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Abstract: Taking the reproduction law of vermin into consideration, we formulate a hierarchical
age-structured model to describe the optimal management of vermin by contraception control. It is
shown that the model is well-posed, and the solution has a separable form. The existence of optimal
management policy is established via a minimizing sequence and the use of compactness, while the
structure of optimal strategy is obtained by using an adjoint system and normal cones. To show the
compactness, we use the Fréchet-Kolmogorov theorem and its generalization. To construct the adjoint
system, we give some continuity results. Finally, an illustrative example is given.
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1. Introduction

In the eco-environment, there are a large number of pests or annoying animals such as rodents and
mosquitoes that can spread diseases or destroy crops or livestock. They are called vermin. In addition,
vermin have the strong reproductive abilities, which makes it necessary to control them [1]. Usually,
chemical drugs are used to poison the vermin, which will pollute the environment and destroy the
ecological system. In addition, long-term use of chemical drugs will make the vermin resistant to
drugs, which makes it impossible to control the vermin effectively for a long time. Ecological research
shows that reducing the reproduction rate is an effective way to manage the over-abundance of species.
Currently, female sterilant is used to reduce the size of vermin [2, 3]. This is because, compared with
chemical drugs, sterilants not only have the advantage of not polluting the environment, but also have
the dual effects of causing sterility and death of vermin.
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Since the reproductive ability of vermin is related to the age of individuals [4], we can use first-order
partial differential equations coupled with integral equations to simulate the dynamics of vermin [5, 6].
Along this line, many studies have appeared on population models. To name a few, see [7-10] for
age-dependent models, and [11-15] for size-structured models. Anita and Anita [7] considered two
optimal harvesting problems related to age-structured population dynamics with logistic term and time-
periodic control and vital rates. The control variable is the harvest effort, which only depends on time
and only appears in the principal equation. Li et al. [9] studied the optimal control of an age-structured
model describing mosquito plasticity. He et al. [10] investigated the optimal birth control problem for
a nonlinear age-structured population model. The control variable is the birth rate and only appears
in the boundary condition. He and Liu [11] and Liu and Liu [12] discussed optimal birth control
problems for population models with size structures. Li et al. [13] investigated the optimal harvesting
problem for a size-stage-structured population model and the control variable is the harvest effort for
the adult population.

However, only a small amount of work is directly aimed at the contraception control problems for
vermin with individual structure [16, 17], and no work has yet considered the reproduction law of
vermin in modeling. In this paper, we will formulate a nonlinear hierarchical age-structured model to
discuss the optimal contraception management problem for vermin. The so-called hierarchical
structure of the population is to rank individuals according to their age, body size, or any other
structural variables that may affect their life rate [18]. Moreover, Gurney and Nisbet [18] pointed out
that the hierarchy of ranks in a population is one of the important factors to maintain species’
persistence and ecological stability. Most studies on the hierarchical population models mainly
discuss the existence, uniqueness, and numerical approximation of solutions [19, 20], and the
asymptotic behavior of solutions [18, 21]. However, studies on optimal control problems of
hierarchical population models are rather rare. He and his collaborators have investigated optimal
harvesting problems in hierarchical species [22,23]. The control variables are the harvest effort and
only appear in the principal equation.

Compared with known closely related ones, our model has the following features. Firstly, the
control function is the amount of sterilant ingested by an individual, which depends on the individual’s
age. Secondly, the control variable appears not only in the principal equation (distributed control) but
also in the boundary condition (boundary control). Thirdly, the reproduction rate of vermin depends
not only on the age of individuals but also on the mechanism of encounters between males and females
and an “internal environment”. Fourthly, the mortality of vermin depends not only on the intrinsic and
weighted total size of vermin but also on the influence of ingested sterilant. The model obtained in this
paper is a nonlinear integro-partial differential equation with a global feedback boundary condition.
Based on this model, this paper will investigate how to apply the female sterilant to minimize the final
size of vermin when the control cost is the lowest.

In this paper, firstly, the existence of a unique non-negative solution is established based on
Theorem 4.1 of [14]. More importantly, by transforming the model into a system of two subsystems,
we show that the solution has a separable form. Then, the existence of an optimal policy is discussed
with compactness and minimization sequences. To show the compactness, we use the
Fréchet-Kolmogorov Theorem and its generalization. Next, the Euler-Lagrange optimality conditions
are derived by employing adjoint systems and normal cones techniques. The high nonlinearity of the
model makes it difficult to construct the adjoint system. For this reason, we give a new continuous
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result, that is, the continuity of the solution of an integro-partial differential equation with respect to
its boundary distribution and inhomogeneous term.

Let us make some comments on the difference between our methods and results from those of
closely related works. Anita and Anita [7] only gave the first order necessary optimality conditions by
using an adjoint system and normal cones techniques. Li et al. [13] only discussed the existence of the
optimal solution for a harvest problem via a maximizing sequence. Hritonenko et al. [15] only gave
the maximum principle for a size-structured model of forest and carbon sequestration management
via adjoint system. Kato [14] only discussed the existence of the optimal solution for a nonlinear
size-structured harvest model by means of a maximizing sequence.

2. Model formulation

In this section, taking the reproduction law of vermin into consideration, we will formulate a
hierarchical age-structured model to discuss the optimal contraception management problem for
vermin. Ecological studies show that the reproduction of vermin follows the following laws [4]:

(1°) The reproductive ability of vermin is related to the age of individuals;

(2°) Most vermin are polygamous hybridization;

(3°) A large proportion of females increases the reproductive intensity of vermin;

(4°) The average number of offspring from middle-aged and elderly individuals is more than that of
individuals who first participate in reproduction.

To build our model, let p(a, ) denote the density of vermin with age a at time ¢, and a; be the maximum
age of survival of vermin.

Firstly, we simulate the reproduction process. Note that most vermin are polygamous
hybridization. As in [24], we should consider the mechanism of encounters between males and
females when describing the birth process. Here we assume that the sex ratio is determined by fixed
environmental or social factors, and w(a) (0 < w(a) < 1) is the proportion of females with age a. Then
the number of males at time ¢ is

S = fm[l — w(a)]p(a,t)da.
0

Further, we introduce the function B(a, S (7)) to represent the number of males encountered by a female
with age a per unit time.

From (3°) and (4°), we see that middle-aged and elderly females play a dominant role in
reproduction of vermin. Thus, there exist dominant ranks of individuals in vermin [22]. As in [19],
one can assume that the fertility of vermin is related to its “internal environment” E(p)(a, t), which is
given by

E(p)(a,t) = a/f w(r)p(r,t)dr + f | w(r)p(r,)dr, 0<a <.
0 a
The parameter « is the hierarchical coefficient, which is the weight of the lower ranks (i.e., age smaller
than a). From [21], @ = O (i.e.,“contest competition”) implies an absolute hierarchical structure,

whereas a tending to 1 means that the effect of higher ranks is similar to that of lower ranks. Moreover,
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the limiting case @ = 1 (i.e., “scramble competition”) means that there is no hierarchy. Hence, the
fertility of vermin can be defined as B(a, t, E(p)(a, t)), which denotes the average number of offspring
produced per an encounter of a male with a female with age a at time .

