
http://www.aimspress.com/journal/MBE

MBE, 20(3): 5379–5412.
DOI: 10.3934/mbe.2023249
Received: 30 October 2022
Accepted: 20 December 2022
Revised: 13 December 2022
Published: 12 January 2023

Research article

A generalized distributed delay model of COVID-19: An endemic model
with immunity waning

Sarafa A. Iyaniwura1,*, Rabiu Musa2 and Jude D. Kong3,4

1 Department of Mathematics and Institute of Applied Mathematics (IAM), University of British
Columbia, Vancouver, British Columbia, Canada.

2 Faculty of Mathematics, Technion Israel Institute of Technology, Haifa 32000, Israel.
3 Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada.
4 Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC), York University,

Toronto, Ontario, Canada.

* Correspondence: Email: iyaniwura@aims.ac.za.

Abstract: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spreading
worldwide for over two years, with millions of reported cases and deaths. The deployment of
mathematical modeling in the fight against COVID-19 has recorded tremendous success. However,
most of these models target the epidemic phase of the disease. The development of safe and effective
vaccines against SARS-CoV-2 brought hope of safe reopening of schools and businesses and return to
pre-COVID normalcy, until mutant strains like the Delta and Omicron variants, which are more
infectious, emerged. A few months into the pandemic, reports of the possibility of both vaccine- and
infection-induced immunity waning emerged, thereby indicating that COVID-19 may be with us for
longer than earlier thought. As a result, to better understand the dynamics of COVID-19, it is essential
to study the disease with an endemic model. In this regard, we developed and analyzed an endemic
model of COVID-19 that incorporates the waning of both vaccine- and infection-induced immunities
using distributed delay equations. Our modeling framework assumes that the waning of both
immunities occurs gradually over time at the population level. We derived a nonlinear ODE system
from the distributed delay model and showed that the model could exhibit either a forward or
backward bifurcation depending on the immunity waning rates. Having a backward bifurcation
implies that Rc < 1 is not sufficient to guarantee disease eradication, and that the immunity waning
rates are critical factors in eradicating COVID-19. Our numerical simulations show that vaccinating a
high percentage of the population with a safe and moderately effective vaccine could help in
eradicating COVID-19.
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1. Introduction

The first outbreak of the novel coronavirus disease 2019 (COVID-19) occurred in December 2019
in the city of Wuhan, Hubei province, China [1]. As of July 2022, the disease is still spreading around
the world with over 500 million reported cases worldwide and over 6.1 million reported deaths [2]. The
COVID-19 disease is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
which is believed to have originated from bats [3]. It is still unclear how the virus made its way into
human population. In human populations, the virus is transmitted from one person to another through
the inhalation of infectious aerosols that are dispersed when an infected individual talks, sneezes or
coughs. The virus can also be transmitted when a susceptible individual has in-person contact with an
infected individual (e.g., hugs, handshakes, kisses, etc.) or touches a contaminated surface and uses the
hand to touch their eyes, nose or mouth [4–7]. SARS-CoV-2 is similar to other coronaviruses, such as
the severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome coronavirus
(MERS). However, it is believed to spread more easily than these other viruses [8, 9].

The world health organization (WHO) declared COVID-19 as a public health emergency on
January 20, 2020 [10] and a pandemic on March 11, 2020 [11]. Before this declaration, many
governments worldwide have already implemented non-pharmaceutical interventions (NPIs), such as
physical distancing, wearing of facemasks, closure of schools and businesses, and travel restrictions,
among others, to reduce the spread of the disease. Although implementing these NPIs helped slow the
spread of COVID-19, it does not prevent its continuous spread from one region to another. To further
control the spread of SARS-CoV-2, there was an urgent need for safe and effective vaccines against
the virus [12, 13]. Vaccination was believed to be the only way to bring the pandemic under control
without causing much damage to our physical and mental health and also without impacting the world
economy much further than it has already been affected [14–16]. The first set of COVID-19 vaccines
became available towards the end of 2020 [17]. These vaccines provide significant protection against
the original strain of SARS-CoV-2 virus [18–20]. However, the emergence of highly transmissible
variants of the virus, such as the Delta and Omicron variants [21, 22] has led to the continuous spread
of the disease. In addition, the waning of both vaccine-induced and natural immunities has led to
conversations about the endemicity of COVID-19 [23, 24].

Following the outbreak of COVID-19, many mathematical models have been developed to study
the transmission dynamics of the disease [25–29]. In addition, mathematical models have been used
to study the effectiveness of intervention strategies (pharmaceutical and non-pharmaceutical)
implemented during the early stages of the pandemic [30–36]. One of the earliest mathematical
models proposed for studying the dynamics of COVID-19 includes the model of [29], which focuses
on the transmission of the disease by super-spreaders. In [28], an age-structured model was used to
study the transmission dynamics of COVID-19 in British Columbia, Canada. The authors of this
article proposed a framework that incorporates empirical contact surveys into disease transmission
models. They showed that time-dependent contact rates are required to model the dynamics of
COVID-19 adequately. The work of [32] introduced a Bayesian epidemiological model of
COVID-19, which explicitly accounts for individuals willing and able to participate in physical
distancing. By fitting their model to the reported cases of COVID-19 in British Columbia (BC),
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Canada, they estimated the effect of physical distancing on contact rate and studied the projected
effect of relaxing this measure on the transmission of COVID-19 in BC. Their results show that
physical distancing has a strong impact on COVID-19 transmission in BC, and it is consistent with a
decline in reported cases and hospitalization.

Many of the mathematical models used to study the dynamics of COVID-19 considered an
epidemic modeling framework. Towards the middle of the year 2020, there have been several reports
and discussions on COVID-19 reinfection [37–39]. By mid-2021, there were reports of breakthrough
infections (vaccinated individuals getting infected) [40–42] and waning of both vaccine-induce and
natural immunities [43–45]. These developments triggered discussions about the endemicity of
COVID-19 and the use of endemic models to study the long term behavior of the disease [46–51]. In
this study, we develop an endemic model of COVID-19 that incorporates the waning of both
vaccine-induced and natural immunities. Many of the endemic models proposed to study COVID-19
assume that the waning rate of both vaccine-induced and natural immunities follow exponential
distributions. However, it is well-known that immunity waning happens differently between
individuals and over a period of time in the population [23, 24, 52]. Our modeling framework uses
distributed delay equations to capture the dynamics of immunity waning in a population for both
vaccine-induced and infection-induced (natural) immunities. These distributed delay equations
assume that the time to lose immunity in a population follows a Gamma distribution and immunity
loss happens gradually and not instantaneously as in the case of an exponential distribution. A similar
approach was used to model immunity waning in the
susceptible-infected-hospitalized-recovered-deceased (SIHRD) model of [53] and the
immuno-epidemiological model of [54] .

We present the derivation of our distributed delay model in Section 2 and use the linear chain trick
method to derive a nonlinear ODE system from the integro-differential equation model in Section 2.1.
We show that the reduced ODE system is biologically well-posed by proving the non-negativity and
boundedness of its solutions in Section 3. In Section 4, we study the stability properties of the ODE
system and performed bifurcation analysis on the endemic equilibrium. Furthermore, we study the
global stability of the disease-free equilibrium in Section 4.2 and that of the endemic equilibrium
in Section 4.3. In Section 5, we present numerical simulations of the ODE system for hypothetical
scenarios. Lastly, we discuss our modeling results in Section 6.

2. Mathematical model

We develop an endemic model of COVID-19 that uses distributed delay differential equation to
model the waning of both vaccine- and infection-induced immunities. The model consists of six
compartments: susceptible (S ), vaccinated (V), exposed (E), asymptomatic infectious (IA),
symptomatic infectious (IS ), and recovered (R). There is a constant inflow of individuals into the
susceptible population (due to birth and immigration) at a rate Λ. A susceptible individual becomes
infected at a rate β upon coming in contact with an infectious individual in either IA or IS , and
transitions to the exposed population (E). In addition, susceptible individuals transition to the
vaccinated compartment (V) at a vaccination rate π. Vaccinated individuals can become infected when
they come in contact with infectious individuals (breakthrough infection) or lose their
vaccine-induced immunity and return to the susceptible compartment. Following a similar approach
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used in [55], we assume that the time it takes for vaccine-induced immunity to wane in individuals
differ, and that waning happens gradually at the population level [23, 24, 52].

