the proposed 
method). When the feature selection method is not used, the time overhead on the two datasets are 8.22 
and 18.6 seconds, respectively. In contrast, when using the recursive feature elimination method, the 
time overhead of the proposed method is 5.9 and 17.25 seconds, respectively. It indicates that the 
decision efficiency of the model is improved after using the recursive feature reduction method. 

Table 2. Confusion matrix for the NSL-KDD dataset. 

NSL-KDD 
Predicted label 

 Normal Attack 

True label 
Normal 8305 1406 
Attack 267 12,566 

Table 3. Confusion matrix for the UNSWNB15 dataset. 

UNSWNB15 
Predicted label 

 Normal Attack 

True label 
Normal 34,029 2971 
Attack 3026 42,306 

Table 4. Prediction time of the proposed method for the original features and RFE. 

Dataset Original RFE 

NSL-KDD 8.22 s 5.9 s 
UNSWNB15 18.6 s 17.25 s 

 

Figure 9. Evaluate the accuracy, precision, recall and F1 score for both datasets. 
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4.3.3. Ablative analysis 

In this section, we perform the ablation analysis of the proposed method. The LightGBM model 
without introducing the focal loss function is taken as the base model, which is LGBM. The model 
introducing the focal loss function is the improved model, which is FL_LGBM. The proposed model 
is FL_LGBM-AE. As shown in Figure 10, the performance of these three different models in terms of 
accuracy and F1 score is shown. The F1 score reflects the harmonic value of precision and recall. It 
can be concluded that, for both datasets, the FL_LGBM model has a larger improvement compared to 
the base model. It shows that the focal loss function introduced in LGBM is valid. Furthermore, on the 
NSL-KDD dataset, compared to FL_LGBM, the FL_LGBM-AE model improved by 11.5% and 13.08% 
in accuracy and F1 score, respectively. The FL_LGBM-AE model also performs better than the 
FL_LGBM model on the UNSWNB15 dataset. 

 

Figure 10. Ablation analysis of the proposed method on two datasets. 

4.3.4. Hyperparametric analysis 

In the proposed method, the learning rate and threshold are two important hyperparameters. The 
proposed method enables the model to learn from difficult samples by the introduction of the focal loss 
function. It makes the learning rate of the proposed model more important.  

Figures 11 and 12 show the effect of different learning rates on these two datasets. On the NSL-
KDD dataset, the model performs the worst when the learning rate is equal to 0.003. When the learning 
rate equals 0.0035, the model without the autoencoder performs the best, reaching an accuracy of 
87.85%. As the learning rate increases, the accuracy of the model gradually decreases. Conversely, the 
accuracy of the model using autoencoder increased as the learning rate increased. The reason is that, 
when the learning rate increases, the learning pace of the model becomes larger, resulting in the model 
not converging to the global minimum. As the learning rate becomes larger, it misclassifies most of the 
attack classes as normal classes. When using the autoencoder, the attack samples that are misclassified 
as normal classes are accurately identified. The highest accuracy of the model is obtained when the 
learning rate is equal to 0.03. Overall, most models that used autoencoders were above 90% accurate, 
which was higher than the models that did not use autoencoders. 

On the UNSWNB15 dataset, the performance of the models is stable, whether or not we use 
autoencoders. When the learning rate reaches 0.004, the accuracy of the model with the autoencoder 
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is slightly higher than the model without the autoencoder. After this point, the accuracy of the model 
with the autoencoder is slightly smaller than the model without the autoencoder. The possible reason 
is that the accuracy of the model without the autoencoder is already over 90%. When using the 
autoencoder, the accuracy of the model only slightly improves. As the learning rate increases, the 
model performance deteriorates and becomes worse with the autoencoder. However, it cannot 
demonstrate that the proposed model is ineffective. Autoencoders can still play an important role, as 
long as a suitable learning rate is found. As can be seen in Figure 12, the best performance of the model 
is obtained when the learning rate is 0.004. 