Next, we simulate the sterile process and death process. In order to inhibit the excessive
reproduction of vermin, humans put female sterilant into their living environment of vermin. For the
convenience of modeling, we assume that the sterilant used at any time will be completely eaten by
vermin (including males), and individuals of the same age will eat the same amount of sterilant at the
same time [16]. Liu et al. pointed out that sterilant can not only cause sterility of vermin but also kill
them [25]. Thus, when the amount of sterilant ingested by an individual with age a at time ¢ is u(a, ),
we can use 0ju(a, t) and du(a, t), respectively, to describe the mortality and infertility rates caused by
ingestion of sterilant. Hence, the density of fertile females with age a at time ¢ can be written as
[1 — dru(a, t)]Jw(a)p(a,t), and the total number of newborns that are produced at time 7 is given by

f Bla,t, E(p)(a, D)B(a, S ()1 = 6u(a, n]w(a)p(a, 1) da.
0

Next we denote B(a, t, E(p)(a, 1), S (1)) £ B(a,t, E(p))B(a, S (1))w(a). In addition, the restriction of
living space or habitat can lead to an increase of mortality. Thus, in addition to natural mortality u(a, t)

and external mortality d,u(a, t), we assume that the vermin also has a mortality ®(/(¢)), which depends
on the total size /(f) weighted by m(a). That is,

I(t) = fuT m(a)p(a,t)da.
0

Finally, we build our model. Motivated by the above discussions, in this paper, we propose the
following hierarchical age-structured model to describe the contraception control problem of vermin

op f,; 0, o ;Z D _ fa, 1) - [ua, 1) + Suuta, ) + DAD)p(a ), (a6 € D,
p(0,1) = f ' Bla, t, E(p)as 1), S D)1 = Souta, 0p(a, 1) da, te 0,71,
0
p(a,0) =azgo(a), ) a € [0,a;), 2.1
I(t) = f m(a)p(a,t)da, S(t) = f [1 - w(a)lp(a,t)da, te[0,7T],
0 ) 0.
E(p)a,1) = a f w(r)p(r,1) dr + f w(r)p(r.1) dr, (a,) € D,
0 a

where D = (0,a4+) X (0,7) and T € (0, +o0) is the control horizon. f(a,?) is the rate of immigration.
The control variable u € U = {u € L*(D) : 0 < u(a,t) < L, a.e. (a,t) € D}, where L > 0 is a constant.
Biologically, we have 6,L < 1. Let p“(a,t) be the solution of (2.1) with u € U. The optimization
problem discussed in this paper is

rurglgl J(u), (2.2)

+ T a:
J) = f} p“(a,T)da + f [r(t)f u(a,t)p"(a,t)da|dt.
0 0 0
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Here the first integral represents the total number of vermin at time 7, while r(¢) foaT u(a,t)p"(a,t)dais
the cost of infertility control at time ¢. The purpose of this paper is to investigate how to apply female
sterilant to minimize the final size of vermin when the control cost is the lowest.

After rewriting our model (see Section 3), we see it is a special case of (4.1) in [14]. Note this
model contains some exiting ones. Assume that 8(a,t, E(p)(a,1),S (1)) = B(a,t) and ®(I(r)) = 0. If
01 = 6, = 0, then our model reduces to model (2.1.1) in [6]; if 6; = 1 and 6, = 0, then model
(2.1) becomes the harvest control model (3.1.1) in [6]. Assume that f(a,t) = 0, m(a) = 1, and
Bla,t, E(p)(a,t1),S(t)) = B(a,t). Then we get model (2.2.15) in [6] by letting 6; = §, = 0 and the
harvest control model (3.2.1) in [6] by letting 6; = 1 and 6, = 0. Moreover, if we take f(a,t) = 0,
m(a) = 1, 6; = 6 = 0 and B(a,t, E(p)(a,1),S (1)) = B(a,t)w(a,t), then model (2.1) improves the
age-structured birth control model in [10].

Let R, = [0, +0), L} = L'(0,a+;R,) and L® £ L*(0, a+; R,). In this paper, we assume that:

(A) Foreacht € [0,T], u(-.) € L} [0,a;) and [ p(a, 1) da = +oo.

loc

(Ay) ® : R, — R, is bounded, that is, there is a constant ® > 0 such that ®(s) < ® for all s € R,.
Moreover, there is an increasing function Cy : R, — R, such that

|D(s1) — D(s2)| < Cop()|sy — 52, 0L 51,8 <7

(A3) B: DX R, xR, — R, is measurable and 0 < f(a,t, s,q) < j for some § > 0. Moreover, there
exists an increasing function Cg : R, — R, such that for a € [0,a;) and 7 € [0, T]

IB(a, 1, s1,q1) — Bla, t, 52, q2)| < Cp(r)(Is1 — s2| + g1 — q2), 0 < 51, 8,41,q2 <.

(Ay) f € L0, T;LY), poe L', we LY, me LY and 0 < w(a) < @ < 1,0 < m(a) < m for any
a € [0,a;). Here @ and m are positive constants.

3. Solutions in a separable form

In this section, we show that (2.1) admits solutions in a separable form. First, we show (2.1) is well
posed. Forany u € U and ¢ € L', let

G 9@ = fla,) — e, ) + Gu(a, ) + DUP|p(@),  ae [0,a) 3.1)
s
F1,6) = fo Bla.t, E@)a). S$)[1 — 6:ua, )]¢(a) da, (32)

where I = foaf m(a)¢(a) da, E($)(a) = a/foa w(r)p(rydr + faaT w(r)p(r)dr a € [0,a;), and S¢ =
fo “'I1 — w(a)]¢(a) da. Then (2.1) can be written in the following general form

op(a,t) N op(a,t)

o 0 G(, p(-,0)(a), (a,1) € [0,a3) X [0, T],
p(()’ Z‘) = F(t9 P("f)), re [09 T]’
p(a,0) = po(a), x € [0, as).
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This is a special case of (4.1) in [14] with V(x,#) = 1. Obviously, under (A1)—(Ay), G satisfies (GO)
and (G1) in [14]. Now, we show F satisfies (F0) and (F1) in [14]. For any ¢; € L' with ||¢;||.1 < r
(i=1,2), we have

|E(¢i)(a)l =‘a fog w(r)¢i(r) dr + f w(r)i(r)dr

i
< G)fa [gi(Nldr < [lgillr < 7,
0

S @il =

A o
fo [1 - w(a)]gi(a) da| < f; ¢l dr = ligill < r.
Then, by (A3), we get

|B(a, 1,E(¢1)(@), S ¢1) — Bla, 1, E($2)(a), S $2)|

)
<Cg(r) wa(r)[fﬁl(r) — ¢o(r)]dr + f w(r)[¢1(r) — ¢2(r)]dr

+Cp(r)

f 11 = 0@l (@) - ¢a(@)] da
0

<Cynfa fo ol () — ol dr + f Dl () - Gl dr}
+Cy(r) fo 11 - w@ig(@) - ¢al@)] da
<@+ D) f: 1) = a0 dr = (@ + DS — ol
Hence,
F(t, ) — F(t, )] < fo " Bl 1, @), S 1) — Bla, 1, E@) @), S62)| - (@] da
+ fo ) B(a. 1, E($2)(@), S $2)| - Ih1(a) = ¢(a)] da

<@+ DCyDId1 - bl fo pi(@)lda + B fo 161(a) - da(@)l da
<@+ DCs(r)r + Blllds — dallur.

Let C(r) = (w + 1)Cg(r)r + . By (A3), we know that Cy is an increasing function. Thus, (F0) in [14]
holds. Clearly, F satisfies (F1) in [14]. In addition, take w;(¢) = |[f(-, )|l and w»(f) = B. Then all
conditions of [14] are satisfied. Similar to the proof of [14], we have the following result.

Theorem 3.1. For each u € U, model (2.1) has a unique global solution p € C([0,T];L}), which
satisfies

— t —-
IOl < Hlpall + [ A ds. (33)
0
Next we consider the solution of model (2.1) in the following form

pla.t) = y()p(a, ). (3.4)
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From (2.1) and (3.4), we get two subsystems about p(a, ) and y(¢) as follows

op(a,t) 0dpla,1) _ f(a,1) _
” + T@a = 0 — [u(a, t) + 6 u(a, t)]p(a, ), (a,1) € D,
pO,1) = ) Bla,t,y(OE(p)(a, 1), y(O)S ))[1 — 6u(a, Dp(a,t)da,  1€[0,T],
S = f 11 = w(@)]5a. 1) da, te0,T), 3-3)
0 a a
E(p)t) = af w(r)p(r,t)dr + f w(r)p(r, t)dr, te[0,T],
0 a
p(a’ O) = PO(a)9 ac [O’ Cl%),
Y (1) + Dy(OI(1))y(1) = 0, 1€[0,T],
f
I(H) = f m(a)p(a,t)da, te[0,T], 3.6)
0
y(0) =1.