Let p(k) be the probability density function of the random variable k, which models the time it
takes for an individual to lose their COVID-19 vaccine-induced immunity, starting from when they got
vaccinated. Then the probability that an individual loses his/her vaccine-induced immunity between
0 and τ1 units time after obtaining the vaccine is

∫ τ1

0
p(k) dk. Thus, the probability that a vaccinated

individual does not loose their vaccine-induced immunity between 0 and τ1 units time after vaccination
is given by

p(k > τ1) = 1 −
∫ τ1

0
p(k) dk =

∫ ∞

τ1

p(k) dk, (2.1)

which is the same as the probability that they lose their immunity after τ1. We assume that at time
t − τ1, π S (t − τ1) susceptible individuals were vaccinated and transitioned to the vaccinated
compartment. Vaccinated individuals that lose their vaccine-induced immunity transition back to the
susceptible population, from which they can be infected. The probability that a vaccinated individual
is still alive or has not left the community under consideration at τ1 time units after vaccination is
given by e−µ τ1 , where µ is the per capital death/emigration rate for individuals in the population. Due
to imperfection in the vaccine, we assume that vaccinated individuals get infected with COVID-19 at
a rate ξ ≡ ξ(IA, IS ), where IA and IS are the asymptomatic and symptomatic infectious populations,
respectively, (ξ = 0 for a perfect vaccine), and define the probability that a vaccinated individual is not
yet infected at time τ1 as e−ξ τ1 . Therefore, the population of vaccinated individuals at time t is given
by

V(t) =
∫ ∞

0
π S (t − τ1) e−(µ+ξ) τ1

∫ ∞

τ1

p(k) dk dτ1 . (2.2)

Using the change of variable τ̂1 = t − τ1, (2.2) becomes

V(t) =
∫ t

−∞

π S (τ̂1) e−(µ+ξ) (t−τ̂1)
∫ ∞

t−τ̂1

p(k) dk dτ̂1 . (2.3)

Upon differentiating both sides of (2.3) with respect to t and using Leibniz integral rule, we derive the
differential equation for the vaccinated population as

d
dt

V(t) = π S (t) − ξ V(t) −
∫ ∞

0
π S (t − τ1) e−(µ+ξ) τ1 p(τ1) dτ1 − µV(t). (2.4)

The first term on the right hand side of (2.4) represents the newly vaccinated individuals transitioning
to the vaccinated compartment from the susceptible compartment, and the second term accounts for
the vaccinated individual that got infected (breakthrough infection). The integral in (2.4) represents the
vaccinated individuals losing their vaccine-induced immunity over a period of time. These individuals
eventually return to the susceptible population. The last term accounts for emigration and death of
vaccinated individuals.

A susceptible or vaccinated individual become infected at some rate after coming in contact with
an infectious individual, and moves to the exposed compartment before transitioning to become
asymptomatic or symptomatic infectious at a constant rate α. It is important to note that infected
individuals in the exposed compartment are not infectious and do not transmit the disease. A fraction
η of these individuals transitioning from the exposed to the infectious stage of the disease become
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asymptomatic, while the remaining 1 − η are symptomatic. Asymptomatic and symptomatic
infectious individuals recover from the disease at the constant rates γA and γS , respectively, and
transition to the recovered compartment (R) upon recovery.

We also assume that recovered individuals can lose their infection-induced (natural) immunity, and
model this process using a distributed delay equation. In this case, we let l be a random variable that
models the time it takes for an individual to lose his/her infection-induced immunity starting from the
time after recovering from COVID-19, and let q(l) be the probability density function for l. Therefore,
the probability that an individual loses his/her immunity between 0 and τ2 units time after recovery is∫ τ2

0
q(l) dl. On the other hand, the probability that a recovered individual does not lose their infection-

induced immunity between 0 and τ2 units time after recovery is

q(l > τ2) = 1 −
∫ τ2

0
q(l) dl =

∫ ∞

τ2

q(l) dl. (2.5)

Assuming that at time t − τ2, γA IA(t − τ2) and γS IS (t − τ2) individuals recovered from the disease,
thereby, transitioning from the asymptomatic and symptomatic infectious compartments, respectively,
to the recovered compartment (R). Since the probability that a recovered individual is still alive at τ2

time units after recovery is given by e−µ τ2 , therefore, the total number of individuals in the recovered
compartment at time t is given by

R(t) =
∫ ∞

0

(
γA IA(t − τ2) + γS IS (t − τ2)

)
e−µ τ2

∫ ∞

τ2

q(l) dl dτ2 . (2.6)

Similar to (2.2), we apply a change of variable to (2.6) and differentiate both sides of the resulting
equation. Using Leibniz integral rule, we obtain the differential equation for R(t) given by

d
dt

R(t) = (γA IA + γS IS ) −
∫ ∞

0

(
γA IA(t − τ2) + γS IS (t − τ2)

)
e−µ τ2 q(l) dτ2 − µR. (2.7)

Here, the first term on the right hand side of (2.7) accounts for the individuals that just recovered
from COVID-19, while the integral accounts for those losing their infection-induced immunity. These
individuals return to the susceptible population gradually over a period of time. The last term in this
equation accounts for emigration and death.

In both (2.4) and (2.7), we assume that the random variables k and l follow the Gamma distribution,
so that p(k) and q(l) are probability density functions for the Gamma distribution, given by

pθ,n(k) =
θn kn−1 e−θ k

(n − 1)!
and qϕ,m(k) =

ϕm km−1 e−ϕ k

(m − 1)!
, (2.8)

where n,m = 1, 2 . . . and θ, ϕ > 0 are the shape and rate parameters, respectively. Based on the
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derivation described above, the differential equations for our distributed delay model are

dS
dt
= Λ − λS (t) − πS (t) +

∫ ∞

0

[
γA IA(t − τ2) + γS IS (t − τ2)

]
e−µ τ2 q(τ2) dτ2,

+

∫ ∞

0
π S (t − τ1) e−(µ+ξ) τ1 p(τ1) dτ1 − µ S (t),

dV
dt
= π S (t) − (1 − ε)λV(t) −

∫ ∞

0
π S (t − τ1) e−(µ+ξ) τ1 p(τ1) dτ1 − µV(t),

dE
dt
= λS (t) + (1 − ε)λV(t) − αE(t) − µE(t),

dIA

dt
= α η E(t) − γA IA(t) − (µ + δA)IA(t),

dIS

dt
= α (1 − η) E(t) − γS IS (t) − (µ + δS ) IS (t),

dR
dt
= γA IA(t) + γS IS (t) −

∫ ∞

0

[
γA IA(t − τ2) + γS IS (t − τ2)

]
e−µ τ2 q(τ2) dτ2 − µR(t).

(2.9)

where π is the vaccination rate, α is the rate of transitioning from exposed to infectious, η is the
fraction of exposed individuals that become asymptomatic, and γ is the recovery rate. Here, Λ is the
birth/immigration rate of susceptible individuals into the population, µ is the natural death/ immigration
rate, and δA and δS are the COVID-19 induced death rates for the asymptomatic and symptomatic
infectious populations, respectively. In (2.9), λ ≡ λ(IA, IS ) is the force of infection, which determines
the disease spread in the population. It is defined as

λ =
βA IA + βS IS

N
, (2.10)

where βA and βS are the disease transmission rates for the asymptomatic and symptomatic infectious
populations, respectively, and N(t) = S (t)+V(t)+ E(t)+ IA(t)+ IS (t)+R(t) is the total population. It is
important to remark that we have used the explicit definition for the rate at which vaccinated individual
get infected, ξ = (1−ε)λ in (2.9), where 0 ≤ ε < 1 is the vaccine efficacy and λ is the force of infection
(2.10). Here, ε = 0 implies that the vaccine is not effective in blocking COVID-19 infection at all,
while ε = 1 implies that the vaccine perfectly blocks the acquiring of COVID-19 infection.

2.1. Ordinary differential equation (ODE) derivation

Next, we use the linear chain trick method [55–59] to derive a nonlinear ordinary differential
equation (ODE) model from the distributed delay differential equation (2.9). Our goal is to study the
stability properties of the ODE model, and the long-term dynamics of COVID-19.

We begin by considering the integrals in (2.9). We let

Vw j(t) =
∫ ∞

0
π S (t − τ1) e−(µ+ξ) τ1 pθ, j(τ1) dτ1, (2.11)

where pθ, j(τ1) for j = 1, 2, . . . , n (n = 1, 2, . . . ) and θ > 0, is the Gamma distribution function given in
(2.8). Here, Vw represents vaccinated individuals losing their vaccine-induced immunity. We want to
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derive an ODE representation of this integral for an arbitrary n following the approach of [59]. Using
the change of variable τ = t − τ1, we have

Vw j(t) =
∫ t

−∞

π S (τ) e−(µ+ξ) (t−τ) pθ, j(t − τ) dτ, (2.12)

Differentiating both side of (2.12) with respect to t and using the Leibniz integral rule, we obtain

d
dt

Vw j(t) = π S (t) Pθ, j(0) − (µ + ξ)
∫ t

−∞

π S (τ) e−(µ+ξ) (t−τ) pθ, j(t − τ) dτ

+

∫ t

−∞

π S (τ) e−(µ+ξ) (t−τ) d
dt

[
pθ, j(t − τ)

]
dτ.

