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Abstract: Background: Atrial fibrillation (AF) is a common arrhythmia that can lead to cardiac 

complications. The mechanisms involved in AF remain elusive. We aimed to explore the potential 

biomarkers and mechanisms underpinning AF. Methods: An independent dataset, GSE2240, was 

obtained from the Gene Expression Omnibus database. The R package, “limma”, was used to screen 

for differentially expressed genes (DEGs) in individuals with AF and normal sinus rhythm (SR). 

Weighted gene co-expression network analysis (WGCNA) was applied to cluster DEGs into different 

modules based on functional disparities. Enrichment analyses were performed using the Database for 

Annotation, Visualization and Integrated Discovery. A protein–protein interaction network was 

constructed, and hub genes were identified using cytoHubba. Quantitative reverse-transcription PCR 

was used to validate mRNA expression in individuals with AF and SR. Results: We identified 2,589 

DEGs clustered into 10 modules using WGCNA. Gene Ontology analysis showed specific clustered 

genes significantly enriched in pathways associated with the extracellular matrix and collagen 

organization. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the target 

genes were mainly enriched for proteoglycans in cancer, extracellular matrix–receptor interaction, 

focal adhesion, and the PI3K-Akt signaling pathway. Three hub genes, FN1, P4HA1 and CREBBP, 

were identified, which were highly correlated with AF endogenesis. mRNA expression of hub genes 

in patients with AF were higher than in individuals with normal SR, consistent with the results of 

bioinformatics analysis. Conclusions: FN1, P4HA1, and CREBBP may play critical roles in AF. Using 

bioinformatics, we found that expression of these genes was significantly elevated in patients with AF 
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than in individuals with normal SR. Furthermore, these genes were elevated at core positions in the 

mRNA interaction network. These genes should be further explored as novel biomarkers and target 

candidates for AF therapy. 

Keywords: arrhythmia; atrial fibrillation; biomarkers; hub genes; weighted gene co-expression 

network analysis 

 

Abbreviations: AF: atrial fibrillation; BPs: biological processes; CCs: cellular components; CREB: 

cyclic adenosine monophosphate response element-binding protein; DAVID: Database for Annotation, 

Visualization, and Integrated Discovery; DEGs: differentially expressed genes; ECM: extracellular 

matrix; FC: fold change; GEO: Gene Expression Omnibus; GO: gene ontology; GSEA: Gene Set 

Enrichment Analysis; KEGG: Kyoto Encyclopedia of Genes and Genomes; LAA: left atrial appendage; 

MFs: molecular functions; P4Hs: prolyl 4-hydroxylases; PPI: protein–protein interaction; qRT-PCR: 

quantitative real-time PCR; SR: sinus rhythm; STRING: Search Tool for the Retrieval of Interacting 

Genes; WGCNA: weighted gene co-expression network analysis 

1. Introduction 

Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia [1], affecting approximately 33 

million individuals worldwide [2]. Patients with AF are estimated to experience a two-fold increase in 

heart failure, myocardial infarction, and premature mortality [3]. AF is regarded as an independent risk 

factor for thromboembolism and stroke [4], leading to a higher occurrence of pulmonary embolism [5], 

and even death [6]. 

The Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo) is the largest public 

gene expression database, founded by the National Center for Biotechnology Information in 2000.  

The database contains a large amount of high-throughput gene expression and microarray data 

submitted by research institutions worldwide. With the improvement of GEO databases, 

bioinformatics analysis has become an essential tool for investigating the pathophysiological processes 

involved in various diseases.  

Hemodynamic pressure overload stimulates increased secretion of natriuretic peptides from 

cardiomyocytes and can act as a biomarker for heart failure and AF [7−9]. C-reactive protein is widely 

used as a biomarker for inflammation; however, the protein has an essential correlation with AF 

incidence [8,10]. Myocardial fibrosis is a vital substrate for AF development [11]. In addition, 

biomarkers implicated in atrial fibrosis, such as soluble ST2 [12], MMP-9 [13], and TGF-β1 [14], are 

known to participate in AF development. However, most reported biomarkers are related to the 

extracellular matrix (ECM) and myocardial fibrosis, and only a few have been validated in human left 

atrial appendage (LAA) specimens. We aimed to employ the online databases and human tissues to 

explore the potential biomarkers and mechanisms underpinning AF. A large tissue bank containing 

human LAA specimens was used to validate our hypothesis and for subsequent experiments performed 

at our center. In addition, genes unrelated to fibrosis were specifically screened in our analysis, which 

may broaden our understanding of the mechanism behind AF development. 
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2. Materials and methods 