Definition 1. A pair of functions (p(a, t), y(t)) with p € C([0,T1; L}) and y € C([0, T1; R,) is said to be
a solution of (3.5)—(3.6) if it satisfies

Fy(t, p(-, 7)) + f Gy(s, p(-, $))(s —t + a)ds, a<t,
pla,t) = T (3.7
pola—1t) + f Gy(s, p(, $))(s —t + a)ds, a>t,
0
¥(#) = exp {— fo D(y(s)I(5)) ds} : (3.8)

where T =t —a, I(s) = anT m(a)p(a, s)da, and

F\(t,¢) = fo Bla, t, y(OE($)(@), y()S ¢)[1 — dau(a, 1)]p(a) da,
fla,1)
O
fort € [0,T] and ¢ € L'. Here E(¢p)(a) = a/foa w(r)g(rydr + faaT w(r)p(rydr and S¢ = OaT[l -
w(a)lg(a) da.

Denote § = exp{—®T} > 0 and define S = {h € C[0,T] : 6 < h(t) < 1, t € [0,T]}. In addition,
define an equivalent norm in C[0, T'] by

G, (1, $)(a) = —u(a, )p(a) - 61u(a, H(a) +

a € [0,a;)

|hll, = sup e Y|h(t)| for h € C[0,T] (3.9)

t€[0,T]

for some A > 0. Clearly, (S, || - ||,) is a Banach space.
For any y € S, by Theorem 3.1, system (3.5) has a unique non-negative solution p* € C([0, T']; L}r)
satisfying
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- t - .
17Cols <ol + [0 |[Z2) s
y(s)
<elpoll + f Fa-o1fC et S)”U
y(s)
<’ (||Po||u + W) 2 (3.10)
Lemma 3.2. There is a positive constant M such that
!
17" . 0) = PG, Dl SMf y1(s) = y2(s)l ds, (3.11)
0
=At 1 1 =2 M
e P 0 = pC ol SI”)’I = 2lla (3.12)

forallt € [0,T] and yy, y, € S.

Proof. Since (3.12) can be obtained directly from (3.11), we only need to prove (3.11). For any y € S,
from (3.10) and 0 < w(a) < @ < 1, it follows that

[E(p”)(a,1)| :'a/fw(a)py(a, tyda + fm w(a)p’(a,t)da| < G)fm P’ (a,t)|da < ry, (3.13)
0 a 0

1SV(0)] =

fm[l —w(@)]p’(a,t)da| < faT |p’(a, )| da < ro, (3.14)
0 0

and

a ¥
|[E(p"") — E(p™)|(a, 1) =‘af w[pP" = pl(r,t)dr + fa wN[p" = p1(r, 0 dr
0 a
Saflw(r)llﬁy' - p?l(r,ndr + fT lw(Pllie" — w?|(r, 1) dr
0 a

.
S(Dfa 1p" = p"la, ) da < ||p" (-, 0) = PG, Dl (3.15)

1871 (1) = §2 ()l = f[l—w(a)]p”(a l)da—fa#[l—w(a)]ﬁ”(a,t)da
0
Sf(; 1p" (a,1) = p*(a, D)l da = ||p" (-,0) = P, Dl (3.16)

Moreover, using (3.7), we have
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1" ¢ 1) = P D)l =f0 1P (a, 1) — p"(a, t)lda+f |p"' (a,t) — p*(a,1)|da
Sf |y, (7, P (-, 7)) = Fy, (7, p7 (-, 7))l da
0
+ f f Gy, (s, P (-, 8)) = Gy, (5, P, s)I(s — t + a)ds da
0 T

3l [ 1600559 = Gl 95— 1+ @) dsda
t 0
éll + 12 + 13. (317)

It follows from Fubini’s Theorem that
b= [ 166 P 9 = Gl P 1+ ) dads
t-s
+f0[ fw Gy, (5, P (-, 8)) = Gy (5, P2 (-, $))I(s — t + @) dads
'
B fot fT Gy, (5, 9" (-, 8)) = Gy (5, P, $)I(s — 1 + a) dads.
1-s

Using the transformation s = ¢t — a, we have s = t when a = 0 while s = 0 when a = ¢, and ds = —da.
Thus, by (3.13)—(3.16), we obtain

!
f
0

—f Bla, s, y2()E(P)(a, ), y2(5)S**())[1 = 62u(a, $)1p*(a, 5) da
0

<5 f f 5@ 5) - (@, 9) dads
0 0

t H
+Cy(r) fo f: IEP") = E(B™)(a, 5) + 18 (5) = §*(s)l| - 15 (a, 9)] da ds

L Tﬁ(a, 5, V1(EPE" )@, $),y1(9)S” (9)[1 = 62u(a, $)1p" (a, 5) da

ds

+Cp(ro) fo | f: T |EB™)@a, 5) + 5(9)] - 1(5) = ya(s)| - |5 (a, )| da ds

< [ N5 5) = PG sl ds + 2CH oy | 1(s) = ya(5) | " 19, 9l dads
+2C(r0) fo N5 8) = 5 o)l fo " 19, 9l dads

<+ 2Cutrom) | 17 5) = PG )l ds + 2G40 | B -m@lds. G.18)

Using the transformationn = s—f+a, we haven = O whena =t—swhilen = s—t+a: < a; (t—5 > 0)
when a = a+, and dn = da. Thus, we obtain
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! ¥
L+1;< f f Gy, (s, P (-, 9)) = Gy, (s, P2, )|(mp) dnds
0 Jo

f(m,s)  f(n,s)

- dnd
yi(s) y2(s) )‘ e
f@,s)  f@,9)
yi(s) y2(s)

‘Ilf(-, 9l ds

= u07,.) + S, NF"01,9) = 701.9) +

<(+8D) f [P -l anass [ f

— L V1 yz d d
=@+ o )ff [P 1.9) = P01 9] dn Hf yi(s)  ya(s)

<(@+6,L) f 15" (2 8) = P 9l ds+”f”L9# fo ()= a(o)lds.  (3.19)
0

dnds

Here j1 is the upper bound of u(a, t). From (3.17)—(3.19), we have

1P" (1) = PG, Dl <(B + 2Cu(ro)ro + i + 61 L) f 15" (. 5) = B2, 9)llds

/1] (OTL)

+(2Cﬁ(ro)r(2) f yi(s) = y2(s)| ds. (3.20)

Then (3.11) follows from Gronwall’s inequality. O

Theorem 3.3. For any py € L} and u € U, (3.5)—(3.6) has a unique solution (p’,y) € C([0,T]; L!) x
C([0,T]; R,). In addition, p(a,t) = p’(a, t)y(t) is the unique solution of (2.1).

Proof. First, we show that for any y € S there is a unique y € S such that
t -—
y(t) = exp{ - f O (s)¥(s)) ds}. (3.21)
0
Here I’(¢) = anT m(a)p’(a, t)da. From (3.10), it is easy to show

IP(0) =

't A
f m(a)p’(a,t)da| < ﬁ’tf |P’(a,t)|da < mrg = ry. (3.22)
0 0

For fixed I, define the operator A : S — C[0, T] by
!
[AR](r) = exp{ - f DO(L(s)h(s)) ds} forh e S.
0

Clearly, [Ah](t) > 6 for each h € S. Thus, A maps S into itself. In addition, for any Ay, h, € S, we
have
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IARN@) = (AR)Dla = sup (e |(ARN@) — (AR)@))

te[0,T]

sup]{e—ﬂf f | (5)h1(5)) = O ()ha(s))| ds}
0

te[0,T

!
sup {e_MCq)(rl)rl f e“e-“ml(s)—hz(s)|ds}
0

1€[0,7]
< Co(ri)r
A
Taking A > 0 large enough such that A > Cq(r)r;, we see that A is a contraction on (S, || - ||,). Fixed
point theory shows that A owns a unique fixed point j in S, and y satisfies (3.21).
Next, based on (3.21), we define another operator 8 : S — S by

IA

IA

171 = halla.