(2.13)

From (2.8), we derive that the Gamma distribution satisfies the following initial value problems

d
dk

[
pθ,1(k)

]
= −θ pθ,1, pθ,1(0) = θ;

d
dk

[
pθ, j(k)

]
= θ

[
pθ, j−1(k) − pθ, j(k)

]
, pθ, j(0) = 0, j = 2, . . . , n.

(2.14)

Upon using the initial value problems (2.14) in (2.13), we derive an ODE system for Vw j(t), given by

d
dt

Vw 1(t) = −(µ + (1 − ε)λ + θ) Vw 1(t) + θ π S (t);

d
dt

Vw j(t) = −(µ + (1 − ε)λ + θ) Vw j(t) + θVw j−1(t), j = 2, . . . , n.
(2.15)

Similarly, let Rw j represent the recovered individuals losing their infection-induced immunity and set

Rw j(t) =
∫ ∞

0

[
γA IA(t − τ2) + γS IS (t − τ2)

]
e−µ τ2 qϕ, j(τ2) dτ2, (2.16)

where qϕ, j(τ1) for j = 1, 2, . . . ,m (m = 1, 2, . . . ) and ϕ > 0, is the Gamma distribution function given
in (2.8). We use the change of variable τ̂ = t − τ2 in (2.16) to obtain

Rw j(t) =
∫ t

−∞

[
γA IA(τ̂) + γS IS (τ̂)

]
e−µ(t−τ̂) qϕ, j(t − τ̂) dτ̂. (2.17)

Upon differentiating both side of (2.17) with respect to t and following a similar procedure used in
deriving the ODEs for Vw j, we derive the following ODEs for Rw j

d
dt

Rw 1(t) = −(µ + ϕ)Rw 1(t) + ϕ
[
γA IA(t) + γS IS (t)

]
;

d
dt

Rw j(t) = −(µ + ϕ)Rw j(t) + ϕRw, j−1, j = 2, . . . ,m.
(2.18)
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Next, we couple the system of ODEs for Vw j(t) and Rw j(t) as defined in (2.15) and (2.18), respectively,
to (2.9) to obtain our reduced ODE model given by

dS
dt
= Λ − λS − πS + Rw m + Vw n − µS ,

dV
dt
= π S − (1 − ε)λV − Vw 1 − µV,

dE
dt
= λS + (1 − ε)λ

V + n∑
j=1

Vw j

 − αE − µE,

dIA

dt
= α η E − γAIA − (µ + δA)IA,

dIS

dt
= α (1 − η) E − γS IS − (µ + δS )IS ,

dR
dt
= γA IA + γS IS − Rw 1 − µR,

(2.19)

with the initial conditions S (0) > 0,V(0) ≥ 0, E(0) ≥ 0, IA(0) ≥ 0, IS (0) ≥ 0,R(0) ≥ 0,

Vw j(0) =
∫ ∞

0
π S (−τ1) e−[µ+(1−ε)λ] τ1 pθ, j(τ1) dτ1, j = 2, . . . , n ;

Rw j(0) =
∫ ∞

0

[
γA IA(−τ2) + γS IS (−τ2)

]
e−µ τ2 qϕ, j(τ2) dτ2, j = 2, . . . ,m.

(2.20)

Here, the total population is given by N̂(t) = S (t) + V(t) + E(t) + IA(t) + IS (t) + R(t) +
∑n

j=1 Vw j(t) +∑m
j=1 Rw j(t), where the ODEs for Vw j(t) for j = 1, . . . , n and Rw j(t) for j = 1, . . . ,m are as given in

(2.15) and (2.18), respectively. The model variables and their descriptions are given in Table 1.

Table 1. Model variables and descriptions.

Variable Description
S Susceptible population
V Vaccinated population
Vw j Vaccinated individuals in the jth stage of losing their vaccine-

induced immunity
E Exposed population
IA Asymptomatic infectious population
IS Symptomatic infectious population
R Recovered population
Rw j Recovered individuals in the jth stage of losing their infection-

induced immunity

In Figure 1, we present the schematic diagram for the nonlinear ODE system (2.19), where the
black arrows show the progression of individuals through the different compartment of the model
and disease stages. The blue arrow shows birth and immigration into the susceptible population, the
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µδS

µ
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φ

θθ

Figure 1. Schematic diagram for the ODE system (2.19). Model compartments are:
susceptible (S ), vaccinated (V), exposed (E), asymptomatic infectious (IA), symptomatic
infectious (IS ), and recovered (R). Vaccinated and recovered population can lose their
immunity. Vw j and Rw j represent the vaccinated and recovered individuals in the jth stage
of losing their vaccine-induced and infection-induced immunities, respectively. The black
arrows show the progression of individuals through the different compartment of the model,
the blue arrow shows birth and immigration into the susceptible population, the red arrows
show both natural and COVID-19 induced deaths, while the green arrows show immunity
waning.

red arrows show both natural and COVID-19 induced deaths, while the green arrows show immunity
waning. Immunity is lost in stages and over a period of time. In the schematic diagram, Vw j represents
the vaccinated individuals in the jth stage of losing their vaccine-induced immunity, and Rw j represents
recovered individuals in the jth stage of losing their infection-induced immunity.

3. Non-negativity and boundedness of solution

In this section, we consider the ODE model (2.19) for n = m = 2, and show the non-negativity
and boundedness of its solution. We consider the ODEs (2.15) and (2.18) for j = 1, 2, which implies
that an individual in the process of losing their immunity will pass through two intermediate immunity
waning stages before eventually losing the immunity, namely, Vw 1 and Vw 2 for the individuals losing
their vaccine-induced immunity, and Rw 1 and Rw 2 for those losing their infection-induced immunity.

We consider (2.11) for j = 1 and substitute pθ,1(τ1) = θ e−θ τ1 to obtain

Vw 1(t) = θ
∫ ∞

0
π S (t − τ1) e−(µ+ξ) τ1 e−θ τ1 dτ1. (3.1)

Similarly, we substitute pθ,1(τ1) = θ e−θ τ1 into V(t) as defined in (2.2) and evaluate the inner integral to
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obtain
V(t) =

∫ ∞

0
π S (t − τ1) e−(µ+ξ) τ1 e−θ τ1 dτ1 . (3.2)

Upon comparing (3.1) and (3.2), we deduce that Vw 1(t) = θV(t). Following a similar procedure for R(t)
and Rw,1(t) as defined in (2.6) and (2.16), respectively, we obtain Rw 1(t) = ϕR(t). Using this relations
in (2.19), we derived the corresponding ODE system for the case of n = m = 2, given by

dS
dt
= Λ − λS − (π + µ)S + ϕ R̂ + θ V̂ ,

dV
dt
= π S − (1 − ε)λV − (θ + µ)V,

dV̂
dt
= θV −

[
µ + (1 − ε)λ + θ

]
V̂ ,

dE
dt
= λS + (1 − ε)λ

[
V + V̂

]
− (α + µ)E,

dIA

dt
= α η E − (γA + µ + δA)IA,

dIS

dt
= α (1 − η) E − (γS + µ + δS )IS ,

dR
dt
= γA IA + γS IS − (ϕ + µ) R,

dR̂
dt
= ϕR − (ϕ + µ) R̂,

(3.3)

where Vw 2(t) = θ V̂(t) and Rw 2(t) = ϕ R̂(t), with Vw 2(t) and Rw 2(t) satisfying the ODEs in (2.15)
and (2.18), respectively, for j = 2. Here, the total population is given by

N̂(t) = S (t) + V(t) + E(t) + IA(t) + IS (t) + R(t) + V̂(t) + R̂(t), (3.4)

and the initial conditions are S (0) ≥ 0,V(0) ≥ 0, V̂(0) ≥ 0, E(0) ≥ 0, IA(0) ≥ 0, IS (0) ≥ 0,R(0) ≥ 0,
and R̂(0) ≥ 0. Observe that we have eliminated the equations for the first stage of immunity waning
Vw 1(t) and Rw 1(t) in (3.3), using the properties Vw 1(t) = θV(t) and Rw 1(t) = ϕR(t), respectively.