2.1. Human sample collection 

Fifteen patients with lone AF and fifteen with a normal sinus rhythm (SR) were included in this 

study. LAA tissues were collected from the participants during cardiac surgery. The specimens were 

immediately preserved in liquid nitrogen and transferred to a refrigerator at -80℃ for subsequent 

experiments. This study was conducted in full compliance with the Declaration of Helsinki and 

approved by the Medical Ethics Committee of Zhongshan Hospital, Fudan University (Shanghai, 

China). Written informed consent was obtained from all participants before surgery. 

2.2. Data acquisition 

Sequencing results of genes related to AF were obtained from the GEO database. The GEO dataset, 

GSE2240, based on the GPL96 platform (Affymetrix GeneChip Human Genome U133A Array), was 

downloaded for further analysis. Depending on the selected cohort, differentially expressed genes 

(DEGs) were screened between patients with AF and SR. An additional independent dataset, 

GSE41177, was downloaded for the validation of hub genes. Three LAA samples with SR and sixteen 

LAA samples with AF were included in analysis. 

2.3. Data processing 

The original expression profile of the GSE2240 dataset was processed using R software. The 

Linear Model for Microarray data (limma) package in R was used for dataset normalization, log 2-

transformation, and fold change (FC) calculation [15], and the SVA package was used to remove the 

batch effect. The P-values of genes were calculated using the Student’s t-test, where those with 

adj.P-value < 0.05 were identified as DEGs and selected for further analyses to ensure integrity of 

the mRNA network. 

2.4. Weighted gene co-expression network analysis 

The weighted gene co-expression network analysis (WGCNA) [16] was constructed using genes 

with an adj.P-value < 0.05, as identified with the limma R package. The co-expression network was 

built based on a scale-free topology criterion of R2 > 0.80 through an appropriate soft-thresholding 

power, β. All DEGs were clustered into modules of different colors according to the average linkage 

hierarchical clustering method. We applied a 0.25 threshold for module merging, and each module 

contained at least 20 genes. Finally, the correlation of each module with AF was calculated using the 

Pearson’s correlation method. 

2.5. Enrichment analyses 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

enrichment analyses of the target genes were performed using the Database for Annotation, 

Visualization, and Integrated Discovery (DAVID, v6.8; https://david.ncifcrf.gov/) [17], which revealed 
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biological processes (BPs), molecular functions (MFs), cellular components (CCs) and pathways 

related to the DEGs. GO terms with an adj.P-value < 0.01 and KEGG maps with a P-value < 0.05 

were considered to represent significant enrichment. Gene Set Enrichment Analysis [18] (GSEA) was 

used to validate significance of the GO-KEGG results, with adj.P < 0.05 and false discovery rate (FDR) 

< 0.25 as criteria. We applied DEGs and corresponding LogFC to GSEA at the level of gene sets, which 

are defined based on information about biological pathways. Enrichment scores were calculated to 

determine whether the selected gene set is at the top or bottom of the raked list, and, thus, whether the 

selected gene set is relevant for phenotypic class distinction. 

2.6. Construction of the protein–protein interaction network 

Four algorithms were used to calculate the protein–protein interaction (PPI) network for the 

DEGs: MCC, Stress, Degree and EPC. Predicted target genes were imported into the Search Tool 

for the Retrieval of Interacting Genes database (STRING, v11.0; http://string‐db.org) with the 

highest confidence (0.900) to identify interactions between genes in the PPI network [19]. Results 

downloaded from the STRING database were then used in the Cytoscape software (v3.8.1) [20] to 

visualize the PPI network and analyze node degrees for hub gene identification through cytoHubba, 

a plugin application [21]. 