By =y foryeS. (3.23)

For any y;, y, € S, it is easy to show that

[P (s) = P*(s)| =

1y +
f m(a)p” (a, s)da - fﬂ m(a)p*(a, s) da| < m||p™ (-, 8) = pC, )l
0 0

Then, together with (3.12), one yields

e fo P () P(s)lds < e fo 58— B9l ds < %nyl - yalla.
Further, it follows from (3.21) and (3.22) that
e™M[51(1) = 52(0)|
=e™"|(By)) (1) - (By)(1)|
fo O (s)7: () ds - fo O (s)7a(s)) ds

Se—/lt

Se‘”’Cm(rl)f [P ()71(5) = P*(8)72(s)] ds
0

Co(ri))Mm '
S—(D(/{z) —ly1 —)’2||A+C<p(r1)r1f e " 151(s) — Fals) ds. (3.24)
0

The Gronwall’s inequality implies

Co(ri)MmeCotronT
A2

Thus, B is a contraction on (S, || - ||) by choosing A > 0 such that Cq(r))Mme“nT /22 < 1. Let
y be the unique fixed point of B in S. Then (p,y) = (p’,y) is the solution to (3.5)—(3.6), which is
non-negative and bounded.

Finally, from Theorem 3.1, model (2.1) has a unique solution. In addition, it is easy to verify
that p(a,t) = p’(a,t)y(t) satisfies (2.1). Thus, p(a,t) = p’(a,t)y(t) is the unique solution to (2.1). In
summary, model (2.1) has a unique non-negative solution p(a, t), which is uniformly bounded. O

e Myi (1) — 2] < lly1 = yalla
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Theorem 3.4. The solution p* of model (2.1) is continuous in u € U. That is, for any uy, u, € U, there
are positive constants K; and K, such that

lp1 = pallz=o.r:01 0.0y < KiTlluy — uallzo0,7:2 0.01))»

lp1 = pallypy < KaT'lluy — usllppys
where p; is the solution of (2.1) with respect to u; (i = 1,2).

Proof. By Theorem 3.3, one has p;(a,t) = yi(t)p’(a,t), i = 1,2. Here (p”,y;) is the solution of
(3.5)—(3.6) with respect to u; € U. From (3.10), it follows that

Ip1C, ) = paC Dl <P G, 1) = PG Dl + rolyi (@) = y2 (D). (3.25)

Recall that |I(s)| < ry. Then, by y(f) < 1, (A;), and (3.8), we obtain
i () =y (0] < j: |01 () (5)) = P(y2(s)P*(5))l ds

<Co(r1) VE 1P (5) = ya()P*(s)] ds

<Co(rin fot y1(s) = y2(s9)l ds + Co(r1)m ﬁt 17" (-, ) = P C, )l ds.
Applying the Gronwall’s inequality produces

i () = y2(0] < M, j: 1@ (-, 8) — @2, 9l ds, (3.26)
where M; = C2(r\)rimT e T + Cq(ry)in. Further, it can be seen from (3.7) that
¢
1P" . 0) = P, Dl < j(; |Fy, (7, p"' (-, 7)) = Fy, (7, P (-, 7))l da
+ f: ft |Gy, (s, P (-, 8)) = Gy, (5, P, s)I(s — t + a)ds da

¥ f f Gy (5, B, 8)) = Gy (5, P, )I(s — £ + @) ds da
t 0
éI4 + 15 + I6~ (327)

Arguing similarly as for /; and I, + I, respectively, we can show that
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= NP 8) = PGl ds + 6,3 | 1P 9l | " i, ) - @ ) dads
«26um) [ NP 9) — P [ @ stdass
“2Crom | i)~ 3a() [ @ sndass
<6+ 2600m) [ P C5) = 2 9l ds + 2600 | i) - (ol ds

+5zBrof||u1(',S)—uz(‘,S)|IL1 ds (3.28)
0

! A+
15+If,sff
0 Jo

—51(u1(77, S)ﬁyl (77’ S) - MZ(U’ S)Pyz(ﬂ» S))

:f’f”* (f(n, ) f@r,s)
0 0

yi(s) y2(s)
=01 (n, $)(P" (1, ) — p*(n, 5)) — 611 (n, 8) — ua(n, $))p"> (m, )

and

(f(n, ) f(1.9)
y1(s) y2(s)

) — u(, $)(@" (1, ) — @17, 5))

dnds

) — u(, $)(@" (1, 5) — @17, 5))

dnds
<(it+ 51L)j; 1P C.s) = PGy s)llp ds + 5170f0 (-, 8) — u(:, 9|z ds
+—”f”LZ(20’T;LI) f [yi(s) — y2(s)| ds. (3.29)
0
It follows from (3.27)—(3.29) that
17" (. 1) = P2 Dl <(B + 2Cp(ro)ro + i + 51L)f0 WP C.s) = PGy o)l ds
+H{2Cu ot + Wlhora) ”LZS’T;LI)) f y1(s) = ya(s)l ds
0
+(6170 + 525"0)f llee1 (-, 8) = ua (-, $)l| 1 ds. (3.30)
0

This, together with (3.26), yields
! _ !
W' ¢, 0) = Pl <M; f 1P (-, 8) = PG, )l ds + (6170 + 5zﬁro)f lletr (-, 8) = uz (-, $)l|r ds,
0 0

where M, = (B+2Cs(ro)ro+fi+6,L)+ M T(2Cs(ro)rj + ”f””;*“)) By Gronwall’s inequality, we have
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1P (1) = P C, Dl <M fot llur (-5 ) = ua (-, )l ds, (3.31)
where M3 = (6,19 + 6,87r0)(1 + +M,Te™2T). Substituting (3.26) and (3.31) into (3.25), one yields
Ip1C 1) = p2 G Dl <P G, 0) = PG Dl + oM, fol 1P" (o 8) = P2 )l ds
<M5(1 + oM, T) fot ller (-, 8) — ua (-, 8)ll21 ds.
The conclusion then follows immediately from the above analysis. O

4. Existence of optimal management

The purpose of this section is to prove the existence of optimal management policy. To this end, we
first establish two lemmas on compactness.

Lemma 4.1. Let I'(t) = [ m(a)p"(a,t)da and S"(t) = [["'[1 - w(@)]p*(a.t)da. Then {I" : u € U)
and {S* : u € U} are relatively compact sets in L*(0, T).

Proof. We only show that {I" : u € U} is relatively compact in L2(0,T) as {S* : u € U} can be dealt
with similarity. For given € > 0 sufficiently small, define

ai—&
I'°(t) = f m(a)p“(a,t)da.
0
Since p" is uniformly bounded in u, there is a positive constant M7y such that

[I“(r) — I'"*(1)| = f | m(a)p"(a,t)yda < mMre, Ytel0,T], Yue.

Obviously, the relative compactness of {I* : u € U} in L*(0, T) implies that the set {I* : u € U} is
also relatively compact in L*(0, T).

Now, by using Fréchet-Kolmogorov Theorem [26], we show that {/"° : u € U} is relatively compact
in L*(0, T). For convenience, we denote I**(t) = 0ift <Oort > T.

1) For each u € U, by Theorem 3.1, we have

1 T i —& 2 1
sup ||[I"?|| = sup(‘f[lu"s(t)]2 dt)2 = sup (f f m(a)p“(a,t) da] dt)2
uel uel R uel 0 0

1

T 2
Ssup(ﬁm[) [||p“(-,t)||L1]2 dt) < +o00.

ueld
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2) Itis easy to verify that

lim [1“¢(s)]* ds = 0.
X0 |s]>x

3) We need to show that lin(} fOT[I”’g(s +1) — I"*(s)]>ds = 0 for any u € U. Note that
11—

T T S+t u,e 2
f [1“(s + 1) — (s, &)]* ds = f [ f () dr] ds
0 0 s dr
T u,e 2
o [ (820 o
0 r

It suffices to show that % is uniformly bounded about u. Clearly,
dI(r) f“*‘g op“(a,1)
= da.
dr 0 m(@) ot a

Multiplying (2.1) by m(a) and integrating on (0, a+ — €), one yields

f 2 u(;“’ D da = f - m(@)]| fa,1) ~ [u(a, 1) + Gru(a,1) + U (1)]p"(a, 1)} da
0 0

t
i u
— f m(a)M da
0 oa

é17 + I.