Now, we show the non-negativity and boundedness of the solutions of the ODE system (3.3), which
guarantees that the model is biologically well-posed. To show that the solution of this system remains
positive starting with a positive initial condition, we start by considering the equation for the susceptible
population in (3.3), which gives

dS
dt
= Λ − λS − πS + ϕ R̂ + θ V̂ − µS ,

≥ Λ − (λ + π + µ)S .
(3.5)

Observe that (3.5) is a first-order linear ODE with integrating factor

F(t) = exp
{∫ t

0

[
λ(s) + π + µ

]
ds

}
,
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where λ(s) ≡ λ(S ,V, E, IA, IS ,R, V̂ , R̂). Upon solving (3.5) using this integrating factor and with
equality, we obtain

S (τ) F(τ)
∣∣∣∣t
0
= Λ

∫ t

0
F(τ) dτ.

Evaluating the integral on the right hand side of this equation and using the fact that S (0) ≥ 0, we get

S (t) exp
{∫ t

0

[
λ(s) + π + µ

]
ds

}
≥ S (0) + Λ

∫ t

0
exp

{∫ u

0

[
λ(s) + π + µ

]
ds

}
du,

which can easily be simplified to

S (t) ≥ S (0) exp
{
−(π + µ)t −

∫ t

0
λ(s) ds

}
+ Λ

∫ t

0
exp

{
(π + µ)u +

∫ u

0
λ(s) ds

}
du × exp

{
−(π + µ)t −

∫ t

0
λ(s) ds

}
.

(3.6)

Since S (0) > 0 and Λ > 0, from (3.6), it is guaranteed that the solution S (t) is non-negative for all
t > 0. From the equation for V(t) in (3.3), we have V ′(V = 0) = π S (t). Since S (0) > 0 and S (t) ≥ 0,
we conclude that V(t) ≥ 0 for all t > 0. Following a similar procedure, it can easily be shown that
E(t), IA(t), IS (t),R(t), V̂(t) and R̂(t) are non-negative for all t > 0.

Next, to show that the solutions of (3.3) are bounded for all t > 0, we differentiate N̂(t) as given
in (3.4) with respect to t to obtain

dN̂(t)
dt
= Λ − µN̂ − δA IA − δS IS ≤ Λ − µN̂, (3.7)

Note that we have used the fact that IA ≥ 0 and IS ≥ 0 in deriving the inequality in (3.7). The solution
of this inequality is given by

N̂(t) ≤
Λ

µ
+

[
N̂(0) −

Λ

µ

]
e−µt.

Taking the limit of both sides as t → ∞ gives

lim
t→∞

N̂(t) ≤
Λ

µ
+ lim

t→∞

[(
N̂(0) −

Λ

µ

)
e−µt

]
=
Λ

µ
. (3.8)

This inequality shows that the total population N̂(t) is bounded by Λ/µ for all t > 0. In addition to
the boundedness of the solutions, since all the state variables are non-negative for all t > 0, we are
guaranteed that the ODE system (3.3) is well-posed biologically. Although the proofs presented here
are for n = m = 2 in (2.19), they can easily be extend to the case of finite n ∈ Z+ and m ∈ Z+ to show
that the ODE system (2.19) is biologically well-posed.

4. Stability analysis

Next, we study the stability properties of the ODE model (3.3). We first derive the disease-free
steady-state of the system, after which we derive the control reproduction number (Rc). In addition, we
perform bifurcation analysis on the endemic equilibrium of a limiting model and show that the model
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exhibits a transcritical bifurcation at Rc = 1, which can be either backward or forward depending on
the immunity waning rates. Lastly, we proof the global stability of both the disease-free and endemic
equilibria.

We derive the disease-free equilibrium (DFE) of the ODE system (3.3) as

Θ = (S e,Ve, V̂e, Ee, IAe, IS e,Re, R̂e) =
(
Λ (µ + θ)2

Φ
,
πΛ (µ + θ)
Φ

,
π θΛ

Φ
, 0, 0, 0, 0, 0

)
, (4.1)

whereΦ = µ
[
(µ+θ)2+v (µ+2θ)

]
. The total population at the DFE is given by N̂e = S e+Ve+ V̂e = Λ/µ.

Using the next generation matrix approach [60–62], we derive the control reproduction number of the
ODE model (3.3) as

Rc =
α
[
η βA ψ2 + ψ1 βS (1 − η)

]
(α + µ)ψ1ψ2

π (1 − ε)
[
µ(θ + 1) + θ(2 + θ)

]
+ (µ + θ)2

(µ + θ)(µ + θ + π) + π θ

 , (4.2)

where ψ1 = γA + µ + δA and ψ2 = γS + µ + δS . The control reproduction number, Rc denotes the
average number of new COVID-19 infection generated by a single infection introduced into a
susceptible population where a fraction of them are vaccinated. We establish the following theorem.

Theorem 4.1. The DFE of the model equation (4.1) is locally asymptotically stable (LAS) if Rc < 1,
and unstable if Rc > 1.

The results in Theorem 4.1 implies that COVID-19 can be eliminated from the population when the
control reproduction number Rc < 1 if the initial size of the population is under the basin of attraction
of the DFE, Θ. The proof of 4.1 is elementary and can be established using Theorem 2 of [61].

4.1. Bifurcation analysis

We consider a limiting ODE model where vaccinated individual can only get infected with COVID-
19 after completely losing their vaccine-induced immunity. We perform bifurcation analysis on the
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endemic equilibrium of the limiting model. In this limit, the ODE system (3.3) reduces to

dS
dt
= Λ − λS − (π + µ)S + ϕ R̂ + θ V̂ ,

dV
dt
= πS − (θ + µ)V,

dV̂
dt
= θV − (θ + µ) V̂ ,

dE
dt
= λS − (α + µ)E,

dIA

dt
= α η E − (γA + µ + δA) IA,

dIS

dt
= α (1 − η)E − (γS + µ + δS )IS ,

dR
dt
= γA IA + γS IS − (ϕ + µ)R,

dR̂
dt
= ϕR − (ϕ + µ) R̂,



(4.3)

The disease-free equilibrium of the model (4.3) is the same as that of the ODE system (3.3), given
in (4.1). Based on the assumptions used to derived the model (4.3), the control reproduction
number (4.2) reduces to

R̂c =
α (µ + θ)

[
η βA ψ2 + ψ1 βS (1 − η)

]
ψ1ψ2 (α + µ)

[
(µ + θ + π) + π θ

] , (4.4)

where ψ1 = γA + µ + δA and ψ2 = γS + µ + δS .

We begin our analysis by defining the endemic equilibrium of (4.3) as

Υ = (S d,Vd, V̂d, Ed, IAd, IS d,Rd, R̂d), (4.5)

and the force of infection at the endemic equilibrium point as

λd =
βA IAd + βS IS d

Nd
, (4.6)

where Nd(t) = S d(t) + Vd(t) + V̂d(t) + Ed(t) + IAd(t) + IS d(t) + Rd(t) + R̂d(t) is the total population at the
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endemic equilibrium. At the endemic equilibrium, the state variables of (4.3) satisfy

S d =
(θ + µ)2Ψ1Λ

Ω
, Vd =

π (θ + µ)Ψ1Λ

Ω
, V̂d =

π θΨ1Λ

Ω
,

Ed =
(θ + µ)2λΨ1Λ

(α + µ)Ω
, IAd =

α η (θ + µ)2 λΨ1Λ

(α + µ)ψ1 Ω
,

IS d =
α (θ + µ)2(1 − η) λΨ1Λ

(α + µ)ψ2Ω
, Rd =

(θ + µ)2 (Ψ1 − Γ) λΨ1Λ

ϕ2Ψ0Ω
,

R̂d =
(θ + µ)2 (Ψ1 − Γ) λΛΨ1

ϕΨ1Ω
,

(4.7)

where

Ψ0 = ψ1 ψ2 (α + µ) (ϕ + µ), Ψ1 = ψ1 ψ2 (α + µ) (ϕ + µ)2, Ψ2 = (π + µ) (θ + µ) 2 − θ2π,

Ψ3 = ψ1 (1 − η), Γ =
[
Ψ1 − αϕ

2 (
γA η ψ2 + γS Ψ3

)]
, Ω = (θ + µ) 2 λΓ + Ψ1Ψ2.