 

Figure 11. Effects of different learning rates for No_AE and With_AE on the NSL-KDD dataset. 

 

Figure 12. Effects of different learning rates for No_AE and With_AE on the UNSWNB15 dataset. 
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When training datasets with autoencoders, the range of reconstruction errors produced by 
different datasets is different. Figure 13 presents the mean squared error for the both datasets. Figures 
14 and 15 show the effect of different thresholds on the model. For the NSL-KDD dataset, the proposed 
method produces the best results when the threshold reaches 0.00095. After that, as the threshold 
increases, the accuracy of the model gradually decreases. The reason is that the increase in threshold 
causes the autoencoder to fail to identify the attack samples with large reconstruction errors. For the 
UNSWNB15 dataset, the proposed method achieves the best results when the thresholds are 0.0095. 
As the threshold increases, the performance of the model plateaus. Most of the attack samples with 
large reconstruction errors have already been identified, meaning increasing the threshold has no 
influence. 

 

Figure 13. Reconstruction errors of sparse autoencoders. 

 

Figure 14. The effect of thresholds on the NSL-KDD dataset. 
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Figure 15. The effect of thresholds on the UNSWNB15 dataset. 

4.4. Comparison 

4.4.1. Comparison with classical methods 

Tables 5 and 6 show the performance of different methods on the four evaluation metrics. For the 
NSL-KDD dataset, the proposed method achieves the best results in terms of recall rate, F1 score and 
accuracy. It is notable that the random forest (RF), gradient boosting decision Tree (GBDT) and 
Xgboost models all achieve 90% accuracy. For the UNSWNB15 dataset, the proposed method 
achieves the best performance in terms of precision, F1 score and accuracy. In contrast, the other 
methods did not exceed 81% in precision, and did not reach 90% in accuracy. Although these methods 
have a higher recall, they perform poorly on other metrics. In particular, the proposed method exceeds 
90% on the F1 score, which indicates that our method performs more balanced in precision and recall. 
The other methods have a significant imbalance in precision and recall. Overall, the proposed method 
has better performance on these two datasets, which proves the effectiveness of the proposed method. 

Table 5. Comparison of the proposed method with classical methods on the NSL-KDD dataset. 

Metrics 

Classifiers Precision (%) Recall (%) F1 score (%) Accuracy (%) 

DT 89.80 97.12 93.32 92.08 

SVM 89.89 94.45 92.12 90.80 

RF 90.05 96.89 93.35 92.14 

GBDT 90.00 97.09 93.41 92.21 

Xgboost 90.00 96.94 93.34 92.13 

Adaboost 89.68 97.15 93.27 92.02 

Proposed method 89.93 97.91 93.75 92.57 
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Table 6. Comparison of the proposed method with classical methods on the UNSWNB15 dataset. 

Metrics 

Classifiers Precision (%) Recall (%) F1 score (%) Accuracy (%) 

DT 80.42 95.40 87.27 84.68 

SVM 75.03 99.58 85.58 81.52 

RF 77.51 99.32 87.07 83.76 

GBDT 76.04 99.51 86.20 82.46 

Xgboost 76.47 98.86 86.23 82.26 

Adaboost 76.57 98.85 86.30 82.72 

Proposed method 93.43 93.32 93.38 92.71 

Figures 16 and 17 show the time overhead for the different methods. It can be seen that the support 
vector machine (SVM) model has the highest time overhead on these two datasets. The reason is that, 
after mapping the data to the nonlinear space, the SVM needs to calculate the maximum interval of the 
decision boundary, which increases the computational overhead. As the number of samples increases, 
the time overhead becomes larger. It shows that the SVM is not suitable for handling large datasets. In 
addition, the decision tree (DT) model has the least time overhead owing to the simple decision tree 
algorithm. The proposed method adds a portion of time overhead due to the use of the focal loss 
function. The time overheads of the proposed method are 5.9 and 17.25 seconds for these two datasets, 
respectively. Although the proposed method is not optimal in terms of time overhead, it is still less 
than the overheads of the SVM, RF, GBDT and Adaboost models. It means that the proposed method 
still has an advantage in terms of time overhead. 