By assumptions and Theorem 3.1, we know that /7 is uniformly bounded about u. For Ig, by the
second equation of (2.1), we obtain

Iy = —m(a; — e)p"(a: — &,1) + m(0)p" (0, 1) + fﬂra m'(a)p"(a,t)da
0
e
=m(0) f Bla.t, E(p“)a, 1), S ()1 — d2u(a, 1)]p“(a, 1) da
0
+ fT m'(a)p"(a,t)da — m(ay — &)p“(a+ — &, 1).
0

e @ -
dt( L is

Similarly, I3 is also uniformly bounded about u. In summary, we have proved that
uniformly bounded about u. Hence, we can obtain

T

lim | [I"“*(s+1) — I"*(s)]*ds = 0.
t—>0 O

Thus, by Fréchet-Kolmogorov Theorem, we know that {/** : u € U} is relatively compact in
L*(0,T). The proof is complete. o

Lemma 4.2. Let E(p")(a.1) = a [} w(r)p"(r,0)dr + [ w(r)p"(r,t)dr. Then the set (E(p") : u € U} is
relatively compact in L*(D).
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Proof. For given & > 0 sufficiently small, define

E?(p")(a,t) = a fa w(r)p"(r,t)dr + fra w(r)p(r,t)dr, (a,t) € D.
0 a

With a similar discussion as that in the proof of Lemma 4.1, we only need to show that {E®(p*) : u € U}
is relatively compact in L*(D). We shall use Fréchet-Kolmogorov Theorem (with § = R?) to prove this.
For convenience, we extend E®(p*) to R? by defining E*(p*)(a,t) = 0 for (a,t) = R* \ D.

1) For any u € U, by Theorem 3.1, we have
sup [E*(p")] = sup( (B (0", O dadr)

uel
1

-& 2 !
=sup f [ [ [ oo [0 w(?)p”(r,t)dr] dact)
uel

ff P, 0l ] dadt) < +o00.

2) It is clear that

lim [E‘g(p”)(a H1*dadt = 0.
X—+00 ‘

y—+oo |t|>)

3) It remains to show that

Aa—0
At—0

T T
lim f f [ES(p")(a + Aa,t + Af) — E5(p")a,1)]*dadr =0 for any u € U. 4.1)
0

Obviously, we have

T a
f f t[Eg(p“)(a + Aa,t + A1) — E5(p*)a, H))> da dt
0 0

fT f""‘ OE*(p")(a + 0,Aa,t + At) E‘g(p”)(a r+ 02At) d ar,
= a
oa ot
where 0, 6, € [0, 1]. To show (4.1), we should discuss the uniform boundedness of EpI@D and

da
W with respect to u. Multiplying the first equation in model (2.1) by w(a) and integrating

on (0, a: — &), we obtain

faa)( )[819 (1, 1) ﬁp;(rr, t)]dr+ fm—s o )[ap (r,1) ap’;(:, t)]dr

=a f ()| £ 1) = [ 1) = S1ur. 1) = DU O)]p"(r. )| dr
0

+ f [0 — 1) = S, 1) — DU )P (1) dr
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Thus,

OE*(p")(a, 1) _6[a/ foa w(r)p“(r,t)dr + faaf_s w(r)p"(r,t)dr]

ot ot
_ ap"(r,1) e opt(n1)
=a f w(r) Ey dr + L w(r) o dr

—a fo OO £ 1) = [u(r. 1) = Syu(r. ) — U] p(r. )]
+ f D[ = [0 = S 1) — DU )P (1) dr
_ [a, fa w(r)w dr + f”f‘s a)(r)apu(r’ ) dr] .

0 or a or

Denote Iy £ —[a foa w(r)% dr + fa e w(r)% dr]. Then, using the second equation in (2.1),

we can obtain

Iy = - [aw(a)pu(a, 1) — aw(0)p"(0, 1) — a,f“ W' (NP (r, 1) dr + w(ar — &)p"(a: — &, 1)
0
~w(@)p“(a,1) - f W' (r)p"(r, 1) dr]
=(1 - @)w(a)p“(a,1) + cyw(())f Bla.t, E(pYa. 1), S“(O)[1 — Syula, )]p"(a. ) da
0

+a fa W' (r)p"(r,t)dr + fa+—€ W' (Np"(r,t)dr — w(a; — €)p"(a+ — &, 1).
0 a

Hence,

OE*(p")(a, 1)
ot

= CY](; {a)(r)[f(r, 1) — [u(r, t) = 61u(r, t) — U ())]p"(r, t)] + o' (Np“(r, ;)} dr
+ f _ {w(l’)[f(r, 1) — [u(r, 1) = Syu(r, ) — O (1)) 1p"(r, t)] + W (PP, t)} dr

+ (1 - @)w(a)p“(a,t) + aw(0) fT Bla,t, E(p“)(a,1),S*(1))[1 — du(a, t)]p“(a,t)da
0

—w(ay —e)p“(ar — &, 1).

By assumptions and Theorem 3.1, % is uniformly bounded about u. On the other hand, we

have

aEg(pu)(a’ t) u u u

B =aw(a)p“(a,t) — w(a)p“(a,t) = (o — Dw(a)p“(a,t).
Similarly, 2222%2 5 also uniformly bounded about u € U. Hence, we have (4.1).

By now, we have verified all conditions of Fréchet-Kolmogorov Theorem (with S = R?) and hence
{E4(p") : u € U} is relatively compact in L?>(D). The proof is complete. O
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Theorem 4.3. There is at least one solution to the optimal management problem (2.1)—(2.2).

Proof. Letd = in(Lfl J(u). For any u € U, by Theorem 3.1, we have
uec

T
0 < I < IpC. T+ 7L [ 10l e < e
0
Thus, d € [0, +00). For any n > 1, according to the definition of d, there exists u, € U such that
1
d<Ju,) <d+-.
n

The boundness of {p*" : u,, € U} implies that there is a subsequence of {u,}, still recorded as {u,}, such
that

u weakly . - 2
p —— p* in L°(D) as n — +oo. 4.2)

By Lemmas 4.1 and 4.2, there exists a subsequence of {u,}, still recorded as {u,}, such that

I' —r, S"-S* E(")— E(p, “4.3)
(- rm, S-S0, E@P*)at) — E(p )a,1), 4.4)

asn — +oo. Here I*,S* € L*(0, T) and E(p*) € L*(D). Further, from (4.2)—(4.4), we can infer that

I'(v) = fT m(a)p*(a,t)yda, S*(t) = faf[l —w(a)lp*(a,t)yda, te][0,T].
0 0

N
E(p*)a,t) = a f w(r)p*(r,t)dr + f w(r)p*(r,t)dr, (a,t) € D.
0 a
Moreover, by Mazur Theorem, we can obtain the convex combination of {p*'} as follows
ky, kn
Pulay= Y Mp"an, =0, Y =1, kxn+l, (4.5)
i=n+1 i=n+1
such that
_ strongly . . )
P, —— p" in L°(D) as n — +oo. (4.6)

Now, define a new control sequence {it,} as follows

k
3 A pUi(a,tuia)
i=n+1

kﬂ
e if Y A{pi(a,n) # 0,
iy(a, 1) = 2 At i=n+1 @7

=n+

kn
0 if 3 Alp“(a,1) = 0.

i=n+1
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It is easy to verify that i, € U. Since {i1,} is bounded, the weak compactness of bounded sequence
implies that there is a subsequence of {ii,,}, still recorded as {ii,}, such that

. weakly | )
i, —— u" in L°(D) as n — +oo.