2.7. Quantitative reverse-transcription PCR 

Total cellular RNA was extracted from LAAs using a RNeasy Mini kit (QIAGEN, Frankfurt, 

Germany) following the manufacturer’s instructions. Complementary DNA was synthesized using a 

PrimeScript RT reagent kit (Takara, Otsu, Japan) at 42℃ for 60 min, followed by an additional 5 

min at 95℃. TB Green Premix Ex Taq II (Takara, Otsu, Japan) was used to perform quantitative 

reverse-transcription PCR (qRT-PCR) at 95℃ for 30 s, followed by 40 cycles at 95℃ for 5 s and 60℃ 

for 34 s on a QuantStudio 5 System (Thermo Fisher Science, Waltham, MA, USA). RNA expression 

was normalized using GAPDH as a standard, and the 2-ΔΔCT method was applied to each mRNA with 

three independent repeats. All RNA primers were obtained from Sangon Biotech (Shanghai, China), 

and their sequences are listed in Table 1. 

Table 1. List of primer sequences used for quantitative real-time PCR. 

MiRNA Sequence 

GAPDH forward: GGAGCGAGATCCCTCCAAAAT 

reverse: GGCTGTTGTCATACTTCTCATGG 

FN1 forward: CGGTGGCTGTCAGTCAAAG 

reverse: AAACCTCGGCTTCCTCCATAA 

P4HA1 forward: AGTACAGCGACAAAAGATCCAG 

reverse: CTCCAACTCACTCCACTCAGTA 

CREBBP forward: CGGCTCTAGTATCAACCCAGG 

reverse: TTTTGTGCTTGCGGATTCAGT 
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2.8. Statistical analyses 

Statistical analyses were performed using the SPSS software (v22.0; SPSS Inc., Chicago, IL, 

USA). The Student’s t-test was performed to evaluate the mean values of quantitative variables, and 

the Mann–Whitney U test was used when data distribution was not normal. An adj.P-value < 0.05 was 

considered statistically significant. 

3. Results 

3.1. Identification of DEGs 

Using our test criteria, genes with an adj.P-value < 0.05 were selected as DEGs. A set of 2589 

genes, including 1244 upregulated and 1345 downregulated genes, was identified as DEGs in the 

GSE2240 dataset (Figure 1A). The DEGs with |logFC| > 1 were screened using the heat map shown 

in Figure 1B. 

 

Figure 1. Identification of differentially expressed genes (DEGs). (A) Volcano plot of 

differentially expressed genes in GSE2240 (platform: gpl96); The red and blue dots 

represent up-regulated and down-regulated genes, respectively. (B) Heat map of DEGs 

with |logFC| ＞ 1. 

3.2. Weighted gene co-expression network analysis 

All identified DEGs were subjected to WGCNA to form modules based on the average linkage 

hierarchical clustering method. A scale-free co-expression network (R2 > 0.80) was established with a 

soft-thresholding power of β = 10 (Figure 2D). Ten modules were eventually formed in tokens of 

different colors, including black, magenta, pink, green, midnight blue, yellow, blue, light green, red, 

and grey (Figure 2A). Only modules whose co-expression efficiency for AF was beyond 0.75 were 

chosen as target modules for further analysis. According to this criterion, the pink and green modules 

with 591 genes were considered significant. Figure 2B shows the clustering heatmap between modules, 
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where red means closer similarity and blue means less similarity. A topological overlap-based 

dissimilarity was also used to plot the clustering dendrogram of genes, together with the assigned 

merged module colors and the original module colors (Figure 2C). 

 

Figure 2. Weighted gene correlation network analysis. (A) The heatmap between modules. 

The closer similarity is in red, and the farther similarity is in blue. (B) The heatmap of 

module-trait correlations. Red means positive correlation, and blue means negative 

correlation. (C) The dendrogram of differentially expressed genes. (D) The result of soft-

thresholding power β. 
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3.3. Enrichment analyses 

 

Figure 3. GO and KEGG enrichment analyses. (A) Biological process; (B) Cellular 

component; (C) Molecular function; (D) KEGG pathways. 
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GO and KEGG functional enrichment analyses were performed using the DAVID tool to 

investigate biological effects of the 591 genes clustered in the green and pink modules. The top 10 

results for the BP, CC, MF and KEGG pathways are shown in Figure 3A–C. The KEGG pathway 

analysis suggested that the target genes were mainly enriched in protein digestion and absorption, 

ECM-receptor interaction, PI3K-Akt signaling pathway, and focal adhesion (Figure 3D). GSEA was 

performed using the clusterProfiler package [22]. A total of 19 gene sets were enriched with adj.P < 

0.05 and FDR < 0.25. The top six identified gene sets are listed in Figure 4A–F. 