(4.8)

Note that ψ1 and ψ2 are as defined in (4.2). Substituting the parameters in (4.8) into (4.7) and writing
all the state variables in terms of λd, it can be shown that the non-zero equilibria of (4.3) satisfy the
quadratic equation

T1 λ
2
d + T2 λd + T3 = 0, (4.9)

where the coefficients T1,T2 and T3 satisfy

T1 = (θ + µ)3(α + µ)
(
A1(ϕ + µ) − ϕ2 A0

)
ψ2 A5,

T2 = ψ1ψ2(α + µ)
[
A6(θ + µ)2

(
A1(ϕ + µ) − ϕ2A0

)
+ A1(ϕ + µ)Ψ2 A5

− α(ϕ + µ)(θ + µ)2Λ A1A7

(
βA ηψ2 + βS ψ1(1 − η)

)]
,

T3 = Λ A4
1Ψ

2
2(1 − R̂c).

(4.10)

Here, the parameters A0, . . . , A6 are defined as follows

A0 = α
(
γA η ψ2 + γSψ1(1 − η)

)
, A1 = ψ1ψ2(α + µ)(ϕ + µ),

A2 = (ϕ + µ) (θ + µ)2A1Λ, A3 = (θ + µ)2
(
A1(ϕ + µ) − ϕ2A0

)
,

A4 = ψ1ψ2(α + µ)(ϕ + µ)2
(
(π + µ)(θ + µ)2 − θ2 π

)
,

A5 = Λ A1 A3 − α ηψ2 δA A2 − α(1 − η)ψ1 δS A2,

A6 = Λ A1 A4, A7 = µ (α + µ)ψ1 ψ2 A3.

(4.11)
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It can easily be shown that T1 > 0 since A1(ϕ + µ) − ϕ2A0 > 0, and T3 ≥ 0 if and only if R̂c ≤ 1.
The endemic equilibrium (equilibria) of the model can be obtained by solving for the positive values
of λd in (4.9) and substituting it into (4.7). These equilibria exist for R̂c > 1 and are summarized in the
following theorem.

Theorem 4.2. The ODE model (4.3) has

1) a unique endemic equilibrium if T3 < 0 ⇐⇒ R̂c > 1;
2) a unique endemic equilibrium if T2 < 0 and T3 = 0 or T 2

2 − 4T1T3 = 0;
3) two endemic equilibria if T3 > 0, T2 < 0 and T 2

2 − 4T1T3 > 0;
4) no endemic equilibrium otherwise.

In Theorem 4.2, case (1) shows the existence of the endemic equilibrium point Υ whenever R̂c > 1,
while case (3) shows the possibility of a backward bifurcation. The phenomenon of backward
bifurcation occurs when an asymptotically stable disease-free equilibrium co-exists with an
asymptotically stable endemic equilibrium for some R̂c < 1 [33, 63, 64]. To prove this fact, a critical
value of R̂c denoted by Rcritical can be obtained from the discriminant equation T 2

2 − 4T1T3 = 0. Upon
substituting (4.10) into this equation and simplifying, we obtain

Rcritical = 1 −
T 2

2

4T1

[
ΛΨ2

0 A2
1Ψ

2
2(1 − R̂c)

] , (4.12)

where A1 is as defined in (4.11), T1 and T2 are as defined in (4.10), and Ψ0 and Ψ2 are defined in (4.8).
Thus, a backward bifurcation occurs at R̂c = 1, giving rise to a branch of unstable endemic
equilibrium solutions for Rcritical < R̂c < 1. Another bifurcation occurs at R̂c = Rcritical, where the
unstable branch of endemic solutions switch stability and become a stable branch of endemic
equilibrium solutions for Rcritical < R̂c. The biological interpretation of having a backward bifurcation
is that the control reproduction number R̂c being less than unity is no longer sufficient to guarantee the
disease eradication. More control measures would be required to eradicate the disease from the
population.

In Figure 2, we show that (4.3) can exhibit either a forward or backward bifurcation, depending
on the immunity waning rates. When we fixed the waning rate of vaccine-induced immunity as θ =
0.01 and used an infection-induced immunity waning rate of ϕ = 0.01, the model exhibits a forward
bifurcation, which occurs at R̂c = 1 (left panel of Figure 2). The bifurcation changes to a backward
bifurcation when ϕ is increased to ϕ = 0.02 (right panel of Figure 2). The parameters used are βA =

0.2189, βS = 0.3521, π = 0.975, η = 0.25, and as given in Table 2. Having a forward bifurcation
implies that COVID-19 can be eradicated from the population when R̂c < 1. On the other hand, a
backward bifurcation implies that R̂c < 1 is not sufficient to eradicate COVID-19 from the population.
Observe that a forward bifurcation is obtained with a smaller immunity waning rate, which implies that
disease eradication is easier when immunity waning happens over a longer time compared to when it
happens faster.
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Figure 2. Bifurcation diagrams. Bifurcation diagrams for the ODE model (4.3) presented
in terms of the control reproduction number (R̂c) and the force of infection (λ). The solid
blue line indicates stable disease-free equilibrium (stable DFE) solutions, the solid red line
indicates unstable disease-free equilibrium (unstable DFE) solutions, the blue dashed line
represents a branch of stable endemic equilibrium (stable EEP) solutions and the red dashed
line represent unstable endemic equilibrium (unstable DFE) solutions. Left panel: forward
transcritical bifurcation obtained with ϕ = 0.01, and right panel: backward transcritical
bifurcation obtained with ϕ = 0.02. Parameters: θ = 0.01, βA = 0.2189, βS = 0.3521, π =
0.975, η = 0.25, and others are as given in Table 2.
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Figure 3. Effect of immunity waning rates on bifurcation. Bifurcation diagrams for the
ODE model (4.3) presented in terms of the control reproduction number (R̂c) and the force
of infection (λ) for varying values of the immunity waning parameters θ and ϕ. The solid
blue line indicates stable disease-free equilibrium (stable DFE) solutions, the solid red line
indicates unstable disease-free equilibrium (unstable DFE) solutions, the blue dashed line
represents a branch of stable endemic equilibrium (stable EEP) solutions and the red dashed
line represent unstable endemic equilibrium (unstable DFE) solutions. Left panel: θ = 0.01
and right panel: θ = 0.015. Parameters: βA = 0.2189, βS = 0.3521, π = 0.975, η = 0.25, and
as given in Table 2.
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In Figure 3, we study the effect of immunity waning on the bifurcation types. In other words,
we study the switching of the bifurcation at R̂c from forward to backward. For a fixed value of θ,
there is a threshold value of ϕ where the bifurcation at R̂c = 1 switches from a forward transcritical
bifurcation to a backward bifurcation. This threshold value depends on the value of θ and increases as
θ increases as illustrated in Figure 3. When θ = 0.01, the bifurcation switches at ϕ ∼ 0.0175 (left panel
of Figure 3). Increasing the vaccine-induced immunity waning rate to θ = 0.015, the threshold value
for the infection-induced immunity where the bifurcation switches forward to backward also increases
to ϕ ∼ 0.024 (right panel of Figure 3). It is important to mention that for a fixed value of ϕ, changes is
the value of θ does not affect the bifurcation type.

4.2. Global stability analysis of the disease-free equilibrium

Next, we establish the global stability of the disease-free equilibrium (DFE) of the ODE model (4.3)
under the condition that the disease-induced mortality rates are negligible, i.e., δA = δS = 0. We
used the Castillo-Chavez approach [63], which uses the Jacobian matrices of both the disease-free and
endemic equilibria to establish the stability of the DFE for R̂c < 1. The approach has been used in
several articles including [64–66].

By re-writing the model (4.3) in vector form, we have

U̇ = G(U,V), V̇ = H(U,V), (4.13)

where the vector U = (S ,V, V̂ ,R, R̂) denotes the uninfected compartments of the system and V =
(E, IA, IS ) denotes the infected compartments. Here, H(U,000) = 000. For global stability to be ensured,
the following conditions must be satisfied:

1) U̇(t) = G(U0,000) = 000, whereU0 is the DFE of (4.3).
2) Ĥ(U,V) = JV − H(U,V), with Ĥ(U,V) ≥ 0, where J is the Jacobian matrix defined by

J = ∂H
∂V

(U0,000).

From the ODE model (4.3), we construct the Jacobian matrix of the infected compartments at the DFE
as

J =


−(α + µ)

βAS e

N̂e

βS S e

N̂e

αη −(γA + µ) 0

α(1 − η) 0 −(γS + µ)

 ,
Where S e,Ve, and V̂e are as given in (4.1) and N̂e is the total population at the DFE. We construct the
vectorV of the infected compartments and compute the matrix-vector multiplication JV to obtain

JV =


−(α + µ)E +

βAIAS e

N̂e
+
βS IS S e

N̂e

α η E − (γA + µ) IA

α (1 − η) E − (γS + µ) IS

 , (4.14)
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Furthermore, from (4.3), we construct the vector H(U,V) as

H(U,V) =


(βA IA + βS IS )

N̂
S − (α + µ)E

α η E − (γA + µ) IA

α(1 − η)E − (γS + µ) IS

 . (4.15)

Using (4.14) and (4.15), we compute Ĥ(U,V) = JV − H(U,V) as

Ĥ(U,V) =



(
βAIA + βS IS

) (
S e

N̂e
− S

N̂

)
0

0

 .