 

Figure 16. The time cost comparison between the proposed method and the classical 
method for the NSL-KDD dataset. 
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Figure 17. The time cost comparison between the proposed method and the classical 
method for the UNSWNB15 dataset. 

4.4.2. Comparison with advanced methods 

Table 7. Comparing our method with existing techniques on two datasets. 

Dataset Method Accuracy (%) Recall (%) Precision(%) F1 score(%) 

NSL-KDDTest RandomTree+NBtree 

[13] 

89.24 N/A N/A N/A 

CBR-CNN [19] 89.41 N/A N/A N/A 

AE-LSTM [24] 89.00 88.00 N/A N/A 

AIDA [20] 92.41 92.00 94.52 93.24 

STL [27] 88.39 95.95 85.44 90.40 

AE-IDS [30] 84.21 80.37 87.00 81.98 

MFFSEM [31] 84.33 96.43 74.61 84.13 

Our Method 92.57 97.91 89.93 93.75 

UNSWNB15Test Voting-CMN [15] 89.29 99.28 82.37 90.04 

RepTree [26] 88.95 N/A N/A N/A 

ANN [32] 86.71 98.06 81.54 89.04 

MFFSEM [31] 88.85 80.44 93.88 86.64 

LOF [33] 91.86 N/A N/A N/A 

GAA [54] 91.80 91.00 N/A N/A 

GBM [55] 91.31 N/A N/A N/A 

Our Method 92.71 93.32 93.43 93.38  

Table 7 shows the comparison of our method with existing methods. We present the results from 
these publications. For the NSL-KDD dataset, it can be seen that our method performs the best in terms 
of accuracy, recall and F1 score, reaching 92.57%, 97.91% and 93.75%, respectively. In terms of 
precision, the literature [20] performs the best. For the UNSWNB15 dataset, our method performs the 
best in terms of accuracy and F1 score, reaching 92.71% and 93.38%, respectively. In terms of recall, 
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literature [15] and literature [32] obtained 99.28% and 98.06%, respectively, which are the best among 
all methods. In terms of precision, the literature [31] obtained the best results, achieving 93.88%. The 
reason is that the literature [15] and [31] used the integration of several different classifiers. The 
literature [32] used a deep learning approach based on artificial neural networks. However, they did 
not achieve an accuracy of 90%. In contrast, our method exceeded 90% in all metrics, showing that 
our method is more effective. This is owed to our proposed two-stage decision step. 

5. Discussion, conclusions, limitations and future research 

In this work, we proposed a two-stage intrusion detection framework based on LightGBM and 
autoencoders. In this framework, to solve the curse of dimensionality, the recursive feature elimination 
method was used for feature selection. In addition, the focal loss function was introduced in LightGBM 
to enhance the learning of difficult samples. In order to improve the detection capability of zero-day 
attacks, this study divided the decision-making process into two stages, thereby improving the 
performance of the intrusion detection system. The experiments were performed on the NSL-KDD and 
UNSWNB15 datasets, and the accuracy rates were 92.57% and 92.71%, respectively. The recall 
reached 97.91% and 93.32%, respectively. Experiments compared classical methods and advanced 
methods respectively, and the results proved the effectiveness of the proposed method. We can 
conclude that the proposed method can improve the efficiency and performance of intrusion detection 
systems. 

Although the proposed method achieves a high recall for the NSL-KDD dataset, the recall for 
UNSWNB15 still needs to be improved. In addition, the precision of our method on both datasets is 
not yet advanced. This means that we need to further optimize the model. In future work, we will 
mainly focus on two aspects: First, since the threshold of the autoencoder is the key factor affecting 
the model, we will develop a method to set the threshold automatically. Second, we segment the attack 
types and adopt a suitable sampling method to further improve the model performance. 
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