 

Figure 4. Gene set enrichment analysis. (A) The pathway of KEGG ECM RECEPTOR 

INTERACTION; (B) The pathway of REACTOME ECM PROTEOGLYCANS; (C) The 

pathway of WP FOCAL ADHESION-PI3K-AKTM-TOR-SIGNALING; (D) The pathway 

of KEGG FOCAL ADHESION; (E) The pathway of REACTOME ASSEMBLY OF 

COLLAGEN FIBRILS AND OTHER MULTIMERIC STRUCTURES; (F) The pathway 

of REACTOME NON INTEGRIN MEMBRANE ECM INTERACTIONS. 

3.4. Protein–protein interaction network and hub gene identification 

The STRING online tool was used to observe interactions between genes clustered in the pink 

and green modules. The visualized PPI network is shown in Figure 5. CytoHubba [21] was then 

used to process the PPI network to identify the top 10 hub genes in the two modules. Results of the 
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PPI network calculations are shown in Table 2. Hub genes were identified using a Venn diagram 

(Figure 6). Five hub genes in the pink module, including collagen type I alpha 1 (COL1A1), COL1A2, 

COL3A1, prolyl 4-hydroxylase subunit alpha I (P4HA1), and fibronectin-1 (FN1; Figure 6A), and 

one in the green module, cyclic adenosine monophosphate response element-binding protein 

(CREB)-binding protein (CREBBP; Figure 6B), were selected. Since collagen family members are 

generally recognized as potential biomarkers of AF, COL1A1, COL1A2, and COL3A1 were not 

verified in this study. 

 

Figure 5. The PPI network of target genes, nodes represent proteins, while edges represent 

protein-protein associations. 
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Table 2. Rank of hub genes calculated by four algorithms. 

 MCC Stress Degree EPC 

Rank Pink Green Pink Green Pink Green Pink Green 

1 COL1A1 CREBBP FN1 VEGFA P4HA1 CREBBP COL1A1 CREBBP 

2 COL1A2 KRR1 P4HA1 PIK3R1 COL1A1 ESR1 COL1A2 ESR1 

3 COL3A1 NCOA1 COL1A1 CREBBP COL1A2 PIK3R1 P4HA1 NR3C1 

4 P4HA1 TOP2A COL1A2 PTGES3 COL3A1 NR3C1 COL3A1 NCOR2 

5 COL5A2 NOC4L VWF ESR1 FN1 NCOR2 COL5A1 NCOA1 

6 COL5A1 BUB1B PECAM1 DCN COL5A2 DCN COL5A2 NR1H3 

7 SPARC TPX2 COL3A1 SDC2 COL5A1 NCOA1 SPARC SUMO1 

8 FN1 UTP20 MYH11 NR3C1 SPARC PTGES3 FN1 HDAC4 

9 COL4A2 PTTG1 COL18A1 PTGDS COL4A2 VEGFA COL4A1 PIK3R1 

10 COL4A1 UTP14A HK2 MMP9 COL4A1 KRR1 COL4A2 PTGES3 

 

Figure 6. The Venn diagram of hub genes calculated by four algorithms (MCC, Stress, 

Degree, EPC). (A) Pink module; (B) Green module. 

3.5. Validation of target hub genes 

The selected biomarkers, FN1, P4HA1 and CREBBP, were identified in 15 LAAs of patients with 

AF and SR using qRT-PCR. However, expression of the hub genes in patients with AF were higher 

than those in patients with SR (Figure 7, Table 3). In addition, one dataset, GSE41177, was downloaded 

from the GEO database to validate our hypothesis (Figure 8, Table 4). The expression of the three 

verified genes was significantly higher in the AF group than in the SR group, and the qRT-PCR and 

GSE41177 validation results showed that they were statistically significant. 
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Figure 7. The relative expression of hub genes between patients with atrial fibrillation (AF, 

n = 15) and sinus rhythm (SR, n = 15). (A) FN1; (B) P4HA1; (C) CREBBP. The error bar 

represents standard deviations. 