Since S e

N̂e
≥ S

N̂
, we conclude that Ĥ(U,V) ≥ 0. It can easily be shown that limt→ ∞U(t) = U0 and that

J is an M−Matrix. Therefore, U0 is globally asymptotically stable whenever R̂c < 1. This result is
summarized in the following theorem:

Theorem 4.3. For the special case where δA = δS = 0, the unique positive disease-free equilibrium
(DFE) of the model (4.3) is globally-asymptotically stable if the control reproduction number R̂c < 1.

4.3. Global stability analysis of the endemic equilibrium

Lastly, we establish the global stability of the unique endemic equilibrium of the model (4.3), for
the special case δA = δS = 0, that is, no disease-induced death. For this analysis to be possible, the
control reproduction number must be greater than unity, since this endemic equilibrium only exists for
R̂c > 1. We establish the following theorem.

Theorem 4.4. For the special case where δA = δS = 0, the unique positive endemic equilibrium of the
model (4.3) is globally-asymptotically stable if the control reproduction number R̂c > 1.

Proof. Consider the following nonlinear Lyapunov function

F =
8∑

k=1

Hk Fk, Hk > 0; k = 1, . . . , 8,

where Hk is a constant and Fk is given by

Fk =

∫ f

fd k

(
1 −

fd k

x

)
dx,

Here, fd k for k = 1, . . . , 8 are the elements of the vector fd = (S d,Vd, V̂d, Ed, IAd, IS d,Rd, R̂d).
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From (4.3), we have

F = H1

∫ S

S d

(
1 −

S d

x

)
dx + H2

∫ V

Vd

(
1 −

Vd

x

)
dx + H3

∫ V̂

V̂d

(
1 −

V̂d

x

)
dx

+ H4

∫ E

Ed

(
1 −

Ed

x

)
dx + H5

∫ IAd

IAd

(
1 −

IAd

x

)
dx + H6

∫ IS d

IS d

(
1 −

IS d

x

)
dx

+ H7

∫ RAd

RAd

(
1 −

RAd

x

)
dx + H8

∫ ÎS d

ÎS d

(
1 −

ÎS d

x

)
dx,

whose time derivative is given by

Ḟ = H1

(
1 −

S d

S

)
Ṡ + H2

(
1 −

Vd

V

)
V̇ + H3

(
1 −

V̂d

V̂

)
ˆ̇V + H4

(
1 −

Ed

E

)
Ė

+ H5

(
1 −

IAd

IA

)
İA + H6

(
1 −

IS d

IS

)
İS + H7

(
1 −

Rd

R

)
Ṙ + H8

(
1 −

R̂d

R̂

)
˙̂R .

(4.16)

Since the disease-induced death rates δA = δS = 0, from (3.7), we have

dN̂
dt
= Λ − µN̂,

whose solution is given by

N̂ =
Λ

µ
as t → ∞.

Substituting for N̂ in (4.6) gives λd = q (βA IAd+βS IS d), where q = µ/Λ. Substituting the state variables
from (4.7) into the expressions in (4.16), we obtain

Ḟ = H1

[
Λ − λ1S − χ1S + ϕ R̂ + θ V̂ −

S d

S

(
Λ − λ1S − χ1S + ϕ R̂ + θ V̂

)]

+ H2

[
πS − χ2V −

Vd

V
(πS − χ2V)

]
+ H3

[
θV − χ2V̂ −

V̂d

V̂

(
θV − χ2V̂

)]

+ H4

[
λ1S − χ3E −

Ed

E
(λ1S − χ3E)

]
+ H5

[
α η E − χ̄4IA −

IAd

IA
(α η E − χ̄4IA)

]

+ H6

[
αχ5E − χ̄6IS −

IS d

IS
(αχ5E − χ̄6IS )

]

+ H7

[
γAIA + γS IS − χ7R −

Rd

R
(γAIA + γS IS − χ7R)

]

+ H8

[
ϕR − χ7R̂ −

R̂d

R̂
(ϕR − χ7R̂)

]
,

(4.17)
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where χ1, χ2, χ3, χ̄4, χ5, χ̄6, and χ7 are defined as follows:

χ1 =
Λ − q(βAIAd + βS IS d)S d + ϕR̂d + θV̂d

S d
, χ2 =

πS d

Vd
, χ3 =

q(βAIAd + βS IS d)S d

Ed
,

χ̄4 =
αηEd

IAd
, χ5 =

χ̄6IS d

αEd
, χ̄6 =

αχ5Ed

IS d
, χ7 =

γAIAd + γS IS d

Rd
,

Λ = q(βAIAd + βS IS d)S d − χ1S d − ϕ R̂d − θ V̂d.

(4.18)

The constants H1 to H6 are also given by

H1 =
1

S dRd
, H2 =

θ

Vd
, H3 =

πS d

Ŝ d
, H4 =

S dE
IAd

,

H5 =
α

Ed
, H6 =

1
α
, H7 =

αθ

R̂d
, H8 =

ϕ

R̂d
.

Upon substituting the expressions in (4.18) into (4.17), the first term gives

1
S dRd

[
q(βAIAd + βS IS d)S d + χ1S d − ϕ R̂d − θ V̂d

−q(βAIAd + βS IS d)S d − χ1S + ϕ R̂ + θ V̂

−
S d

S

(
q(βAIAd + βS IS d)S d + χ1S d − ϕ R̂d − θ V̂d

−q(βAIAd + βS IS d)S − χ1S + ϕ R̂ + θ V̂
)]
.

The addition of the second and third terms gives

θ

Vd

[
πS −

πS d

Vd
V −

Vd

V

(
πS −

πS d

Vd
V
)]
+
πS d

Ŝ d

[
θV −

πS d

Vd
V̂ −

V̂d

V̂

(
θV −

πS d

Vd
V̂
)]
.

Furthermore, the addition of the forth and fifth is given by

S dE
IAd

[
q(βAIAd + βS IS d)S d −

q(βAIAd + βS IS d)S d

Ed
E

−
Ed

E

(
q(βAIAd + βS IS d)S d −

q(βAIAd + βS IS d)S d

Ed
E
)]

+
α

Ed

[
α η E −

αηEd

IAd
IA −

IAd

IA

(
α η E −

αηEd

IAd
IA

)]
.

The sum of the sixth and seventh terms in (4.17) is given by

1
α

[
α
χ̄6IS d

αEd
E −

αχ5Ed

IS d
IS −

IS d

IS

(
αχ̄6IS d

αEd
−
αχ5Ed

IS d
IS

)]
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+
αθ

R̂d

[
γAIA + γS IS −

γAIAd + γS IS d

Rd
R −

Rd

R

(
γAIA + γS IS −

γAIAd + γS IS d

Rd
R
)]
,

and the last term in (4.17) is simplified to obtain

ϕ

R̂d

[
ϕR − χ7R̂ −

R̂d

R̂

(
ϕR − χ7R̂

)]
.

Combining, simplifying and factorizing the above expressions, we obtain

Ḟ ≤
χ1q

S dRd
(βAIAd + βS IS d)S d

(
2 −

S
S d
−

S d

S

)

+
θ2ϕ

Vd
Vd

(
3 −

R̂dS
S d
−

V̂R
R̂dVS

−
VS d

RV̂

)

+
π2S d

Ŝ d

(
2 −

S dV
S Vd

−
S Vd

S dV

)
+

(
πθVS d

Ŝ d
+

V̂πS d

Vd

) (
2 −

V̂d

V̂
−

V̂
V̂d

)
+

S dEq
IAd

(βAIAd + βS IS d)S d

(
2 −

S Ed

ES d
−

ES d

EdS

)
+ α

(
ηE
Ed
+
ηEd

Ed

) (
2 −

IAd

IA
−

IA

IAd

)
+

[
χ̄6E
α
+
αθ

R̂d
(γAIA + γS IS )Rdχ7

] (
3 −

EdRd

IS dR
−

R
Rd
−

IS d

Ed

)
.