From (2.1), (4.5) and (4.7), it follows that

0P Opn
or  oa

kn
fla,n) = [u(a, 1) + 61iiy(a, 1)) p,(a,t) - Z O (1)p“(a, 1),
. " i=n+1 (48)
Pn(0,1) = f Z A!B(a, t, E(p"i)(a, 1), S" (D)1 — Sui(a, )]p“(a,t)da,
0 i=n+1

ﬁn(a’ 0) = pO(a),

where I(t) = [ m(a)p“(a.t)da, E(p")(a.1) = a [} w(r)p“(r,.0)dr + [ w(r)p"(r,1)dr and S"(1) =
foa%[l — w(a)]p“i(a,t)da. From (A,)—(A3) and the boundedness of p“, there is a positive constant M,
such that

Ky
> AiBa, 1, E(p), S™)1 = 6yl p" = Bla, 1, E(p*), S )1 = Sy’ 1p*

i=n+1
k)l
< 3 Afpla. B, 5") ~ fla.t. B8 )| - 1"
i=n+1
kn kn kn kn
+Bos| D Awip —ut Y AU+ B D Alph= > Ap’
i=n+1 i=n+1 i=n+1 i=n+1
kn
<My Y A|IEPYa,1) - E(p)a, 0] + 18" () - $" ()]
i=n+1

+B62|an(a, t)ﬁn(a’ t) - u*(a, t)ﬁn(a9 t)l + Blﬁn(a’ t) - p*(a’ t)|

By (4.4) and (4.6), we get

ko
Z AiBa, 1, E(p“)a, 1), S“(D)[1 = 62uia, D1p" — Bla, 1, E(p™)(a, 1), S"()[1 — 62’ (a, )] p*

i=n+1

as n — +oo. Similarly, we also get

kn
Z 2O (1) p" (a, 1) — O (D)p*(a, 1) as n — +oo.
i=n+1
Hence, in the sense of weak solutions, we have p*(a,t) = p*(a,t), I'(t) = I*(f), S*(t) = S* (¢) and

E(p*)a,1) = E(p“)(a,1).
Finally, arguing similarly as in the proof of [16], we can show that u* € U is an optimal policy for
the management problem (2.2). This completes the proof. O
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5. Optimal management strategy

In this section, we will establish the optimality conditions for the management problem (2.2). For
any u € U, let Tq,(u) and Nq,(u) be, respectively, the tangent cone and normal cone of U at the element
u [27]. To show the optimality conditions, we need the following two lemmas.

Lemma 5.1. Assume that ny € L., (i = 1,2), B; € L>(D)(j = 1,2,3), f, € L'(D), b, € L'[0,T],
n > 1. Let i, be the solution of

%

o 5a = fula, 1) — pi(a, On(a, 1) — po(a, HI(), (a,1) € D,
n0,1) = f [Bi1(a, n(a, 1) + Ba(a, )S (1) + B3(a, DE(n)(a, )] da + b,(1), t€[0,T],
n(a, 0) = no(a), a € [0, ay), (5.1)
I(t) = f m(a)n(a,t)da, S(t) = f [1 —w(a)ln(a,t)da, te|0,T],
0 (1
Em)(a,t) = f w(a)n(a,t)da + f w(a)n(a,t)da, (a,t) € D.
0 a

If (fu,by) — (f,b) in L"(D) x L'[0,T] as n — +oo, then n, — n in L=(0,T; L'(0, a:)) as n — +oo.
Here n is the solution of (5.1) with respect to f, = f and b, = b.

Proof. Similar to the prove of [14], model (5.1) has a unique solution. Moreover, on the characteristic
lines, the solution to (5.1) has the form

F(t,n,(, 7)) + f G(s,m,(c,))(s—t+a)ds, ac<t,
nn(a’ t) = ! T
no(a—1) + f G(s,1,(-, $))(s —t +a)ds, a>t,
0

where T =t —a and, fort € [0,T] and ¢ € L',

F(t,¢) = f: [Bi(a, Dp(a) + Ba(a, 1)S ¢ + B3(a, NE(P)(@)] da + by(1),
G(t, ¢)(a) = fula, 1) — pi(a, )d(a) - ua(a, NI, a € [0, ay).

Here S¢ = anT[l - w(a)|p(a)da, E(p)(a) = ozfoa w(r)g(r)dr + faaT wm)¢(r)dr, a € [0,a+) and I¢p =

[ m(a)p(a) da.
Let n,, and n be solutions of (5.1) with respect to (f,, b,) and (f, b), respectively. Then we have

1S — Sl = fo "1 - @l ) da - foa 11 - w@l(a, 1 da

< j: bt ) - @, Dl da = g 1) = Dl (5.2)
i, = i) =| [ " a1y da - foa m(@n(a, 1) da

<in fo " It 1) — 1@, Dl da = g1 - Dl (5.3)
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B - Ei(@) = f: )l - ), ) dr + f ), - G, 1) dr
<o fo o) - I = i 1) dr + fﬂ 0 - b =l 1) dr
<6 fo i = 1l 1y da < 1) = 0Dl (5.4)
Moreover,
1) = 0, Dl < fo |F(x. (7)) — F(r. () da
+ fo t | 1G5, 14 8)) — Gs. . (s — 1 + a) ds da

+fa1f G (s, 1, 8)) = G(s,n(, HI(s — 1 + a)ds da
t 0
éIl() + Iy + Is. (55)

Arguing similarly as for /; and I, + 15, we can show that

Io < f f 1Bi(a 9)| - (s 5) — n(a, )] dads + f f Ba(a, )| - 17 — Snl(s) dads
0 0 0 0

+f0 fo t 1B3(a, )| - |[E(m,) — E(n)|(a, s)dads + fo 1b,(s) — b(s)| ds
3 ) t

< Z 1Bill =) [) [17,.C:, ) — (-, )|l ds + fo b, (s) — b(s)|ds 5.6)
i=1

and

Iy +1p < fo foﬂ Ufiles) — f, ) dgds + fo j: (s, 9|+ s, ) — (s, )| de ds
4 ¥
" fo f a(s. )| - I, — Il(s) dg ds
< fo f s 5)— f(s, 9] de ds

t
+(||/11||L°°(D) + ﬁ’l||,U2||L°°(D)) f 7,C, 8) = (-, $)l|pr ds. (5.7)
0

From (5.5)—(5.7), we can obtain

172 1) = (Dl Sf()'b”(s)_b(s)ldﬁj(;j: [fa(S, 8) = f(s, 9)l dg ds

t
+M5f 117, 8) = 1C:, 91 ds,
0
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where M5 = Z?:l BillL=py + lltt1llepy + Ml|uzl|z=p). Thus, Gronwall’s inequality implies that

72 (s 1) = 1 C, Dl SM6J; bu(s) — b(s)|ds + Mej(; fo 1fu(s> ) = f(s, )l dg ds,

where Mg = 1 + M5Te™s". Hence, we can claim that 57, — nin L*(0, T; L'(0,a;)) as n — +oo. o

Lemma 5.2. For any u € U, v € Ty (u) and sufficiently small € > 0, if u + ev € U, we have

11 u+sv<a l) p (Cl l) ( )

e—0* &

u+eyv

where p"*®" and p" are, respectively, solutions of (2.1) corresponding to u + v and u, and 7 satisfies

0z(a, 1) 8z(a t)
ot ot

~[u(a, 1) + 61u(a, ) + DU (t)]a(a, 1) = ' (I())p"(a, YP(2)
-o1v(a, H)p“(a,t),
2(0.1) = f 11 - Suuta, D[Ba. 1. E(p")a. 1), S“(D)z(a. 1) + Br(a. 1. E(p")(a.1), S"(1))
XE(2)(a, )p"(a. 1) + Bs(a. 1, E(p")(a. 1), (1) p"(a. Q1) | da
f 8:B(a. t. E(p")(a. 1), S"(t))v(a. Hp"(a.1) da,

0

(5.8)

2(a,0) =
P = f m(a)z(a,t)da, QO(t) = f [1 - w(a)]z(a,t)da,
0

E@)(a, )=« fa w(r)z(r,t)da + f w(r)z(r, t)dr.
0 a

Here, B and Bs are, respectively, the derivatives of B with respect to E and S .

Proof. Denote p®(a,t) = p***'(a, t). A similar discussion as that in Theorem 3.3 shows that system (5.8)
has a unique solution. Now, we prove the existence of lim,_,- ’M Let

1
0:.(a,t) = g[pg(a, ) — p“(a, 1] - z(a,1).