Table 3. Relative expression of three hub genes utilizing qRT-PCR. 

 

Figure 8. Boxplot of hub genes compared in GSE41177 between the AF group (n = 16) 

and SR group (n = 3). (A) FN1; (B) P4HA1; (C) CREBBP. The error bar represents the 

standard deviation. 

Table 4. Disparity validation of three hub genes in GSE41177. 

 The difference [AF-SR] Confidence Interval [95%] P-value 

FN1 1.000 0.372−1.628 0.003 

P4HA1 0.155 0.005−0.305 0.043 

CREBBP 0.472 0.292−0.652 < 0.001 

 The difference [AF-SR] Confidence Interval [95%] P-value 

FN1 0.865 0.688−1.108 < 0.001 

P4HA1 1.754 0.342−3.489 0.023 

CREBBP 1.088 0.131−1.673 0.031 
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3.6. Clinical information of selected specimens 

Clinical data for the SR group was not made available to protect donor privacy because the 

LA specimens were taken from healthy donors during heart transplant surgery. However, we were 

able to provide clinical information on patients with AF who underwent qRT-PCR. Information of 

fifteen AF patients was collected: eleven male and four female patients were enrolled. The mean 

age was 64.333 (7.659) years. Five patients had preoperative diabetes, and were on treatment with 

long-term hypoglycemic drugs or injected insulin. Four patients had a history of chronic smoking, 

including two who had smoked for more than three decades, one for four decades and one for five 

decades. Hypertension was observed in several of the patients, with four patients having grade I 

hypertension, five having grade II hypertension, and one having grade III hypertension. The mean pre-

operative CHA2DS2-VASc score was 2.267 (1.223). The pre-operative echocardiogram showed a mean 

left atrium diameter of 44.733 (5.946) mm, left ventricular end-diastolic dimension of 50.467 (5.125) 

mm, pulmonary artery systolic pressure of 33.800 (5.199) mmHg and left ventricular ejection fraction 

of 63.800 (7.930)%. The results of the serological test were Cr 83.400 (15.565) µmol/L, cTnT 0.010 

(0.004) ng/ml and BNP 917.160 (907.249) pg/ml preoperatively. 

4. Discussion 

AF is the most prevalent tachyarrhythmia in the clinic that increases the risk of ischemic stroke 

and systemic arterial embolism, possibly leading to high morbidity and mortality [23]. Heart failure, 

myocardial infarction, dementia and kidney damage are associated with AF [24−27]. Previous research 

has provided profound insights into the mechanisms underpinning AF, especially the biomarkers of 

hemodynamic stress, inflammation and tissue fibrosis. However, these biomarkers were discovered 

mainly in serum and have seldom been validated in human LAA specimens. The strength of our study 

was the combined use of online databases and human appendage specimens to identify potential 

biomarkers and possible mechanisms involved in AF. 

Structural remodeling caused by the degeneration of atrial myocytes and proliferation of 

interstitial fibers is a possible mechanism behind AF development [28,29]. The proliferation and 

differentiation of cardiac fibroblasts into cardiac myofibroblasts caused by various pathological 

irritants promote atrial fibrosis and cardiac structural remodeling [30]. Immoderate deposition of the 

ECM and aberrant proliferation of atrial fibroblasts are critical characteristics of atrial fibrosis [31].  

FN1 encodes fibronectin, a member of the glycoprotein family, which is abundant in the ECM [32]. 

The upregulation of FN1 promotes TGF-β, c-caspase-9/t-caspase-9, and NF-κB p65 protein expression, 

and reduces the p-PI3K/PI3K and p-AKT/AKT ratio, indicating that FN1 has a positive correlation 

with the TGF-β/PI3K/Akt signaling pathway [33]. Fibronectin can bind to ECM proteins through 

multiple domains, such as the gelatin domain combined with type II collagen, which acts as an 

adhesion molecule. In addition, FN1 induces the expression of COL1A1, which is involved in ECM 

synthesis [34]. COL1A1 constitutes a major component of type I collagen [35]. Two chains of 

COL1A1 and one of COL1A2 comprise type I collagen [36,37], which accounts for 85% of the ECM 

synthesized by cardiac fibroblasts [38]. Studies have shown that ECM composition and volume are 

closely related to AF [39], with evidence of collagen I and collagen III elevation in the left atrial tissue 

of patients with AF [40]. Owing to the increase in fibrosis and extracellular volume, cardiac and atrial 

fibrosis are presumed to interfere with the mechanical transduction of electricity between 
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cardiomyocytes by disturbing cell connections [41,42].  