(4.19)

From (4.19), we have the following(
2 −

S
S d
−

S d

S

)
≤ 0,

(
3 −

R̂dS
S d
−

V̂R
R̂dVS

−
VS d

RV̂

)
≤ 0,(

2 −
S Ed

ES d
−

ES d

EdS

)
≤ 0

(
2 −

S dV
S Vd

−
S Vd

S dV

)
≤ 0,

(
2 −

V̂d

V̂
−

V̂
V̂d

)
≤ 0,

(
2 −

IAd

IA
−

IA

IAd

)
≤ 0,

(
3 −

EdRd

IS dR
−

R
Rd
−

IS d

Ed

)
≤ 0.

Since S ≥ 0,V ≥ 0, V̂ ≥ 0, E ≥ 0, IA ≥ 0, IS ≥ 0,R ≥ 0 and R̂ ≥ 0, and the provision of Theorem 4.4 is
satisfied, then Ḟ ≤ 0 since all the model parameters are positive. Furthermore, Ḟ = 0, if S = S d,V =
Vd, V̂ = V̂d, E = Ed, IA = IAd, IS = IS d,R = Rd, and R̂ = R̂d Thus, F is a Lyapunov function for the
ODE model (4.3). By LaSalle’s Invariance Principle [67], the model has an endemic equilibrium point
that is globally asymptotically stable. This result shows that when the COVID-19-induced death rate
is negligible, the virus will persist in the environment if the control reproduction number is greater
than unity. □

5. Numerical simulation

We study the ODE model (3.3) numerically for different vaccination scenarios and immunity waning
rates. This study helps us understand the effect of vaccination and other important parameters in the
model on the disease dynamics. The model parameters and descriptions are given in Table 2.
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Table 2. Model parameters, descriptions, and values.

Parameter Description Value Reference
Λ Birth and immigration rate 1150 day−1 Inferred [68]
βA Asymptomatic transmission rate 0.2189 [69, 70]
βS Symptomatic transmission rate 0.053–0.3521 [69–72]
λ Force of infection Computed See (2.10)
π Vaccination rate Varied
ε Vaccine efficacy Varied
θ Vaccine-induced immunity waning rate Varied
ϕ Infection-induced immunity waning rate Varied
µ Natural death or emigration rate 0.0070 [48, 73]
α Rate of transitioning from exposed to

infectious ((1/α) is the incubation period)
1/5 day−1 [27, 69, 74]

η Fraction of infectious individuals that are
asymptomatic

Varied

γA (γS ) Recovery rate for asymptomatic
(symptomatic)

1/7 day−1 [69, 75, 76]

δA (δS ) Death rate due to COVID-19 for
asymptomatic (symptomatic)

0.0014 [77–80]

We begin by studying the effect of the model parameters on the control reproduction number,
Rc (4.2). Of particular interest are the vaccination and vaccine-induced immunity waning rates. Our
results for this study are presented in the form of contour plots. In the top left panel of Figure 4, we
have the contour plot for Rc in terms of the fraction of exposed individuals that become asymptomatic
infectious (η) and the waning rate of vaccine-induced immunity (θ). This result shows that for any
given values of η, Rc increases as the immunity waning rate increases. Conversely, for any given value
of θ, the control reproduction number decreases as η increases. For this result, the maximum values of
Rc occurs when the asymptomatic fraction is smallest and the waning rate is highest. It is important to
remark that this result is influence by the fact that our asymptomatic infectious transmission rate (βA)
is smaller then our symptomatic infectious transmission rate (βS ). A similar result is shown in the top
right panel of Figure 4 for the transmission rate of asymptomatic infectious population (βA) and the
waning rate of vaccine-induced immunity (θ). As one would expect, Rc increase with respect to both
βA and θ. Although, for a fixed transmission rate, Rc increases more rapidly as the vaccine-induced
immunity waning rate increases for high values of βA compared to lower values. This shows that
when βA is small, changes in the waning rate of vaccine-induced immunity has little effect on the
spread of the disease. However, as the transmission rate increases, the effect of immunity waning on
the disease spread also increases.

In the bottom left panel of the same figure, we present the result for the vaccination rate (π) and the
vaccine-induced immunity waning rate (θ). Similar to the other results, we show that Rc increases as θ
increase for any fixed values of the vaccination rate. On the other hand, Rc decreases as the vaccination
rate increases for any fix values of the vaccine-induced immunity waning rate (θ). Lastly, in the bottom
right panel of Figure 4, we present the result for vaccine efficacy (ε) and the vaccine-induced immunity
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Figure 4. Effect of vaccine-induced immunity waning on control reproduction number
(Rc). Contour plots of the control reproduction number Rc given in (4.2) as a function
of the vaccine-induced immunity waning rate and other model parameters: asymptomatic
transmission rate (top left), vaccine efficacy (top right), asymptomatic fraction (bottom left)
and vaccination rate (bottom right). Parameters: βA = 0.2189, βS = 0.3521, π = 0.65,
η = 0.25, ε = 0.75 and as given in Table 2.

rate θ. We observe from this result that θ has little effect on the control reproduction number when the
vaccine efficacy is small and its effect on Rc increases as the vaccine efficacy increases. This result
shows that when a vaccine is not effective, its waning rate has little effect on the spread of COVID-19.
On the other hand, the waning rate of more effective vaccines have significant effect on the spread of
the disease.

Next, we study the effect of the model parameters on the disease dynamics. Throughout this study,
we assume a total population of 1.5 million, based on the typical population of a large city in North
America [81], and assume a daily birth and immigration (population increase) rate of 1,150 per
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day [68]. We assumed that 5% of the population had already recovered from COVID-19 at the
beginning of the modeling period. This is used in computing the initial susceptible population using
the formula

S (0) = N(0) −
(
V(0) + V̂(0) + E(0) + IA(0) + IS (0) + R(0) + R̂(0)

)
. (5.1)

In addition, we assume that there are no vaccinated individuals, and individuals losing both vaccine-
and infection-induced immunities at the beginning of the study. We assume that there are 1000 exposed

Table 3. Model initial conditions.

Variable Description Value
N(0) Total population 1.5 million
S (0) Unvaccinated susceptible population Computed

using (5.1)
V(0) Vaccinated susceptible population 0
V̂(0) Vaccinated individuals losing their vaccine-induced

immunity
0

E(0) Exposed population 1, 000
IA(0) Asymptomatic infectious population 500
IS (0) Symptomatic infectious population 2, 000
R(0) Recovered population 75, 000
R̂(0) Recovered individuals losing their infection-induced

immunity
0

and 2500 infectious individuals in the population at the beginning of our simulations, and that 20% of
the infectious individuals are asymptomatic while the remaining 80% are symptomatic. A summary of
the initial conditions is given in Table 3.

We study the effect of both vaccine- and infection-induced immunity waning on the disease
dynamics. The results of this study are presented in Figure 5. In the left panel of this figure, we show
the dynamics of the infectious population (asymptomatic and symptomatic) over time. We used an
infection-induced immunity waning rate of ϕ = 0.01 and vary the waning rate of vaccine-induced
immunity, using θ = 0.05, 0.3, 0.5 and 0.75. These values of θ correspond to the control reproduction
numbers, Rc = 0.8065, 1.0773, 1.2402 and 1.3993, respectively, computed with (4.2). We observe that
the control reproduction number, Rc < 1 for only θ = 0.05. This is the only immunity waning rate for
which the disease is expected to be eradicated from the population. As θ increases, so does the control
reproduction number, giving rise to Rc > 1. For these scenarios, the disease becomes endemic in the
population. Similar results are given in the right panel of Figure 5 for ϕ = 0.05. Since Rc is
independent of the waning rate of infection-induced immunity (ϕ), the computed Rc for this scenario
are the same as those computed for the results in the left panel. However, an increase in ϕ leads to
more infections in the population.

In Figure 6, we investigate the effect of vaccination and vaccine efficacy on the disease dynamics.
We consider different waning rates for vaccine-induced immunity. In the top left panel of this figure,
we used a vaccination rate of π = 0.65 and a vaccine efficacy rate of ε = 0.65. For this scenario,
the computed control reproduction numbers are Rc = 0.7879 (θ = 0.05), Rc = 0.9882 (θ = 0.30),
Rc = 1.1087 (θ = 0.50), and Rc = 1.2264 (θ = 0.75). As expected, the disease is eradicated from the
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Figure 5. Effect of immunity waning on disease dynamics. Numerical solutions of the ODE
model (3.3) showing the total infectious population (asymptomatic and symptomatic) for
different values of vaccine-induced (θ) and infection-induced (ϕ) immunity waning rates:
ϕ = 0.01 (left) and ϕ = 0.05 (right). The values of θ used are 0.05, 0.3, 0.5 and 0.75,
corresponding to Rc values of 0.8065, 1.0773, 1.2402 and 1.3993, respectively. Parameters:
βA = 0.2189, βS = 0.3521, π = 0.65, η = 0.2, ε = 0.65, and as given in Table 2. Initial
conditions are as given in Table 3.

population for θ = 0.05 and θ = 0.30 since the control numbers for these cases are less than 1. On the
other hand, the disease continues to spread in the population for the waning rate θ = 0.50 and θ = 0.75
since their Rc are greater than 1. In the top right panel of Figure 6, the vaccination rate is increase to
π = 0.80. We observe from the results in this panel that the spread of COVID-19 in the population is
relatively lower compared to when the vaccination rate is lower (top left panel). This shows the impact
of an increase in the vaccination rate. The computed control reproduction numbers for this scenario
are Rc = 0.7770, 0.9473, 1.0545 and 1.1630 for θ = 0.05, 0.30, 0.50 and 0.75, respectively.