Firstly, from (2.1) and (5.8), it follows that

00.(a, t) 00.(a, t)
ot oa

— [u(a, t) + 61u(a, ) + DU“(1)]6:(a, 1) — 61v(a, H[p°(a,t) — p“(a,1)]
—<I>’(I"(t))g[1‘9(r) = I"(01p°(a,t) + ©'(I"(1)p“(a, HP(1)

= — [u(a, t) + 61u(a, t) + ©U"(1)10:(a, 1) — 6,v(a, )[p°(a, 1) — p“(a,1)]
—O'(I"())1(0:)()p°(a, t) + DI ()P p°(a, 1) — p“(a, D],

where 1(6,)(t) = [\ m(a){[p*(a,t) - p“(a.D] - (@, D} da = [} m(a)0.(a, ) da.
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Secondly, a simple calculation shows that
o0.0= [ " Bl Ea. 0, SO~ b, 1B 10" — p1)(a. 01p" @, 1)~ p*Ga. D] da
[ Belant. B, O)1 - . 01 @ DE@ e e
# [ Bo(ant @, S O)1 - Gt 015150 - SOl @) - (a0 da
# [ st B 01 - duata 0105 00 da
+ \f:T Bla, t, E(p*)(a,1),S“())[1 — dula, 1)]0:(a, t) da

- f 62ﬁ(a, t» E(pu)(a’ t)» Su(t))V(Cl, t)[ps(a’ t) - Pu(a, t)] da + bO(S)’

0

where lim,_q+ bo(e) = 0 and S (B.)(1) = ["'[1 - w(@)16,(a, 1) da.

Then, we can obtain the system with & as follows

00, 06,
5 B~ W@+ oua, ) + O N)(a. 1) - Siv(a, Dp*(a, 1) - p*(a,1)]

~ (TG0 (a, 1) + PU()POLP*(a, 1) - p*(a, D],
0:(0,1) = f Bla, 1, E(p*)a, 1), S" ()1 = 6u(a, D]b:(a, 1) da
0

.
+ fo Bs(a,t, E(p"), S"“ (1)1 — Sru(a, )]p“(a, t)S (6:)(1) da
.
+ Be(a, t, E(p"), S"(1)[1 — d,ula, )1p“(a, ) E(O.)(a, t) da (5.9)
.
.
.

I
o)
’ 1
+ f Be(a, t, E(p"), S"(1)[1 = d,u(a, t)]E(;[p*’“ - p“])(a, Hlp® - p"l(a,t)da
- f 5:B(a,t, E(p*)(a,1),S"(t)v(a, [ p®(a,t) — p“(a,t)] da + by(e),

0
0:(a,0) = 0.

1
Bs(a,t, E(p“)a, 1), S“ (D)1 — sru(a, t)]g[Sg(f) - S*'®Ilp° - p'l(a, 1) da

a
a
a
a

0

By Theorem 3.4, we have p®(a,t) — p“(a,t) —» 0as € — 0%, and

1 1
E‘(;[p?3 - Pu])(a, t)[Pg(a’ t) - Pu(a» t)] - O’ ;[Ss(t) - Su(t)][ps(a’ t) - Pu(a, t)] - 0 as & — 0+-

Mathematical Biosciences and Engineering Volume 20, Issue 4, 6691-6720.



6714

Passing to € — 0", we can obtain the following limit system of (5.9)

00 00

o T ag = TlHa D)+ oua. 1) + QU )]6(a, 1) — O (D))IO)D)p“(a, 1),

0(0,1) = f Tﬁ(a,t,E(1r9“),S”‘(t))[1—(Szu(a,t)]e(a,t)da
Oa#
+ fo Bs(a,t, E(p"), S"(O)[1 ~ 6yu(a, H]p"(a, S (0)(r) da (5.10)

'

+ f Bila,t, EP"), S“O)1 - Sua, n]p"(a, DEB)a, 1) da,
0
6(a,0) =0.

Clearly, (5.10) is a homogeneous linear system with the zero initial value. Thus, 6(a, ) = 0 (see [22,
Theorem 4.1]). Further, from Lemma 5.1, we can claim that lim,_,y+ 8.(a, t) = 0. Hence,
< , t _ u , t
lim 2@0 = P@ o,
e

e—0"

and z(a, 1) satisfies (5.8). The proof is complete. O

Theorem 5.3. Let u*(a,t) be an optimal policy for the management problem (2.1)—(2.2). Then

‘@i 0 if 618(a,1) + 6:p(a, 1, E(p)(a, 1), S (1))E(0, 1) < r(D), 5.10)
u(a,t) = .
L if 6:18(a, 1) + 6:p(a, 1, E(p)(a, 1), S (0)§0, 1) > r(D),

where &(a, t) satisfies the following adjoint system
o 05
o " da”

—df Be(r, t, E(p™)(r, 1), S" (D)1 = 6ou™ (r, )] w(r) p* (r, 0)E(0, 1) dr

- fﬁE(r, t’ E(p*)(r’ t)’ S*(t))[l - 621/!*(}", t)]w(r)p*(r’ t)‘f(o’ t) dr (512)

0

- fa Bs(r.t, E(p*)(r, 1), S"(O)[1 = 6ou” (r, D1 — w(r)]p"(r, NEO, 1) dr
0

—B(a,t, E(p*)(a,1),S*(D))[1 — 6,u*(a, ))&, ) — r(hu*(a, 1),
&a,T)y=1, &a+ 1) =0.

[+ 61u*(a, 1) + U (1)]|é(a, 1) + O'(I"(1)) f T m(r)p*(r, D&(r, 1) dr
0

Here p*(a,t) is the solution of model (2.1) corresponding to u* € U, I'(t) = anT m(a)p*(a,t)da,
S (0 = ['[1 - w(@)]p*(a,t)da and E(p*)a,1) = & [ w(P)p*(r.0)dr + [ w(@)p*(r, 1) dr.

Proof. For any v € T¢,(u*) and sufficiently small € > 0, we have u® = u* + ev € U. Let p®(a, t) be the
solution of (2.1) with respect to u®. Then the optimality of u* implies J(u*) < J(u®), that is,

L e " T o * & _ ¥
f’ paT)-pal) +f f‘ r(t)[u (a,0[p (a;t) pa.nl va, Hp(a, r)] dadr > 0.
0 0 0

&

It follows from Theorem 3.4 and Lemma 5.2 that

+ T a:
f wa.T)da+ f f r(t)[u*(a, He(a, ) + v(a, Dp*(a, t)] dad > 0. (5.13)
0 0 0
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Here z(a, 1) is the solution of (5.8) with # and p* being replaced by u* and p*, respectively.
In system (5.8) (with u and p* being replaced by u* and p*, respectively), multiplying the first
equation by &(a, t) and integrating on D yield

0z 0z

fD (E + %)g dadr = — fD{[/u(a, 1) + 6y’ (a, 1) + (1) ]z(a, 1)

+@' (I (1)) p*(a, HP(D) + 6,v(a, )p*(a, t)}f(a, f)da dr. (5.14)
Using integration by parts and (5.8), one can derive
fl)(% + 2—2)§da dr = fo 2(a,T)da - fl)(g—f + %)z(a, 1) dadt
- fD Bla, t, E(p*)(a, 1), S*(D)[1 — 6,u*(a, H]z(a, DEO, 1) da dt
- fD Be(at, E(p™)(a, 1), S"())[1 = d2u”(a, )] p" E(2)(a, )é(0, 1) da dt
- fD Bs(a,t, E(p*)a, 1), S" (D)1 — 6u"(a, )] p"(a, H Q(1)E(O, ) da dt
+ j; 5:B(a 1, E(p*)(a, 1), S *(t))v(a, 1) p*(a, &0, 1) da dt. (5.15)

Thus, from (5.14) and (5.15) and a simple calculation, we obtain

fD (% + %)z(a, 1) da dt
= f:T z(a, T)da — L,B(a, t, E(p*)a,1),S* ()1 — 6u*(a,t)]z(a, )&, t) da dt
— ‘sz(a, Ha f“* Be(r,t, E(p*)(r, 1), S ())[1 = Su”(r, H)]w(r) p*(r, )EO, 1) dr da dt
- sz(a, 1) Laﬁg(r, t, E(p*)(r, 1), S*(®))[1 — Su™(r, )]w(r)p*(r, (O, t) dr da dt
- fD 2a,) fo " Byt EG 1), S )1 = 63’ (1 D11 - )]’ (DO, ) dadi
+ jl; 68(a,t, E(p*)(a,1),S*(t))v(a,t)p*(a, (0, 1) dadt + jz; ov(a, t)p*(a,t)é(a, t) da dt
+ Lz(a, N (I (1)) IT m(r)p*(r, )é(r, t)drdadt
+ sz(a, Hlua,t) + 61u’(a,t) + OI(1)]é(a, t) dadr. (5.16)