The involvement of abnormal COL1A1 and COL1A2 expression in tumor metastasis and 

proliferation has been implicated [43,44]; however, their functions in the pathological mechanisms 

underpinning AF have seldom been reported. COL1A1, COL1A2 and FN1 jointly participate in 

regulating the PI3K/Akt pathway, which is associated with various BPs, including cell proliferation 

and differentiation, apoptosis, tumorigenesis and glycogen synthesis. The role of the PI3K/Akt 

pathway in AF has been widely reported. The administration of H2S has been indicated to significantly 

mitigate atrial fibrosis and reduce the incidence of AF via the activation of the PI3K/Akt pathway [45]. 

Another study showed that IGF1 plays a fibrotic role in AF by activating the PI3K-Akt pathway [46]. 

Moreover, the Wnt/β-catenin-induced PI3K/ATK-activated protein C system can be regulated by 

edoxaban to improve thromboembolism in AF [47].  

Prolyl 4-hydroxylases (P4Hs) are key enzymes in collagen synthesis, and P4HA1 is the main 

isoform, exerting a rate-limiting function during collagen maturation and secretion [48,49]. P4HA1 is 

correlated with pan-cancer prognosis, indicating an immunosuppressive microenvironment, and can 

be used as a potential target for immunotherapy [50]. Research has indicated that P4HA1 might play 

a role in myocardial fibrosis in diabetic cardiomyopathy through the CD36-JNK-AP1 pathway [51]. 

Blocking the p38 MAPK and ASK1-JNK-NonO pathways can also reduce vascular remodeling in 

patients with hypertension caused by elevated P4HA1 levels [48]. An E-box-like sequence (CACGGG) 

located at -135 bp of the P4HA1 promoter is responsible for 80% of the basal transcriptional activity, 

and appears to be upregulated by TGF-β1 [52], which may contribute to the development of atrial 

fibrosis and fibrillation by mediating CD44/STAT3 signaling [53]. However, research on its direct 

effect on triggering and maintenance of AF is scarce.  

CREBBP is a lysine acetyltransferase with a myriad of cellular functions. CREBBP exerts its 

influence primarily through its role as a transcriptional regulator, with the non-transcriptional effect of 

DNA replication and metabolism inside and outside the nucleus. Binding of CREBBP to CREB is 

proposed to trigger apoptosis via the CREBBP/p53/p21/Bax pathway [54]. Studies have indicated that 

transgenic mice with directional expression of CREB repressors in cardiomyocytes may develop atrial 

dilation and spontaneous AF [55,56]. Tachypacing activates cAMP/PKA/CREB signaling and 

promotes CREB/CD44 linkage, thus resulting in the downregulation of genes encoding L-type calcium 

channels and shortening of action potential duration and refractoriness [57]. This may hinder 

conduction and promote atrial reentry, contributing significantly to the onset of AF [57−60]. 

Various molecules participate in the pathophysiological process of AF by activating the PI3K/Akt 

pathway and ECM production or organization, indicating that molecules present in this pathway, such 

as FN1, P4HA1 and CREBBP, may be potential therapeutic targets for patients with AF. 

However, our study had some limitations. First, this study was based on the data downloaded 

from the GEO database that included only a few patients. Further studies with more patients should be 

conducted to support our results. Second, the clinical characteristics were not used in our study. Third, 

although we validated the expression of target hub genes using qRT-PCR, further research is required 

to explore their potential mechanisms in AF development. 

5. Conclusions 

In this study, we identified three hub genes, FN1, P4HA1 and CREBBP, as potential biomarkers 

of AF through integrated bioinformatics analyses of three datasets from the GEO database. The 
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expression of these three genes in the myocardium of patients with AF was higher than that in 

individuals with normal SR. In-depth investigation of these biomarkers may provide insights into the 

potential mechanism behind AF endogenesis. 

6. Data availability 

The GSE2240 dataset is available at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

gse2240, and the GSE41177dataset is available through the following links: https://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=gse41177. 
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