Next, we consider a scenario where the vaccination rate, π = 0.65 and vaccine efficacy, ε = 0.75
(bottom left panel of Figure 6). Comparing these results to those in the top left panel of the same figure
(for π = 0.65 and ε = 0.75), we notice that even though the vaccination rates in the two scenarios
are the same, there is a decrease in the spread of COVID-19 in the bottom left panel, which can be
attributed to an increase in the vaccine efficacy. The computed control reproduction for the scenario
in the bottom left panel are Rc = 0.5893, 0.8204, 0.9594 and 1.0952 for θ = 0.05, 0.30, 0.50 and 0.75,
respectively. We observe that the computed Rc for θ = 0.50 in this scenario is less than 1, unlike the
case of the same immunity waning rate in the top panel. This suggests that having a safe vaccine with
a higher efficacy is important in eradicating the spread of COVID-19. Lastly, by increasing both the
vaccination rate and vaccine efficacy to π = 0.80 and ε = 0.75, respectively, we are able to bring the
spread of COVID-19 under control (bottom right panel of Figure 6). For this scenario, the compute
control reproduction numbers are Rc = 0.5768 (θ = 0.05), 0.7732 (θ = 0.30), 0.8969 (θ = 0.50) and
1.0221 (θ = 0.75). We observe from the results in this plot that there is a decline in the infectious
population over time for all the four cases, and that we are able to eradicate COVID-19 in three of
the four cases (where Rc < 1). For the last case, where θ = 0.75, although, Rc > 1, the infectious
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Figure 6. Effect of vaccination and vaccine efficacy on disease dynamics. Numerical
solutions of the ODE model (3.3) showing the total infectious population (asymptomatic and
symptomatic) for different values of the vaccination rate (π) and vaccine efficacy (ε). Top left:
π = 0.65 and ε = 0.65, top right: π = 0.80 and ε = 0.65, bottom left: π = 0.65 and ε = 0.75,
and bottom right: π = 0.80 and ε = 0.75. Parameters: βA = 0.2189, βS = 0.3521, η = 0.2,
and as given in Table 2. Initial conditions are as given in Table 3.

population continue to decrease and become relatively small.

6. Discussion

We have developed an endemic SEIR model of COVID-19 that incorporate the waning of both
vaccine- and infection-induced immunities. Our model assumes that the waning of both immunities
happens gradually at the population level and describes them using distributed delay equations. The
model consists of six major compartments: susceptible (S ), vaccinated (V), exposed (E),
asymptomatic infectious (IA), symptomatic infectious (IS ) and recovered (R). We represent the
distribution of individuals at different stages of losing their COVID-19 immunity with integrals, and
assume that the time it takes to lose both vaccine-induced and infection-induced immunities follow
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Gamma distributions. The linear chain trick method was used to derive a nonlinear system of ODEs
from the distributed delay model, which gave rise to additional compartments in the model. These
additional compartments are used to account for the individuals at different stages of losing their
immunity.

We proved the non-negativity and boundedness of the reduced ODE model solutions for the case
where there are only two stages in losing immunity. These proofs can be extended for the general case
with finite number of immunity waning stages, which will guarantee the well-posedness of the ODE
model. We computed the control reproduction number of the ODE model and performed bifurcation
analysis on the endemic equilibrium of a limiting model. In the limiting ODE model, we assume that
a vaccinated individual can only be infected with COVID-19 after completely losing their
vaccine-induced immunity. The bifurcation analysis was used to study the stability properties of the
endemic equilibrium solution branch of the model. We showed that the limiting ODE model can
exhibit both forward and backward transcritical bifurcation at Rc = 1, depending on the waning rates
of both vaccine-induced and infection-induced immunities. Although the change in bifurcation type
depends largely on the waning rate of infection-induced immunity, the threshold value of the waning
rate of infection-induced immunity for which the change in bifurcation type occurs changes with
respect to the vaccine-induced immunity waning rate. This result suggests that infection-induced
immunity waning influences the bifurcation type more than vaccine-induced immunity waning.
Furthermore, the existence of backward bifurcation implies that Rc < 1 does not guarantee the
eradication of COVID-19 in the population, and that additional measures are required to eradicate the
disease. This emphasizes the difficulty in eradicating COVID-19, which is as a result of immunity
waning. We also performed global stability analysis on both the disease-free and endemic equilibria
of the limiting ODE model.

Furthermore, we investigated the effect of model parameters on the control reproduction number. Of
particular interest is the effect of the vaccine-induced immunity waning rate. Our results are presented
in the form of contour plots for the control reproduction number as a function of the vaccine-induced
immunity waning rate and another model parameter such as the fraction of exposed individuals that
become asymptomatic, the transmission rate of asymptomatic infectious individuals, vaccination rate,
and vaccine efficacy. For all the scenarios considered, our results show that the control reproduction
number increases as the immunity waning rate increases, as expected. In addition, we showed that the
increase in the control reproduction number as the immunity waning rate increases is more rapid when
the asymptomatic transmission rate is higher compared to when it is lower. When COVID-19 spreads
at a low rate, the waning rate of the vaccine-induced immunity will have little affect on the disease
spread. But when the transmission rate is higher, an increase in the waning rate will lead to significant
increase in the spread of the disease. Similar, for the vaccination rate and vaccine efficacy, we noticed
that the increase in the control reproduction number as the immunity waning rate increase is more rapid
when both parameters are higher compared to when they are low. When the vaccination rate is low, the
waning of vaccine-induced immunity has no significant impact on the spread of the disease since only
a small fraction of the population has protection from the disease due to vaccination. However, as the
vaccination rate increases, vaccine protection against COVID-19 in the population also increases, and
as a result of this, an increase in the waning rate of vaccine-induced immunity will have a significant
effect on the spread of the disease in the population. A similar explanation applies to the case of
vaccine efficacy.
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We also studied the effect of the model parameters on the disease dynamics. We started by
investigating how the immunity waning rates affect the disease dynamics. As expected, an increase in
the waning rate of vaccine-induced immunity leads to an increase in the spread of COVID-19. Recall
that the control reproduction number is independent of the waning rate of infection-induced
immunity. However, the values of this parameter affects the dynamics of the disease in the population.
We observed an increase in infections in the population as this waning rate increases. The control
reproduction number is computed at the beginning of our study period and considers new infections
and the transfer of infections. It does not depend on the waning rate of infection-induced immunity
because this immunity waning happens in the recovered compartment and does not happen at the
beginning of the study period. However, when recovered individual lose the infection-induced
immunity, they return to the susceptible population and can be reinfected. Lastly, we investigated the
effect of vaccination and vaccine efficacy on the spread of COVID-19 in the population by solving the
ODE model with various vaccination rates and vaccine efficacies. We started with baseline values for
these parameters and then increase them gradually while studying the changes in the infectious
population. Our results show that increase in both the vaccination rate and the vaccine efficacy lead to
a decrease in both the control reproduction number and the infectious population. In addition, we
showed that having a high vaccination rate with a moderately effective vaccine is sufficient to
eradicate COVID-19 in the population.

We have proposed a distributed delay framework for modeling COVID-19 and studied the stability
properties of the model. An interesting and important next step to this study would involve fitting
our reduced ODE model to the reported case of COVID-19 in a particular city, where the estimated
parameters would then be used to study the endemicity of COVID-19 in the city. We are currently
working on this extension for some selected cities around the world. In this study, we focused on
analyzing the reduced ODE system. It would be worthwhile to analyze the complete distributed delay
model. Another interesting extension of our modeling framework includes stratifying the population
into age groups so that the dynamics of each a group can be studies more extensively. Although,
we have presented our modeling framework for a single homogeneous population, the idea can be
extended to a scenario with multiple populations, where the different populations interact with each
other through the movement of individuals between the populations. Such a model can be used to
study the spread of COVID-19 between regions.
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