Multiplying z(a, t) on both sides of the first equation of (5.12) and integrating on D, we get
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fD (% + Z—i)z(a, f)da dt
= - Lz(a, Ha fﬂT Be(r, t, E(p*)(r, 1), S*())[1 — 6u™ (r, ]w(r)p” (r, &0, 1) dr da dt
- j; z(a, 1) f: Be(r,t, E(p*)(r, 1), S* (1)1 — 6ou” (1, 1) Jw(r)p” (r, )&(0, t) dr da dt
- sz(a, 1) LQT Bs(r,t, E(p*)(r, 1), S* ()1 = Su™(r, )][1 — w(r)]p*(r, H)E(0, 1) dr da dt
+ fD 2(a, HD'(I"(1)) fo ! m(r)p*(r,)é(r, t)drda dt — j; z(a, )r(t)u*(a, t) da dt
+ fD z(a, Hu(a, ) + 61u’(a,t) + OI*(1))]é(a, 1) da dt

- f z(a,H)B(a,t, E(p*)(a, 1), S™(1))[1 — 6,u"(a, 1)]€(0, 1) dadr. (5.17)
D

Thus, from (5.16) and (5.17), we have

i T rag
f z(a,T)da + f f r(t)z(a, u*(a, t) da dt
0 0o Jo

T rar
=-— f f [61&(a,t) + 6:B(a, t, E(p™)(a, 1), S* ()&, H)]v(a, t)p*(a, t) dadt. (5.18)
o Jo

For each v € T¢/(u"), by (5.13) and (5.18), we claim that

T a+
f f [61&(a, 1) + 68(a, t, E(p™)(a, 1), S (1))E(0, 1) — r(t)]v(a, t)p*(a,t) dadt < 0.
0o Jo

That is, [6:&(a,t) + 8:6(a, t, E(p*)(a,1),S* ())&, 1) — r(H)]p*(a,t) € Ng(u*). Hence, the conclusion
follows from using the structure of normal cone. O

6. Illustrative example

In this section, we will give an illustrative example to show the conditions for the existence
are not empty.

Example 1. Let the parameters be a; = 10, T = 20, « = 0.3, L = 2, 6; = 0.05, 6, = 0.02.
Obviously, 6,L = 0.04 < 1. With the weight functions w(a) = 0.5 and m(a) = 1, the immigration rate
f(a,t) = (1 + sinnt)(10 — a) and the initial age distribution py(a) = 0.4(10 — a)(1 + cos 2a), we can
easily verify that assumption (Ay) holds. Choose the natural mortality rate to be

[ (2 -a)
(2 + cosnt)|0.04(1 + cosa) + 20 , (a,1) € [0,2) x [0, 20],
u(a, ) =< (2+cos ﬂl)d.04(1 + cos a), (a,t) € [0,8) x[0,20],
(2 + cosnt) [0.04(1 + cosa) + IaO_—Sa] , (a,t) € [8,10) x [0, 20].
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Fort € [0,20], a direct calculation gives

-+ 10 2 (2 _ (1)2
f u(a,tyda =(2 + cos JTI)[0.04 (1 +cosa)da + f
0 0 0 20

10
-8

da + f a da]

g 10—a
10
|
which means that assumption (Ay) holds. Assume that ®(s) = 0.02(e "% + cos s +2). It is easy to show
that ©(s) < 0.08 for any s € R,. Moreover, for any s, s, € R,, we have

2
—a

10

10 3
2-a) ~21n(10 - a)

0 60

=(2 + cos ﬂt)[0.04(a + sin a)

0 8

=4+

b

D(s1) — @(s2)] =0.02 [e % + cos 51 — €752 — cos 5|
<0.02 |e0%1 — e8| +0.02] cos 51 — cos 5]

<0.04|s; — 52|.
Thus assumption (Ay) holds. For any (t, s, q) € [0,20] X R, X R,, take the birth rate as
0, a€l0,1)U]9,10),
i [ ) 0.03 N 5
(1 +sinnt) [0.31(1 + sina) + Tas +0.2(1 +sing)|(a— 1), a€[l,2),
s

Bla.t,s,q) = _ [ _ 0.05 N
(1 +sinnt) [0.51(1 + sina) + Tos +0.5(1 +sing)|, acl2,7),

[ 0.03
(1 +sinnt) [0.21(1 + sina) + Tas +0.2(1 +sing)|(a — 92, ael7,9).
s

By a simple computation, we have [(a,t,s,q) < 2.1 for any (a,t,s,q) € [0,10) x [0,20] X R, X R,.
Moreover, for any t € [0,20], 51, $2, q1, g2 € Ry, when a € [1,2), we have

0.03 0.03
1B(a, t, s1,q1) — Bla, 1, 52, ¢2)| <2 ‘ N +0.2(1 +singy) — Tas 0.2(1 + singqy)
52

1 1
I+s; 145
<0.4(|s; — 82| + |q1 — g2,

+ 51

<0.06

+ 0.4|sing; — sin q,|

when a € [2,7), we have

0.05 0.05
1B(a, 1, s1,q1) — B(a, 1, 52, q2)| SQ‘ +0.5(1 +singy) — —0.5(1 + sing»)
1+ s I+,
1

30.1‘ + | sing; — sin g|

1+ 5 1+ s,
<|s1 = s2|l + g1 — qal,

when a € [1,9), we have
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0.03 0.03
IB(a, t, 51,q1) — Bla, t, 52, g2)| <8 ‘ 1 +0.2(1 +singy) — T+, 0.2(1 + sin g)
$2

+ 51
1

1+ s 1+ kY
<1.6(|s1 — s2| + 1g1 — qal).

<0.24

+ 1.6]sin g; — sin g;|

Thus, for any a € [0,a+) and t € [0, T], we have

|B(a, t, s1,q1) — B(a,t, s2,q2)| < 1.6(s1 — s2| + g1 — q2l).

This implies that assumption (Az) holds. Hence, from Theorems 3.1-3.3, for any p, € L} and u € U,
system (2.1) has a unique non-negative solution p(a,t). Moreover, the solution has the form p(a,t) =
P’ (a,0)y(t). Here (p°,y) € C([0,T]; L}) x C([0, T1; R,) is the solution of (3.5)—(3.6).

7. Conclusions

In view of the reproductive laws of vermin, we formulated and analyzed a hierarchical
age-structured vermin contraception control model. The model is based on the assumption that the
reproductive ability of vermin mainly depends on older females. It also considers the encounter
mechanism between females and males. This allows the fertility of an individual to depend not only
on age and time but also on their “internal environment” and the size of males. Note that sterilant has
the dual effects of causing infertility and death of vermin. Thus, we assumed that the mortality of
vermin depends not only on its intrinsic dynamics (including natural mortality and mortality caused
by competition) but also on the effect of female sterilant. The dual effects of sterilant make the control
variable appear not only in the principal equation (distributed control) but also in the boundary
condition (boundary control). Our model contains some existing ones as special cases.

By transforming our model into two subsystems and using the contraction mapping principle, we
have shown that the model has a unique non-negative bounded solution, which has a separable form. In
this work, we discussed the existence of optimal management policy and derived the Euler-Lagrange
optimality conditions. The former is established by using compactness and minimization sequences,
while the latter is derived by employing adjoint systems and normal cones techniques. To show the
compactness, we used the Fréchet-Kolmogorov Theorem (see Lemma 4.1) and its generalization (see
Lemma 4.2). In order to construct the adjoint system, we used the continuity of the solution on the
control parameters (see Theorem 3.4) and the continuity of the solution of an integro-partial differential
equation with respect to its boundary distribution and inhomogeneous term (see Lemma 5.1).

This paper only discussed the existence and structure of the optimal management policy and did not
carry out any numerical simulations. This is because it is very challenging to choose an appropriate
numerical algorithm and analyze its convergence. The relevant numerical algorithm can be found
in [20]. However, our model is more complicated than that in [20], because the birth rate depends not
only on the “internal environment” of vermin but also on the number of males. We leave the study on
the numerical algorithm of our optimal control problem as future work.
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